/*++ Copyright (c) 2012 Microsoft Corporation Module Name: qflia_tactic.cpp Abstract: Tactic for QF_NIA Author: Leonardo (leonardo) 2012-02-28 Notes: --*/ #include "tactic/tactical.h" #include "tactic/core/simplify_tactic.h" #include "tactic/core/propagate_values_tactic.h" #include "tactic/core/solve_eqs_tactic.h" #include "tactic/core/elim_uncnstr_tactic.h" #include "tactic/bv/bit_blaster_tactic.h" #include "tactic/bv/max_bv_sharing_tactic.h" #include "sat/tactic/sat_tactic.h" #include "tactic/arith/nla2bv_tactic.h" #include "tactic/arith/lia2card_tactic.h" #include "tactic/arith/card2bv_tactic.h" #include "tactic/core/ctx_simplify_tactic.h" #include "tactic/core/cofactor_term_ite_tactic.h" #include "tactic/smtlogics/smt_tactic.h" #include "nlsat/tactic/qfnra_nlsat_tactic.h" static tactic * mk_qfnia_bv_solver(ast_manager & m, params_ref const & p_ref) { params_ref p = p_ref; p.set_bool("flat", false); p.set_bool("hi_div0", true); p.set_bool("elim_and", true); p.set_bool("blast_distinct", true); params_ref simp2_p = p; simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); params_ref mem_p = p; mem_p.set_uint("max_memory", 100); tactic * r = using_params(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_simplify_tactic(m), simp2_p), mk_max_bv_sharing_tactic(m), using_params(mk_bit_blaster_tactic(m), mem_p), mk_sat_tactic(m)), p); return r; } static tactic * mk_qfnia_preamble(ast_manager & m, params_ref const & p_ref) { params_ref pull_ite_p = p_ref; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); params_ref ctx_simp_p = p_ref; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref elim_p = p_ref; elim_p.set_uint("max_memory",20); return and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p), mk_elim_uncnstr_tactic(m), mk_lia2card_tactic(m), mk_card2bv_tactic(m, p_ref), skip_if_failed(using_params(mk_cofactor_term_ite_tactic(m), elim_p))); } static tactic * mk_qfnia_sat_solver(ast_manager & m, params_ref const & p) { params_ref nia2sat_p = p; nia2sat_p.set_uint("nla2bv_max_bv_size", 64); params_ref simp_p = p; simp_p.set_bool("hoist_mul", true); // hoist multipliers to create smaller circuits. return and_then(using_params(mk_simplify_tactic(m), simp_p), mk_nla2bv_tactic(m, nia2sat_p), skip_if_failed(mk_qfnia_bv_solver(m, p)), mk_fail_if_undecided_tactic()); } static tactic * mk_qfnia_nlsat_solver(ast_manager & m, params_ref const & p) { params_ref nia2sat_p = p; nia2sat_p.set_uint("nla2bv_max_bv_size", 64); params_ref simp_p = p; simp_p.set_bool("som", true); // expand into sums of monomials simp_p.set_bool("factor", false); return and_then(using_params(mk_simplify_tactic(m), simp_p), try_for(mk_qfnra_nlsat_tactic(m, simp_p), 3000), mk_fail_if_undecided_tactic()); } static tactic * mk_qfnia_smt_solver(ast_manager& m, params_ref const& p) { params_ref simp_p = p; simp_p.set_bool("som", true); // expand into sums of monomials return and_then( using_params(mk_simplify_tactic(m), simp_p), mk_smt_tactic(m)); } tactic * mk_qfnia_tactic(ast_manager & m, params_ref const & p) { return and_then( mk_report_verbose_tactic("(qfnia-tactic)", 10), mk_qfnia_preamble(m, p), or_else(mk_qfnia_sat_solver(m, p), try_for(mk_qfnia_smt_solver(m, p), 2000), mk_qfnia_nlsat_solver(m, p), mk_qfnia_smt_solver(m, p)) ) ; }