/*++ Copyright (c) 2006 Microsoft Corporation Module Name: dl_sparse_table.cpp Abstract: Author: Krystof Hoder (t-khoder) 2010-09-24. Revision History: --*/ #include #include "muz/base/dl_context.h" #include "muz/base/dl_util.h" #include "muz/rel/dl_sparse_table.h" namespace datalog { // ----------------------------------- // // entry_storage // // ----------------------------------- entry_storage::store_offset entry_storage::insert_or_get_reserve_content() { SASSERT(has_reserve()); store_offset entry_ofs = m_data_indexer.insert_if_not_there(m_reserve); if (m_reserve == entry_ofs) { //entry inserted, so reserve is no longer a reserve m_reserve = NO_RESERVE; } return entry_ofs; } bool entry_storage::insert_reserve_content() { SASSERT(has_reserve()); store_offset entry_ofs = m_data_indexer.insert_if_not_there(m_reserve); if (m_reserve == entry_ofs) { //entry inserted, so reserve is no longer a reserve m_reserve = NO_RESERVE; return true; } return false; } bool entry_storage::remove_reserve_content() { SASSERT(has_reserve()); store_offset entry_ofs; if (!find_reserve_content(entry_ofs)) { //the fact was not in the table return false; } remove_offset(entry_ofs); return true; } void entry_storage::remove_offset(store_offset ofs) { m_data_indexer.remove(ofs); store_offset last_ofs = after_last_offset() - m_entry_size; if (ofs!=last_ofs) { SASSERT(ofs + m_entry_size <= last_ofs); //we don't want any holes, so we put the last element at the place //of the removed one m_data_indexer.remove(last_ofs); char * base = &m_data.get(0); memcpy(base+ofs, base+last_ofs, m_entry_size); m_data_indexer.insert(ofs); } if (has_reserve()) { //we already have a reserve, so we need to shrink a little to keep having just one resize_data(m_data_size-m_entry_size); } m_reserve=last_ofs; } unsigned entry_storage::get_size_estimate_bytes() const { size_t sz = m_data.capacity(); sz += m_data_indexer.capacity()*sizeof(storage_indexer::entry); return static_cast(sz); } // ----------------------------------- // // sparse_table::column_layout // // ----------------------------------- unsigned get_domain_length(uint64_t dom_size) { SASSERT(dom_size>0); unsigned length = 0; unsigned dom_size_sm; if (dom_size>UINT_MAX) { dom_size_sm = static_cast(dom_size>>32); length += 32; if ( (dom_size&UINT_MAX)!=0 && dom_size_sm!=UINT_MAX ) { dom_size_sm++; } } else { dom_size_sm=static_cast(dom_size); } if (dom_size_sm == 1) { length += 1; //unary domains } else if (dom_size_sm > 0x80000000u) { length += 32; } else { length += get_num_1bits(next_power_of_two(dom_size_sm)-1); //ceil(log2(dom_size)) } return length; } sparse_table::column_layout::column_layout(const table_signature & sig) : m_functional_col_cnt(sig.functional_columns()) { SASSERT(sig.size() > 0); unsigned ofs = 0; unsigned sig_sz = sig.size(); unsigned first_functional = sig_sz-m_functional_col_cnt; for (unsigned i=0; i0); SASSERT(length<=64); if (size() > 0 && (length > 54 || i == first_functional)) { //large domains must start byte-aligned, as well as functional columns make_byte_aligned_end(size()-1); ofs = back().next_ofs(); } push_back(column_info(ofs, length)); ofs += length; } make_byte_aligned_end(size()-1); SASSERT(back().next_ofs()%8 == 0);//the entries must be aligned to whole bytes m_entry_size = back().next_ofs()/8; if (m_functional_col_cnt) { SASSERT((*this)[first_functional].m_offset%8 == 0); m_functional_part_size = m_entry_size - (*this)[first_functional].m_offset/8; } else { m_functional_part_size = 0; } } void sparse_table::column_layout::make_byte_aligned_end(unsigned col_index0) { unsigned ofs = (*this)[col_index0].next_ofs(); unsigned ofs_bit_part = ofs%8; unsigned rounded_ofs = (ofs_bit_part == 0) ? ofs : (ofs+8-ofs_bit_part); if (rounded_ofs!=ofs) { SASSERT(rounded_ofs>ofs); int diff = rounded_ofs-ofs; unsigned col_idx = col_index0+1; while(diff!=0) { //we should always be able to fix the alignment by the time we reach zero SASSERT(col_idx>0); col_idx--; column_info & ci = (*this)[col_idx]; unsigned new_length = ci.m_length; if (ci.m_length < 64) { unsigned swallowed = std::min(64-static_cast(ci.m_length), diff); diff -= swallowed; new_length += swallowed; } unsigned new_ofs = ci.m_offset+diff; ci = column_info(new_ofs, new_length); } } SASSERT(rounded_ofs%8 == 0); SASSERT((*this)[col_index0].next_ofs()%8 == 0); } // ----------------------------------- // // sparse_table // // ----------------------------------- class sparse_table::our_iterator_core : public iterator_core { class our_row : public row_interface { const our_iterator_core & m_parent; public: our_row(const sparse_table & t, const our_iterator_core & parent) : row_interface(t), m_parent(parent) {} table_element operator[](unsigned col) const override { return m_parent.m_layout.get(m_parent.m_ptr, col); } }; const char * m_end; const char * m_ptr; unsigned m_fact_size; our_row m_row_obj; const column_layout & m_layout; public: our_iterator_core(const sparse_table & t, bool finished) : m_end(t.m_data.after_last()), m_ptr(finished ? m_end : t.m_data.begin()), m_fact_size(t.m_fact_size), m_row_obj(t, *this), m_layout(t.m_column_layout) {} bool is_finished() const override { return m_ptr == m_end; } row_interface & operator*() override { SASSERT(!is_finished()); return m_row_obj; } void operator++() override { SASSERT(!is_finished()); m_ptr+=m_fact_size; } }; class sparse_table::key_indexer { protected: unsigned_vector m_key_cols; public: typedef const store_offset * offset_iterator; /** Iterators returned by \c begin() and \c end() are valid only as long as the \c query_result object that returned them exists. */ struct query_result { private: bool m_singleton; union { store_offset m_single_result; struct { offset_iterator begin; offset_iterator end; } m_many; }; public: /** \brief Empty result. */ query_result() : m_singleton(false) { m_many.begin = nullptr; m_many.end = nullptr; } query_result(offset_iterator begin, offset_iterator end) : m_singleton(false) { m_many.begin = begin; m_many.end = end; } query_result(store_offset single_result) : m_singleton(true), m_single_result(single_result) {} offset_iterator begin() const { return m_singleton ? &m_single_result : m_many.begin; } offset_iterator end() const { return m_singleton ? (&m_single_result+1) : m_many.end; } bool empty() const { return begin() == end(); } }; key_indexer(unsigned key_len, const unsigned * key_cols) : m_key_cols(key_len, key_cols) {} virtual ~key_indexer() {} virtual void update(const sparse_table & t) {} virtual query_result get_matching_offsets(const key_value & key) const = 0; }; class sparse_table::general_key_indexer : public key_indexer { typedef svector offset_vector; typedef size_t_map index_map; index_map m_map; mutable entry_storage m_keys; store_offset m_first_nonindexed; void key_to_reserve(const key_value & key) const { m_keys.ensure_reserve(); m_keys.write_into_reserve((char *)(key.data())); } offset_vector & get_matching_offset_vector(const key_value & key) { key_to_reserve(key); store_offset ofs = m_keys.insert_or_get_reserve_content(); index_map::entry * e = m_map.find_core(ofs); if (!e) { TRACE("dl_table_relation", tout << "inserting\n";); e = m_map.insert_if_not_there3(ofs, offset_vector()); } return e->get_data().m_value; } public: general_key_indexer(unsigned key_len, const unsigned * key_cols) : key_indexer(key_len, key_cols), m_keys(key_len*sizeof(table_element)), m_first_nonindexed(0) {} void update(const sparse_table & t) override { if (m_first_nonindexed == t.m_data.after_last_offset()) { return; } SASSERT(m_first_nonindexedinsert(ofs); } m_first_nonindexed = t.m_data.after_last_offset(); } query_result get_matching_offsets(const key_value & key) const override { key_to_reserve(key); store_offset ofs; if (!m_keys.find_reserve_content(ofs)) { return query_result(); } index_map::entry * e = m_map.find_core(ofs); if (!e) { return query_result(); } const offset_vector & res = e->get_data().m_value; return query_result(res.begin(), res.end()); } }; /** When doing lookup using this index, the content of the reserve in sparse_table::m_data changes. */ class sparse_table::full_signature_key_indexer : public key_indexer { const sparse_table & m_table; /** Permutation of key columns to make it into table facts. If empty, no permutation is necessary. */ unsigned_vector m_permutation; mutable table_fact m_key_fact; public: static bool can_handle(unsigned key_len, const unsigned * key_cols, const sparse_table & t) { unsigned non_func_cols = t.get_signature().first_functional(); if (key_len!=non_func_cols) { return false; } counter ctr; ctr.count(key_len, key_cols); if (ctr.get_max_counter_value()!=1 || ctr.get_max_positive()!=non_func_cols-1) { return false; } SASSERT(ctr.get_positive_count() == non_func_cols); return true; } full_signature_key_indexer(unsigned key_len, const unsigned * key_cols, const sparse_table & t) : key_indexer(key_len, key_cols), m_table(t) { SASSERT(can_handle(key_len, key_cols, t)); m_permutation.resize(key_len); for (unsigned i=0; i(m_table); t.write_into_reserve(m_key_fact.data()); store_offset res; if (!t.m_data.find_reserve_content(res)) { return query_result(); } return query_result(res); } }; sparse_table::sparse_table(sparse_table_plugin & p, const table_signature & sig, unsigned init_capacity) : table_base(p, sig), m_column_layout(sig), m_fact_size(m_column_layout.m_entry_size), m_data(m_fact_size, m_column_layout.m_functional_part_size, init_capacity) {} sparse_table::sparse_table(const sparse_table & t) : table_base(t.get_plugin(), t.get_signature()), m_column_layout(t.m_column_layout), m_fact_size(t.m_fact_size), m_data(t.m_data) {} table_base * sparse_table::clone() const { return get_plugin().mk_clone(*this); } sparse_table::~sparse_table() { reset_indexes(); } void sparse_table::reset() { reset_indexes(); m_data.reset(); } table_base::iterator sparse_table::begin() const { return mk_iterator(alloc(our_iterator_core, *this, false)); } table_base::iterator sparse_table::end() const { return mk_iterator(alloc(our_iterator_core, *this, true)); } sparse_table::key_indexer& sparse_table::get_key_indexer(unsigned key_len, const unsigned * key_cols) const { verbose_action _va("get_key_indexer"); #if Z3DEBUG //We allow indexes only on non-functional columns because we want to be able to modify them //without having to worry about updating indexes. //Maybe we might keep a list of indexes that contain functional columns and on an update reset //only those. SASSERT(key_len == 0 || counter().count(key_len, key_cols).get_max_positive()get_data().m_value) { if (full_signature_key_indexer::can_handle(key_len, key_cols, *this)) { key_map_entry->get_data().m_value = alloc(full_signature_key_indexer, key_len, key_cols, *this); } else { key_map_entry->get_data().m_value = alloc(general_key_indexer, key_len, key_cols); } } key_indexer & indexer = *key_map_entry->get_data().m_value; indexer.update(*this); return indexer; } void sparse_table::reset_indexes() { key_index_map::iterator kmit = m_key_indexes.begin(); key_index_map::iterator kmend = m_key_indexes.end(); for (; kmit!=kmend; ++kmit) { dealloc((*kmit).m_value); } m_key_indexes.reset(); } void sparse_table::write_into_reserve(const table_element* f) { TRACE("dl_table_relation", tout << "\n";); m_data.ensure_reserve(); char * reserve = m_data.get_reserve_ptr(); unsigned col_cnt = m_column_layout.size(); for (unsigned i = 0; i < col_cnt; ++i) { SASSERT(f[i] < get_signature()[i]); //the value fits into the table signature m_column_layout.set(reserve, i, f[i]); } } bool sparse_table::add_fact(const char * data) { verbose_action _va("add_fact", 10); m_data.write_into_reserve(data); return add_reserve_content(); } void sparse_table::add_fact(const table_fact & f) { write_into_reserve(f.data()); add_reserve_content(); } bool sparse_table::add_reserve_content() { return m_data.insert_reserve_content(); } bool sparse_table::contains_fact(const table_fact & f) const { verbose_action _va("contains_fact", 2); sparse_table & t = const_cast(*this); t.write_into_reserve(f.data()); unsigned func_col_cnt = get_signature().functional_columns(); if (func_col_cnt == 0) { return t.m_data.reserve_content_already_present(); } else { store_offset ofs; if (!t.m_data.find_reserve_content(ofs)) { return false; } unsigned sz = get_signature().size(); for (unsigned i=func_col_cnt; i(*this); t.write_into_reserve(f.data()); store_offset ofs; if (!t.m_data.find_reserve_content(ofs)) { return false; } unsigned sz = sig.size(); for (unsigned i=sig.first_functional(); ipre_projection_idx); dest_layout.set(dest, dest_idx++, src_layout.get(src, i)); } } void sparse_table::concatenate_rows(const column_layout & layout1, const column_layout & layout2, const column_layout & layout_res, const char * ptr1, const char * ptr2, char * res, const unsigned * removed_cols) { unsigned t1non_func = layout1.size()-layout1.m_functional_col_cnt; unsigned t2non_func = layout2.size()-layout2.m_functional_col_cnt; unsigned t1cols = layout1.size(); unsigned t2cols = layout2.size(); unsigned orig_i = 0; unsigned res_i = 0; const unsigned * next_removed = removed_cols; copy_columns(layout1, layout_res, 0, t1non_func, ptr1, res, res_i, orig_i, next_removed); copy_columns(layout2, layout_res, 0, t2non_func, ptr2, res, res_i, orig_i, next_removed); copy_columns(layout1, layout_res, t1non_func, t1cols, ptr1, res, res_i, orig_i, next_removed); copy_columns(layout2, layout_res, t2non_func, t2cols, ptr2, res, res_i, orig_i, next_removed); } void sparse_table::garbage_collect() { if (memory::above_high_watermark()) { get_plugin().garbage_collect(); } if (memory::above_high_watermark()) { IF_VERBOSE(1, verbose_stream() << "Ran out of memory while filling table of size: " << get_size_estimate_rows() << " rows " << get_size_estimate_bytes() << " bytes\n";); throw out_of_memory_error(); } } void sparse_table::self_agnostic_join_project(const sparse_table & t1, const sparse_table & t2, unsigned joined_col_cnt, const unsigned * t1_joined_cols, const unsigned * t2_joined_cols, const unsigned * removed_cols, bool tables_swapped, sparse_table & result) { verbose_action _va("join_project", 1); unsigned t1_entry_size = t1.m_fact_size; unsigned t2_entry_size = t2.m_fact_size; size_t t1idx = 0; size_t t1end = t1.m_data.after_last_offset(); TRACE("dl_table_relation", tout << "joined_col_cnt: " << joined_col_cnt << "\n"; tout << "t1_entry_size: " << t1_entry_size << "\n"; tout << "t2_entry_size: " << t2_entry_size << "\n"; t1.display(tout); t2.display(tout); tout << (&t1) << " " << (&t2) << " " << (&result) << "\n"; ); if (joined_col_cnt == 0) { size_t t2idx = 0; size_t t2end = t2.m_data.after_last_offset(); for (; t1idx!=t1end; t1idx+=t1_entry_size) { for (t2idx = 0; t2idx != t2end; t2idx += t2_entry_size) { result.m_data.ensure_reserve(); result.garbage_collect(); char * res_reserve = result.m_data.get_reserve_ptr(); char const* t1ptr = t1.get_at_offset(t1idx); char const* t2ptr = t2.get_at_offset(t2idx); if (tables_swapped) { concatenate_rows(t2.m_column_layout, t1.m_column_layout, result.m_column_layout, t2ptr, t1ptr, res_reserve, removed_cols); } else { concatenate_rows(t1.m_column_layout, t2.m_column_layout, result.m_column_layout, t1ptr, t2ptr, res_reserve, removed_cols); } result.add_reserve_content(); } } return; } key_value t1_key; t1_key.resize(joined_col_cnt); key_indexer& t2_indexer = t2.get_key_indexer(joined_col_cnt, t2_joined_cols); bool key_modified = true; key_indexer::query_result t2_offsets; for (; t1idx != t1end; t1idx += t1_entry_size) { for (unsigned i = 0; i < joined_col_cnt; i++) { table_element val = t1.m_column_layout.get(t1.get_at_offset(t1idx), t1_joined_cols[i]); TRACE("dl_table_relation", tout << "val: " << val << " " << t1idx << " " << t1_joined_cols[i] << "\n";); if (t1_key[i] != val) { t1_key[i] = val; key_modified = true; } } if (key_modified) { t2_offsets = t2_indexer.get_matching_offsets(t1_key); key_modified = false; } if (t2_offsets.empty()) { continue; } key_indexer::offset_iterator t2ofs_it = t2_offsets.begin(); key_indexer::offset_iterator t2ofs_end = t2_offsets.end(); for (; t2ofs_it != t2ofs_end; ++t2ofs_it) { store_offset t2ofs = *t2ofs_it; result.m_data.ensure_reserve(); result.garbage_collect(); char * res_reserve = result.m_data.get_reserve_ptr(); char const * t1ptr = t1.get_at_offset(t1idx); char const * t2ptr = t2.get_at_offset(t2ofs); if (tables_swapped) { concatenate_rows(t2.m_column_layout, t1.m_column_layout, result.m_column_layout, t2ptr, t1ptr, res_reserve, removed_cols); } else { concatenate_rows(t1.m_column_layout, t2.m_column_layout, result.m_column_layout, t1ptr, t2ptr, res_reserve, removed_cols); } result.add_reserve_content(); } } } // ----------------------------------- // // sparse_table_plugin // // ----------------------------------- sparse_table_plugin::sparse_table_plugin(relation_manager & manager) : table_plugin(symbol("sparse"), manager) {} sparse_table_plugin::~sparse_table_plugin() { reset(); } sparse_table const& sparse_table_plugin::get(table_base const& t) { return dynamic_cast(t); } sparse_table& sparse_table_plugin::get(table_base& t) { return dynamic_cast(t); } sparse_table const* sparse_table_plugin::get(table_base const* t) { return dynamic_cast(t); } sparse_table* sparse_table_plugin::get(table_base* t) { return dynamic_cast(t); } void sparse_table_plugin::reset() { table_pool::iterator it = m_pool.begin(); table_pool::iterator end = m_pool.end(); for (; it!=end; ++it) { sp_table_vector * vect = it->m_value; sp_table_vector::iterator vit = vect->begin(); sp_table_vector::iterator vend = vect->end(); for (; vit!=vend; ++vit) { (*vit)->destroy(); //calling deallocate() would only put the table back into the pool } dealloc(vect); } m_pool.reset(); } void sparse_table_plugin::garbage_collect() { IF_VERBOSE(2, verbose_stream() << "garbage collecting "<< memory::get_allocation_size() << " bytes down to ";); reset(); IF_VERBOSE(2, verbose_stream() << memory::get_allocation_size() << " bytes\n";); } void sparse_table_plugin::recycle(sparse_table * t) { verbose_action _va("recycle", 2); const table_signature & sig = t->get_signature(); t->reset(); sp_table_vector * & vect = m_pool.insert_if_not_there(sig, nullptr); if (vect == nullptr) { vect = alloc(sp_table_vector); } IF_VERBOSE(12, verbose_stream() << "Recycle: " << t->get_size_estimate_bytes() << "\n";); vect->push_back(t); } table_base * sparse_table_plugin::mk_empty(const table_signature & s) { SASSERT(can_handle_signature(s)); sp_table_vector * vect; if (!m_pool.find(s, vect) || vect->empty()) { return alloc(sparse_table, *this, s); } sparse_table * res = vect->back(); vect->pop_back(); return res; } sparse_table * sparse_table_plugin::mk_clone(const sparse_table & t) { sparse_table * res = get(mk_empty(t.get_signature())); res->m_data = t.m_data; return res; } bool sparse_table_plugin::join_involves_functional(const table_signature & s1, const table_signature & s2, unsigned col_cnt, const unsigned * cols1, const unsigned * cols2) { if (col_cnt == 0) { return false; } return counter().count(col_cnt, cols1).get_max_positive()>=s1.first_functional() || counter().count(col_cnt, cols2).get_max_positive()>=s2.first_functional(); } class sparse_table_plugin::join_project_fn : public convenient_table_join_project_fn { public: join_project_fn(const table_signature & t1_sig, const table_signature & t2_sig, unsigned col_cnt, const unsigned * cols1, const unsigned * cols2, unsigned removed_col_cnt, const unsigned * removed_cols) : convenient_table_join_project_fn(t1_sig, t2_sig, col_cnt, cols1, cols2, removed_col_cnt, removed_cols) { m_removed_cols.push_back(UINT_MAX); } table_base * operator()(const table_base & tb1, const table_base & tb2) override { const sparse_table & t1 = get(tb1); const sparse_table & t2 = get(tb2); sparse_table_plugin & plugin = t1.get_plugin(); sparse_table * res = get(plugin.mk_empty(get_result_signature())); //If we join with some intersection, want to iterate over the smaller table and //do indexing into the bigger one. If we simply do a product, we want the bigger //one to be at the outer iteration (then the small one will hopefully fit into //the cache) if ( (t1.row_count() > t2.row_count()) == (!m_cols1.empty()) ) { sparse_table::self_agnostic_join_project(t2, t1, m_cols1.size(), m_cols2.data(), m_cols1.data(), m_removed_cols.data(), true, *res); } else { sparse_table::self_agnostic_join_project(t1, t2, m_cols1.size(), m_cols1.data(), m_cols2.data(), m_removed_cols.data(), false, *res); } TRACE("dl_table_relation", tb1.display(tout); tb2.display(tout); res->display(tout); ); return res; } }; table_join_fn * sparse_table_plugin::mk_join_fn(const table_base & t1, const table_base & t2, unsigned col_cnt, const unsigned * cols1, const unsigned * cols2) { const table_signature & sig1 = t1.get_signature(); const table_signature & sig2 = t2.get_signature(); if (t1.get_kind()!=get_kind() || t2.get_kind()!=get_kind() || join_involves_functional(sig1, sig2, col_cnt, cols1, cols2)) { //We also don't allow indexes on functional columns (and they are needed for joins) return nullptr; } return mk_join_project_fn(t1, t2, col_cnt, cols1, cols2, 0, static_cast(nullptr)); } table_join_fn * sparse_table_plugin::mk_join_project_fn(const table_base & t1, const table_base & t2, unsigned col_cnt, const unsigned * cols1, const unsigned * cols2, unsigned removed_col_cnt, const unsigned * removed_cols) { const table_signature & sig1 = t1.get_signature(); const table_signature & sig2 = t2.get_signature(); if (t1.get_kind()!=get_kind() || t2.get_kind()!=get_kind() || removed_col_cnt == t1.get_signature().size()+t2.get_signature().size() || join_involves_functional(sig1, sig2, col_cnt, cols1, cols2)) { //We don't allow sparse tables with zero signatures (and project on all columns leads to such) //We also don't allow indexes on functional columns. return nullptr; } return alloc(join_project_fn, t1.get_signature(), t2.get_signature(), col_cnt, cols1, cols2, removed_col_cnt, removed_cols); } class sparse_table_plugin::union_fn : public table_union_fn { public: void operator()(table_base & tgt0, const table_base & src0, table_base * delta0) override { verbose_action _va("union"); sparse_table & tgt = get(tgt0); const sparse_table & src = get(src0); sparse_table * delta = get(delta0); unsigned fact_size = tgt.m_fact_size; const char* ptr = src.m_data.begin(); const char* after_last=src.m_data.after_last(); for (; ptradd_fact(ptr); } } } }; table_union_fn * sparse_table_plugin::mk_union_fn(const table_base & tgt, const table_base & src, const table_base * delta) { if (tgt.get_kind()!=get_kind() || src.get_kind()!=get_kind() || (delta && delta->get_kind()!=get_kind()) || tgt.get_signature()!=src.get_signature() || (delta && delta->get_signature()!=tgt.get_signature())) { return nullptr; } return alloc(union_fn); } class sparse_table_plugin::project_fn : public convenient_table_project_fn { const unsigned m_inp_col_cnt; const unsigned m_removed_col_cnt; const unsigned m_result_col_cnt; public: project_fn(const table_signature & orig_sig, unsigned removed_col_cnt, const unsigned * removed_cols) : convenient_table_project_fn(orig_sig, removed_col_cnt, removed_cols), m_inp_col_cnt(orig_sig.size()), m_removed_col_cnt(removed_col_cnt), m_result_col_cnt(orig_sig.size()-removed_col_cnt) { SASSERT(removed_col_cnt>0); } virtual void transform_row(const char * src, char * tgt, const sparse_table::column_layout & src_layout, const sparse_table::column_layout & tgt_layout) { unsigned r_idx=0; unsigned tgt_i=0; for (unsigned i=0; im_column_layout; const char* t_ptr = t.m_data.begin(); const char* t_end = t.m_data.after_last(); for (; t_ptr!=t_end; t_ptr+=t_fact_size) { SASSERT(t_ptrm_data.ensure_reserve(); char * res_ptr = res->m_data.get_reserve_ptr(); transform_row(t_ptr, res_ptr, src_layout, tgt_layout); res->m_data.insert_reserve_content(); } return res; } }; table_transformer_fn * sparse_table_plugin::mk_project_fn(const table_base & t, unsigned col_cnt, const unsigned * removed_cols) { if (col_cnt == t.get_signature().size()) { return nullptr; } return alloc(project_fn, t.get_signature(), col_cnt, removed_cols); } class sparse_table_plugin::select_equal_and_project_fn : public convenient_table_transformer_fn { const unsigned m_col; sparse_table::key_value m_key; public: select_equal_and_project_fn(const table_signature & orig_sig, table_element val, unsigned col) : m_col(col) { table_signature::from_project(orig_sig, 1, &col, get_result_signature()); m_key.push_back(val); } table_base * operator()(const table_base & tb) override { verbose_action _va("select_equal_and_project"); const sparse_table & t = get(tb); sparse_table_plugin & plugin = t.get_plugin(); sparse_table * res = get(plugin.mk_empty(get_result_signature())); const sparse_table::column_layout & t_layout = t.m_column_layout; const sparse_table::column_layout & res_layout = res->m_column_layout; unsigned t_cols = t_layout.size(); sparse_table::key_indexer & indexer = t.get_key_indexer(1, &m_col); sparse_table::key_indexer::query_result t_offsets = indexer.get_matching_offsets(m_key); if (t_offsets.empty()) { //no matches return res; } sparse_table::key_indexer::offset_iterator ofs_it=t_offsets.begin(); sparse_table::key_indexer::offset_iterator ofs_end=t_offsets.end(); for (; ofs_it!=ofs_end; ++ofs_it) { sparse_table::store_offset t_ofs = *ofs_it; const char * t_ptr = t.get_at_offset(t_ofs); res->m_data.ensure_reserve(); char * res_reserve = res->m_data.get_reserve_ptr(); unsigned res_i = 0; for (unsigned i=0; iadd_reserve_content(); } return res; } }; table_transformer_fn * sparse_table_plugin::mk_select_equal_and_project_fn(const table_base & t, const table_element & value, unsigned col) { if (t.get_kind()!=get_kind() || t.get_signature().size() == 1 || col>=t.get_signature().first_functional()) { //We don't allow sparse tables with zero signatures (and project on a single //column table produces one). //We also don't allow indexes on functional columns. And our implementation of //select_equal_and_project uses index on \c col. return nullptr; } return alloc(select_equal_and_project_fn, t.get_signature(), value, col); } class sparse_table_plugin::rename_fn : public convenient_table_rename_fn { unsigned_vector m_out_of_cycle; public: rename_fn(const table_signature & orig_sig, unsigned permutation_cycle_len, const unsigned * permutation_cycle) : convenient_table_rename_fn(orig_sig, permutation_cycle_len, permutation_cycle) { SASSERT(permutation_cycle_len>=2); idx_set cycle_cols; for (unsigned i=0; i < permutation_cycle_len; ++i) { cycle_cols.insert(permutation_cycle[i]); } for (unsigned i=0; i < orig_sig.size(); ++i) { if (!cycle_cols.contains(i)) { m_out_of_cycle.push_back(i); } } } void transform_row(const char * src, char * tgt, const sparse_table::column_layout & src_layout, const sparse_table::column_layout & tgt_layout) { for (unsigned i=1; i < m_cycle.size(); ++i) { tgt_layout.set(tgt, m_cycle[i-1], src_layout.get(src, m_cycle[i])); } tgt_layout.set(tgt, m_cycle[m_cycle.size()-1], src_layout.get(src, m_cycle[0])); unsigned_vector::const_iterator it = m_out_of_cycle.begin(); unsigned_vector::const_iterator end = m_out_of_cycle.end(); for (; it!=end; ++it) { unsigned col = *it; tgt_layout.set(tgt, col, src_layout.get(src, col)); } } table_base * operator()(const table_base & tb) override { verbose_action _va("rename"); const sparse_table & t = get(tb); unsigned t_fact_size = t.m_fact_size; sparse_table_plugin & plugin = t.get_plugin(); sparse_table * res = get(plugin.mk_empty(get_result_signature())); size_t res_fact_size = res->m_fact_size; size_t res_data_size = res_fact_size*t.row_count(); if (res_fact_size != 0 && (res_data_size / res_fact_size) != t.row_count()) { throw default_exception("multiplication overflow"); } res->m_data.resize_data(res_data_size); //here we can separate data creating and insertion into hashmap, since we know //that no row will become duplicate //create the data const char* t_ptr = t.m_data.begin(); char* res_ptr = res->m_data.begin(); char* res_end = res_ptr+res_data_size; for (; res_ptr!=res_end; t_ptr+=t_fact_size, res_ptr+=res_fact_size) { transform_row(t_ptr, res_ptr, t.m_column_layout, res->m_column_layout); } //and insert them into the hash-map for (size_t i = 0; i != res_data_size; i += res_fact_size) { TRUSTME(res->m_data.insert_offset(i)); } return res; } }; table_transformer_fn * sparse_table_plugin::mk_rename_fn(const table_base & t, unsigned permutation_cycle_len, const unsigned * permutation_cycle) { if (t.get_kind()!=get_kind()) { return nullptr; } return alloc(rename_fn, t.get_signature(), permutation_cycle_len, permutation_cycle); } class sparse_table_plugin::negation_filter_fn : public convenient_table_negation_filter_fn { typedef sparse_table::store_offset store_offset; typedef sparse_table::key_value key_value; typedef sparse_table::key_indexer key_indexer; bool m_joining_neg_non_functional; /** Used by \c collect_intersection_offsets function. If tgt_is_first is false, contains the same items as \c res. */ idx_set m_intersection_content; public: negation_filter_fn(const table_base & tgt, const table_base & neg, unsigned joined_col_cnt, const unsigned * t_cols, const unsigned * negated_cols) : convenient_table_negation_filter_fn(tgt, neg, joined_col_cnt, t_cols, negated_cols) { unsigned neg_first_func = neg.get_signature().first_functional(); counter ctr; ctr.count(m_cols2); m_joining_neg_non_functional = ctr.get_max_counter_value() == 1 && ctr.get_positive_count() == neg_first_func && (neg_first_func == 0 || ctr.get_max_positive() == neg_first_func-1); } /** Collect offsets of rows in \c t1 or \c t2 (depends on whether \c tgt_is_first is true or false) that have a match in the other table into \c res. Offsets in \c res are in ascending order. */ void collect_intersection_offsets(const sparse_table & t1, const sparse_table & t2, bool tgt_is_first, svector & res) { SASSERT(res.empty()); m_intersection_content.reset(); unsigned joined_col_cnt = m_cols1.size(); unsigned t1_entry_size = t1.m_data.entry_size(); const unsigned * cols1 = tgt_is_first ? m_cols1.data() : m_cols2.data(); const unsigned * cols2 = tgt_is_first ? m_cols2.data() : m_cols1.data(); key_value t1_key; t1_key.resize(joined_col_cnt); key_indexer & t2_indexer = t2.get_key_indexer(joined_col_cnt, cols2); bool key_modified=true; key_indexer::query_result t2_offsets; store_offset t1_after_last = t1.m_data.after_last_offset(); for (store_offset t1_ofs=0; t1_ofs(ofs); if (ofs != offs2) { throw default_exception("Z3 cannot perform negation with excessively large tables"); } if (!m_intersection_content.contains(offs2)) { m_intersection_content.insert(offs2); res.push_back(ofs); } } } } if (!tgt_is_first) { //in this case \c res now may be in arbitrary order std::sort(res.begin(), res.end()); } } void operator()(table_base & tgt0, const table_base & neg0) override { sparse_table & tgt = get(tgt0); const sparse_table & neg = get(neg0); verbose_action _va("filter_by_negation"); if (m_cols1.empty()) { if (!neg.empty()) { tgt.reset(); } return; } svector to_remove; //offsets here are in increasing order //We don't do just the simple tgt.row_count()>neg.row_count() because the swapped case is //more expensive. The constant 4 is, however, just my guess what the ratio might be. if (tgt.row_count()/4>neg.row_count()) { collect_intersection_offsets(neg, tgt, false, to_remove); } else { collect_intersection_offsets(tgt, neg, true, to_remove); } //the largest offsets are at the end, so we can remove them one by one while (!to_remove.empty()) { store_offset removed_ofs = to_remove.back(); to_remove.pop_back(); tgt.m_data.remove_offset(removed_ofs); } tgt.reset_indexes(); } }; table_intersection_filter_fn * sparse_table_plugin::mk_filter_by_negation_fn(const table_base & t, const table_base & negated_obj, unsigned joined_col_cnt, const unsigned * t_cols, const unsigned * negated_cols) { if (!check_kind(t) || !check_kind(negated_obj) || join_involves_functional(t.get_signature(), negated_obj.get_signature(), joined_col_cnt, t_cols, negated_cols) ) { return nullptr; } return alloc(negation_filter_fn, t, negated_obj, joined_col_cnt, t_cols, negated_cols); } /** T \ (S1 Join S2) t_cols - columns from T s_cols - columns from (S1 Join S2) that are equated src1_cols - columns from S1 equated with columns from S2 src2_cols - columns from S2 equated with columns from S1 t1_cols - columns from T that map into S1 s1_cols - matching columns from s_cols for t1_cols t2s1_cols - columns from T that map into S2, and columns from src1 that join src2 s2_cols - matching columns from t2s1_cols columns from s2 that are equal to a column from s1 that is in s_cols: - ... */ class sparse_table_plugin::negated_join_fn : public table_intersection_join_filter_fn { typedef sparse_table::store_offset store_offset; typedef sparse_table::key_value key_value; typedef sparse_table::key_indexer key_indexer; unsigned_vector m_t1_cols; unsigned_vector m_s1_cols; unsigned_vector m_t2_cols; unsigned_vector m_s2_cols; unsigned_vector m_src1_cols; public: negated_join_fn( table_base const& src1, unsigned_vector const& t_cols, unsigned_vector const& src_cols, unsigned_vector const& src1_cols, unsigned_vector const& src2_cols): m_src1_cols(src1_cols) { // split t_cols and src_cols according to src1, and src2 unsigned src1_size = src1.get_signature().size(); for (unsigned i = 0; i < t_cols.size(); ++i) { if (src_cols[i] < src1_size) { m_t1_cols.push_back(t_cols[i]); m_s1_cols.push_back(src_cols[i]); } else { m_t2_cols.push_back(t_cols[i]); m_s2_cols.push_back(src_cols[i]); } } m_s2_cols.append(src2_cols); } void operator()(table_base & _t, const table_base & _s1, const table_base& _s2) override { verbose_action _va("negated_join"); sparse_table& t = get(_t); svector to_remove; collect_to_remove(t, get(_s1), get(_s2), to_remove); for (unsigned i = 0; i < to_remove.size(); ++i) { t.m_data.remove_offset(to_remove[i]); } t.reset_indexes(); } private: void collect_to_remove(sparse_table& t, sparse_table const& s1, sparse_table const& s2, svector& to_remove) { key_value s1_key, s2_key; SASSERT(&s1 != &s2); SASSERT(m_s1_cols.size() == m_t1_cols.size()); SASSERT(m_s2_cols.size() == m_t2_cols.size() + m_src1_cols.size()); s1_key.resize(m_s1_cols.size()); s2_key.resize(m_s2_cols.size()); key_indexer & s1_indexer = s1.get_key_indexer(m_s1_cols.size(), m_s1_cols.data()); key_indexer & s2_indexer = s2.get_key_indexer(m_s2_cols.size(), m_s2_cols.data()); store_offset t_after_last = t.m_data.after_last_offset(); key_indexer::query_result s1_offsets, s2_offsets; unsigned t_entry_size = t.m_data.entry_size(); for (store_offset t_ofs = 0; t_ofs < t_after_last; t_ofs += t_entry_size) { if (update_key(s1_key, 0, t, t_ofs, m_t1_cols)) { s1_offsets = s1_indexer.get_matching_offsets(s1_key); } key_indexer::offset_iterator it = s1_offsets.begin(); key_indexer::offset_iterator end = s1_offsets.end(); for (; it != end; ++it) { store_offset s1_ofs = *it; bool upd1 = update_key(s2_key, 0, t, t_ofs, m_t2_cols); bool upd2 = update_key(s2_key, m_t2_cols.size(), s1, s1_ofs, m_src1_cols); if (upd1 || upd2) { s2_offsets = s2_indexer.get_matching_offsets(s2_key); } if (!s2_offsets.empty()) { to_remove.push_back(t_ofs); break; } } } } inline bool update_key(key_value& key, unsigned key_offset, sparse_table const& t, store_offset ofs, unsigned_vector const& cols) { bool modified = false; unsigned sz = cols.size(); for (unsigned i = 0; i < sz; ++i) { table_element val = t.get_cell(ofs, cols[i]); modified = update_key(key[i+key_offset], val) || modified; } return modified; } inline bool update_key(table_element& tgt, table_element src) { if (tgt == src) { return false; } else { tgt = src; return true; } } }; table_intersection_join_filter_fn* sparse_table_plugin::mk_filter_by_negated_join_fn( const table_base & t, const table_base & src1, const table_base & src2, unsigned_vector const& t_cols, unsigned_vector const& src_cols, unsigned_vector const& src1_cols, unsigned_vector const& src2_cols) { if (check_kind(t) && check_kind(src1) && check_kind(src2)) { return alloc(negated_join_fn, src1, t_cols, src_cols, src1_cols, src2_cols); } else { return nullptr; } } unsigned sparse_table::get_size_estimate_bytes() const { unsigned sz = 0; sz += m_data.get_size_estimate_bytes(); sz += m_key_indexes.capacity()*8; // TBD return sz; } };