/*++ Copyright (c) 2019 Microsoft Corporation Module Name: sat_ddfw.cpp Abstract: DDFW Local search module for clauses Author: Nikolaj Bjorner, Marijn Heule 2019-4-23 Notes: http://www.ict.griffith.edu.au/~johnt/publications/CP2006raouf.pdf Todo: - rephase strategy - experiment with backoff schemes for restarts - parallel sync --*/ #include "util/luby.h" #include "sat/sat_ddfw.h" #include "sat/sat_solver.h" #include "sat/sat_params.hpp" namespace sat { ddfw::~ddfw() { for (auto& ci : m_clauses) { m_alloc.del_clause(ci.m_clause); } } lbool ddfw::check(unsigned sz, literal const* assumptions, parallel* p) { init(sz, assumptions); flet _p(m_par, p); while (m_limit.inc() && m_min_sz > 0) { if (should_reinit_weights()) do_reinit_weights(); else if (do_flip()) ; else if (should_restart()) do_restart(); else if (should_parallel_sync()) do_parallel_sync(); else shift_weights(); } return m_min_sz == 0 ? l_true : l_undef; } void ddfw::log() { double sec = m_stopwatch.get_current_seconds(); double kflips_per_sec = (m_flips - m_last_flips) / (1000.0 * sec); if (m_last_flips == 0) { IF_VERBOSE(0, verbose_stream() << "(sat.ddfw :unsat :models :kflips/sec :flips :restarts :reinits :unsat_vars :shifts"; if (m_par) verbose_stream() << " :par"; verbose_stream() << ")\n"); } IF_VERBOSE(0, verbose_stream() << "(sat.ddfw " << std::setw(07) << m_min_sz << std::setw(07) << m_models.size() << std::setw(10) << kflips_per_sec << std::setw(10) << m_flips << std::setw(10) << m_restart_count << std::setw(10) << m_reinit_count << std::setw(10) << m_unsat_vars.size() << std::setw(10) << m_shifts; if (m_par) verbose_stream() << std::setw(10) << m_parsync_count; verbose_stream() << ")\n"); m_stopwatch.start(); m_last_flips = m_flips; } bool ddfw::do_flip() { bool_var v = pick_var(); if (reward(v) > 0 || (reward(v) == 0 && m_rand(100) <= m_config.m_use_reward_zero_pct)) { flip(v); if (m_unsat.size() <= m_min_sz) save_best_values(); return true; } return false; } bool_var ddfw::pick_var() { double sum_pos = 0; unsigned n = 1; bool_var v0 = null_bool_var; for (bool_var v : m_unsat_vars) { int r = reward(v); if (r > 0) { sum_pos += score(r); } else if (r == 0 && sum_pos == 0 && (m_rand() % (n++)) == 0) { v0 = v; } } if (sum_pos > 0) { double lim_pos = ((double) m_rand() / (1.0 + m_rand.max_value())) * sum_pos; for (bool_var v : m_unsat_vars) { int r = reward(v); if (r > 0) { lim_pos -= score(r); if (lim_pos <= 0) { if (m_par) update_reward_avg(v); return v; } } } } if (v0 != null_bool_var) { return v0; } return m_unsat_vars.elem_at(m_rand(m_unsat_vars.size())); } /** * TBD: map reward value to a score, possibly through an exponential function, such as * exp(-tau/r), where tau > 0 */ double ddfw::mk_score(unsigned r) { return r; } void ddfw::add(unsigned n, literal const* c) { clause* cls = m_alloc.mk_clause(n, c, false); unsigned idx = m_clauses.size(); m_clauses.push_back(clause_info(cls, m_config.m_init_clause_weight)); for (literal lit : *cls) { m_use_list.reserve(2*(lit.var()+1)); m_vars.reserve(lit.var()+1); m_use_list[lit.index()].push_back(idx); } } void ddfw::add(solver const& s) { for (auto& ci : m_clauses) { m_alloc.del_clause(ci.m_clause); } m_clauses.reset(); m_use_list.reset(); m_num_non_binary_clauses = 0; unsigned trail_sz = s.init_trail_size(); for (unsigned i = 0; i < trail_sz; ++i) { add(1, s.m_trail.data() + i); } unsigned sz = s.m_watches.size(); for (unsigned l_idx = 0; l_idx < sz; ++l_idx) { literal l1 = ~to_literal(l_idx); watch_list const & wlist = s.m_watches[l_idx]; for (watched const& w : wlist) { if (!w.is_binary_non_learned_clause()) continue; literal l2 = w.get_literal(); if (l1.index() > l2.index()) continue; literal ls[2] = { l1, l2 }; add(2, ls); } } for (clause* c : s.m_clauses) { add(c->size(), c->begin()); } m_num_non_binary_clauses = s.m_clauses.size(); } void ddfw::add_assumptions() { for (unsigned i = 0; i < m_assumptions.size(); ++i) { add(1, m_assumptions.data() + i); } } void ddfw::init(unsigned sz, literal const* assumptions) { m_assumptions.reset(); m_assumptions.append(sz, assumptions); add_assumptions(); for (unsigned v = 0; v < num_vars(); ++v) { literal lit(v, false), nlit(v, true); value(v) = (m_rand() % 2) == 0; // m_use_list[lit.index()].size() >= m_use_list[nlit.index()].size(); } init_clause_data(); flatten_use_list(); m_reinit_count = 0; m_reinit_next = m_config.m_reinit_base; m_restart_count = 0; m_restart_next = m_config.m_restart_base*2; m_parsync_count = 0; m_parsync_next = m_config.m_parsync_base; m_min_sz = m_unsat.size(); m_flips = 0; m_last_flips = 0; m_shifts = 0; m_stopwatch.start(); } void ddfw::reinit(solver& s) { add(s); add_assumptions(); if (s.m_best_phase_size > 0) { for (unsigned v = 0; v < num_vars(); ++v) { value(v) = s.m_best_phase[v]; reward(v) = 0; make_count(v) = 0; } } init_clause_data(); flatten_use_list(); } void ddfw::flatten_use_list() { m_use_list_index.reset(); m_flat_use_list.reset(); for (auto const& ul : m_use_list) { m_use_list_index.push_back(m_flat_use_list.size()); m_flat_use_list.append(ul); } m_use_list_index.push_back(m_flat_use_list.size()); } void ddfw::flip(bool_var v) { ++m_flips; literal lit = literal(v, !value(v)); literal nlit = ~lit; SASSERT(is_true(lit)); for (unsigned cls_idx : use_list(*this, lit)) { clause_info& ci = m_clauses[cls_idx]; ci.del(lit); unsigned w = ci.m_weight; // cls becomes false: flip any variable in clause to receive reward w switch (ci.m_num_trues) { case 0: { m_unsat.insert(cls_idx); clause const& c = get_clause(cls_idx); for (literal l : c) { inc_reward(l, w); inc_make(l); } inc_reward(lit, w); break; } case 1: dec_reward(to_literal(ci.m_trues), w); break; default: break; } } for (unsigned cls_idx : use_list(*this, nlit)) { clause_info& ci = m_clauses[cls_idx]; unsigned w = ci.m_weight; // the clause used to have a single true (pivot) literal, now it has two. // Then the previous pivot is no longer penalized for flipping. switch (ci.m_num_trues) { case 0: { m_unsat.remove(cls_idx); clause const& c = get_clause(cls_idx); for (literal l : c) { dec_reward(l, w); dec_make(l); } dec_reward(nlit, w); break; } case 1: inc_reward(to_literal(ci.m_trues), w); break; default: break; } ci.add(nlit); } value(v) = !value(v); } bool ddfw::should_reinit_weights() { return m_flips >= m_reinit_next; } void ddfw::do_reinit_weights() { log(); if (m_reinit_count % 2 == 0) { for (auto& ci : m_clauses) { ci.m_weight += 1; } } else { for (auto& ci : m_clauses) { if (ci.is_true()) { ci.m_weight = m_config.m_init_clause_weight; } else { ci.m_weight = m_config.m_init_clause_weight + 1; } } } init_clause_data(); ++m_reinit_count; m_reinit_next += m_reinit_count * m_config.m_reinit_base; } void ddfw::init_clause_data() { for (unsigned v = 0; v < num_vars(); ++v) { make_count(v) = 0; reward(v) = 0; } m_unsat_vars.reset(); m_unsat.reset(); unsigned sz = m_clauses.size(); for (unsigned i = 0; i < sz; ++i) { auto& ci = m_clauses[i]; clause const& c = get_clause(i); ci.m_trues = 0; ci.m_num_trues = 0; for (literal lit : c) { if (is_true(lit)) { ci.add(lit); } } switch (ci.m_num_trues) { case 0: for (literal lit : c) { inc_reward(lit, ci.m_weight); inc_make(lit); } m_unsat.insert(i); break; case 1: dec_reward(to_literal(ci.m_trues), ci.m_weight); break; default: break; } } } bool ddfw::should_restart() { return m_flips >= m_restart_next; } void ddfw::do_restart() { reinit_values(); init_clause_data(); m_restart_next += m_config.m_restart_base*get_luby(++m_restart_count); } /** \brief the higher the bias, the lower the probability to deviate from the value of the bias during a restart. bias = 0 -> flip truth value with 50% |bias| = 1 -> toss coin with 25% probability |bias| = 2 -> toss coin with 12.5% probability etc */ void ddfw::reinit_values() { for (unsigned i = 0; i < num_vars(); ++i) { int b = bias(i); if (0 == (m_rand() % (1 + abs(b)))) { value(i) = (m_rand() % 2) == 0; } else { value(i) = bias(i) > 0; } } } bool ddfw::should_parallel_sync() { return m_par != nullptr && m_flips >= m_parsync_next; } void ddfw::do_parallel_sync() { if (m_par->from_solver(*this)) { // Sum exp(xi) / exp(a) = Sum exp(xi - a) double max_avg = 0; for (unsigned v = 0; v < num_vars(); ++v) { max_avg = std::max(max_avg, (double)m_vars[v].m_reward_avg); } double sum = 0; for (unsigned v = 0; v < num_vars(); ++v) { sum += exp(m_config.m_itau * (m_vars[v].m_reward_avg - max_avg)); } if (sum == 0) { sum = 0.01; } m_probs.reset(); for (unsigned v = 0; v < num_vars(); ++v) { m_probs.push_back(exp(m_config.m_itau * (m_vars[v].m_reward_avg - max_avg)) / sum); } m_par->to_solver(*this); } ++m_parsync_count; m_parsync_next *= 3; m_parsync_next /= 2; } void ddfw::save_best_values() { if (m_unsat.empty()) { m_model.reserve(num_vars()); for (unsigned i = 0; i < num_vars(); ++i) { m_model[i] = to_lbool(value(i)); } } if (m_unsat.size() < m_min_sz) { m_models.reset(); // skip saving the first model. for (unsigned v = 0; v < num_vars(); ++v) { int& b = bias(v); if (abs(b) > 3) { b = b > 0 ? 3 : -3; } } } unsigned h = value_hash(); if (!m_models.contains(h)) { for (unsigned v = 0; v < num_vars(); ++v) { bias(v) += value(v) ? 1 : -1; } m_models.insert(h); if (m_models.size() > m_config.m_max_num_models) { m_models.erase(*m_models.begin()); } } m_min_sz = m_unsat.size(); } unsigned ddfw::value_hash() const { unsigned s0 = 0, s1 = 0; for (auto const& vi : m_vars) { s0 += vi.m_value; s1 += s0; } return s1; } /** \brief Filter on whether to select a satisfied clause 1. with some probability prefer higher weight to lesser weight. 2. take into account number of trues ? 3. select multiple clauses instead of just one per clause in unsat. */ bool ddfw::select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n) { if (cn.m_num_trues == 0 || cn.m_weight < max_weight) { return false; } if (cn.m_weight > max_weight) { n = 2; return true; } return (m_rand() % (n++)) == 0; } unsigned ddfw::select_max_same_sign(unsigned cf_idx) { clause const& c = get_clause(cf_idx); unsigned max_weight = 2; unsigned max_trues = 0; unsigned cl = UINT_MAX; // clause pointer to same sign, max weight satisfied clause. unsigned n = 1; for (literal lit : c) { for (unsigned cn_idx : use_list(*this, lit)) { auto& cn = m_clauses[cn_idx]; if (select_clause(max_weight, max_trues, cn, n)) { cl = cn_idx; max_weight = cn.m_weight; max_trues = cn.m_num_trues; } } } return cl; } void ddfw::shift_weights() { ++m_shifts; for (unsigned cf_idx : m_unsat) { auto& cf = m_clauses[cf_idx]; SASSERT(!cf.is_true()); unsigned cn_idx = select_max_same_sign(cf_idx); while (cn_idx == UINT_MAX) { unsigned idx = (m_rand() * m_rand()) % m_clauses.size(); auto & cn = m_clauses[idx]; if (cn.is_true() && cn.m_weight >= 2) { cn_idx = idx; } } auto & cn = m_clauses[cn_idx]; SASSERT(cn.is_true()); unsigned wn = cn.m_weight; SASSERT(wn >= 2); unsigned inc = (wn > 2) ? 2 : 1; SASSERT(wn - inc >= 1); cf.m_weight += inc; cn.m_weight -= inc; for (literal lit : get_clause(cf_idx)) { inc_reward(lit, inc); } if (cn.m_num_trues == 1) { inc_reward(to_literal(cn.m_trues), inc); } } // DEBUG_CODE(invariant();); } std::ostream& ddfw::display(std::ostream& out) const { unsigned num_cls = m_clauses.size(); for (unsigned i = 0; i < num_cls; ++i) { out << get_clause(i) << " "; auto const& ci = m_clauses[i]; out << ci.m_num_trues << " " << ci.m_weight << "\n"; } for (unsigned v = 0; v < num_vars(); ++v) { out << v << ": " << reward(v) << "\n"; } out << "unsat vars: "; for (bool_var v : m_unsat_vars) { out << v << " "; } out << "\n"; return out; } void ddfw::invariant() { // every variable in unsat vars is in a false clause. for (bool_var v : m_unsat_vars) { bool found = false; for (unsigned cl : m_unsat) { for (literal lit : get_clause(cl)) { if (lit.var() == v) { found = true; break; } } if (found) break; } if (!found) IF_VERBOSE(0, verbose_stream() << "unsat var not found: " << v << "\n"; ); VERIFY(found); } for (unsigned v = 0; v < num_vars(); ++v) { int v_reward = 0; literal lit(v, !value(v)); for (unsigned j : m_use_list[lit.index()]) { clause_info const& ci = m_clauses[j]; if (ci.m_num_trues == 1) { SASSERT(lit == to_literal(ci.m_trues)); v_reward -= ci.m_weight; } } for (unsigned j : m_use_list[(~lit).index()]) { clause_info const& ci = m_clauses[j]; if (ci.m_num_trues == 0) { v_reward += ci.m_weight; } } IF_VERBOSE(0, if (v_reward != reward(v)) verbose_stream() << v << " " << v_reward << " " << reward(v) << "\n"); SASSERT(reward(v) == v_reward); } DEBUG_CODE( for (auto const& ci : m_clauses) { SASSERT(ci.m_weight > 0); } for (unsigned i = 0; i < m_clauses.size(); ++i) { bool found = false; for (literal lit : get_clause(i)) { if (is_true(lit)) found = true; } SASSERT(found == !m_unsat.contains(i)); } // every variable in a false clause is in unsat vars for (unsigned cl : m_unsat) { for (literal lit : get_clause(cl)) { SASSERT(m_unsat_vars.contains(lit.var())); } }); } void ddfw::updt_params(params_ref const& _p) { sat_params p(_p); m_config.m_init_clause_weight = p.ddfw_init_clause_weight(); m_config.m_use_reward_zero_pct = p.ddfw_use_reward_pct(); m_config.m_reinit_base = p.ddfw_reinit_base(); m_config.m_restart_base = p.ddfw_restart_base(); } }