/*++ Copyright (c) 2011 Microsoft Corporation Module Name: seq_axioms.h Abstract: Axiomatize string operations that can be reduced to more basic operations. Author: Nikolaj Bjorner (nbjorner) 2020-4-16 Revision History: --*/ #pragma once #include "ast/seq_decl_plugin.h" #include "ast/arith_decl_plugin.h" #include "ast/rewriter/th_rewriter.h" #include "ast/rewriter/seq_skolem.h" #include "ast/rewriter/seq_axioms.h" #include "smt/smt_theory.h" namespace smt { class seq_axioms { theory& th; th_rewriter& m_rewrite; ast_manager& m; arith_util a; seq_util seq; seq::skolem m_sk; seq::axioms m_ax; bool m_digits_initialized; literal mk_eq_empty(expr* e, bool phase = true) { return mk_eq_empty2(e, phase); } context& ctx() { return th.get_context(); } literal mk_eq(expr* a, expr* b); literal mk_literal(expr* e); literal mk_seq_eq(expr* a, expr* b) { SASSERT(seq.is_seq(a) && seq.is_seq(b)); return mk_literal(m_sk.mk_eq(a, b)); } expr_ref mk_len(expr* s); expr_ref mk_sub(expr* x, expr* y); expr_ref mk_concat(expr* e1, expr* e2, expr* e3) { return expr_ref(seq.str.mk_concat(e1, e2, e3), m); } expr_ref mk_concat(expr* e1, expr* e2) { return expr_ref(seq.str.mk_concat(e1, e2), m); } expr_ref mk_nth(expr* e, unsigned i) { return expr_ref(seq.str.mk_nth_i(e, a.mk_int(i)), m); } literal mk_ge_e(expr* x, expr* y) { return mk_literal(a.mk_ge(x, y)); } literal mk_le_e(expr* x, expr* y) { return mk_literal(a.mk_le(x, y)); } void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal, literal l4 = null_literal, literal l5 = null_literal) { add_axiom5(l1, l2, l3, l4, l5); } void ensure_digit_axiom(); void add_clause(expr_ref_vector const& lits); void set_phase(expr* e); public: seq_axioms(theory& th, th_rewriter& r); // we rely on client to supply the following functions: std::function add_axiom5; std::function mk_eq_empty2; void add_suffix_axiom(expr* n) { m_ax.suffix_axiom(n); } void add_prefix_axiom(expr* n) { m_ax.prefix_axiom(n); } void add_extract_axiom(expr* n) { m_ax.extract_axiom(n); } void add_indexof_axiom(expr* n) { m_ax.indexof_axiom(n); } void add_last_indexof_axiom(expr* n) { m_ax.last_indexof_axiom(n); } void add_replace_axiom(expr* n) { m_ax.replace_axiom(n); } void add_at_axiom(expr* n) { m_ax.at_axiom(n); } void add_nth_axiom(expr* n) { m_ax.nth_axiom(n); } void add_itos_axiom(expr* n) { m_ax.itos_axiom(n); } void add_stoi_axiom(expr* n) { m_ax.stoi_axiom(n); } void add_stoi_axiom(expr* e, unsigned k) { m_ax.stoi_axiom(e, k); } void add_itos_axiom(expr* s, unsigned k) { m_ax.itos_axiom(s, k); } void add_ubv2s_axiom(expr* b, unsigned k) { m_ax.ubv2s_axiom(b, k); } void add_ubv2s_len_axiom(expr* b, unsigned k) { m_ax.ubv2s_len_axiom(b, k); } void add_ubv2ch_axioms(sort* s) { m_ax.ubv2ch_axiom(s); } void add_lt_axiom(expr* n) { m_ax.lt_axiom(n); } void add_le_axiom(expr* n) { m_ax.le_axiom(n); } void add_is_digit_axiom(expr* n) { m_ax.is_digit_axiom(n); } void add_str_to_code_axiom(expr* n) { m_ax.str_to_code_axiom(n); } void add_str_from_code_axiom(expr* n) { m_ax.str_from_code_axiom(n); } void add_unit_axiom(expr* n) { m_ax.unit_axiom(n); } void add_length_axiom(expr* n) { m_ax.length_axiom(n); } void unroll_not_contains(expr* n) { m_ax.unroll_not_contains(n); } literal is_digit(expr* ch) { return mk_literal(m_ax.is_digit(ch)); } expr_ref add_length_limit(expr* s, unsigned k) { return m_ax.length_limit(s, k); } literal mk_ge(expr* e, int k) { return mk_ge_e(e, a.mk_int(k)); } literal mk_le(expr* e, int k) { return mk_le_e(e, a.mk_int(k)); } literal mk_ge(expr* e, rational const& k) { return mk_ge_e(e, a.mk_int(k)); } literal mk_le(expr* e, rational const& k) { return mk_le_e(e, a.mk_int(k)); } seq::axioms& ax() { return m_ax; } }; };