/* Copyright (c) 2017 Microsoft Corporation Author: Nikolaj Bjorner (nbjorner) Lev Nachmanson (levnach) */ #pragma once #include "math/lp/lp_settings.h" #include namespace lp { template class lp_bound_propagator { class edge; // forward definition // vertex represents a column // The set of vertices is organised in a tree. // The edges of the tree are rows, // Vertices with m_neg set to false grow with the same rate as the root. // Vertices with m_neq set to true diminish with the same rate as the roow grows. // When two vertices with the same m_neg have the same value of columns // then we have an equality betweet the columns. class vertex { unsigned m_column; vector m_edges; edge m_edge_from_parent; unsigned m_level; // the distance in hops to the root; // it is handy to find the common ancestor public: vertex() {} vertex(unsigned column) : m_column(column), m_level(0) {} unsigned column() const { return m_column; } const vertex* parent() const { return m_edge_from_parent.source(); } vertex* parent() { return m_edge_from_parent.source(); } unsigned level() const { return m_level; } void set_edge_from_parent(edge &e) { m_edge_from_parent = e; } const edge& edge_from_parent() const { return m_edge_from_parent; } void add_child(int row, vertex* child) { SASSERT(*this != *child); SASSERT(child->parent() == nullptr); edge e = edge(this, child, row); m_edges.push_back(e); child->set_edge_from_parent(e); child->m_level = m_level + 1; } const vector & edges() const { return m_edges; } bool operator==(const vertex& o) const { return m_column == o.m_column; } bool operator!=(const vertex& o) const { return m_column != o.m_column; } }; class edge { vertex* m_source; vertex* m_target; int m_row; public: edge(vertex* source, vertex* target, int row) : m_source(source), m_target(target), m_row(row) {} edge() : m_source(nullptr), m_target(nullptr), m_row(-1) {} const vertex* source() const { return m_source; } vertex* source() { return m_source; } const vertex* target() const { return m_target; } vertex* target() { return m_target; } int row() const { return m_row; } edge reverse() const { return edge(m_target, m_source, m_row); } }; static int other(int x, int y, int z) { SASSERT(x == z || y == z); return x == z ? y : x; } std::ostream& print_vert(std::ostream & out, const vertex* v) const { out << "(c = " << v->column() << ", parent = {"; if (v->parent()) { out << "(" << v->parent()->column() << ")";} else { out << "null"; } out << "} , lvl = " << v->level(); if (m_pol.contains(v->column())) { out << (pol(v) == -1? " -":" +"); } else { out << " not in m_pol"; } out << ')'; return out; } hashtable m_visited_rows; hashtable m_visited_columns; u_map m_vertices; vertex* m_root; // At some point we can find a row with a single vertex non fixed vertex // then we can fix the whole tree, // by adjusting the vertices offsets, so they become absolute. // If the tree is fixed then in addition to checking with the m_vals_to_verts // we are going to check with the m_fixed_var_tables. const vertex* m_fixed_vertex; explanation m_fixed_vertex_explanation; // a pair (o, j) belongs to m_vals_to_verts iff x[j] = x[m_root->column()] + o map, default_eq> m_vals_to_verts; // a pair (o, j) belongs to m_vals_to_verts_neg iff -x[j] = x[m_root->column()] + o map, default_eq> m_vals_to_verts_neg; // x[m_root->column()] - m_pol[j].pol()*x[j] == const; // to bind polarity and the vertex in the table u_map m_pol; // if m_pos.contains(j) then x[j] = x[m_root->column()] + o uint_set m_pos; // these maps map a column index to the corresponding index in ibounds std::unordered_map m_improved_lower_bounds; std::unordered_map m_improved_upper_bounds; T& m_imp; vector m_ibounds; public: const vector& ibounds() const { return m_ibounds; } void init() { m_improved_upper_bounds.clear(); m_improved_lower_bounds.clear(); m_ibounds.reset(); } lp_bound_propagator(T& imp): m_root(nullptr), m_fixed_vertex(nullptr), m_imp(imp) {} const lar_solver& lp() const { return m_imp.lp(); } lar_solver& lp() { return m_imp.lp(); } column_type get_column_type(unsigned j) const { return m_imp.lp().get_column_type(j); } const impq & get_lower_bound(unsigned j) const { return m_imp.lp().get_lower_bound(j); } const mpq & get_lower_bound_rational(unsigned j) const { return m_imp.lp().get_lower_bound(j).x; } const impq & get_upper_bound(unsigned j) const { return m_imp.lp().get_upper_bound(j); } const mpq & get_upper_bound_rational(unsigned j) const { return m_imp.lp().get_upper_bound(j).x; } // require also the zero infinitesemal part bool column_is_fixed(lpvar j) const { return lp().column_is_fixed(j) && get_lower_bound(j).y.is_zero(); } void try_add_bound(mpq const& v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) { j = m_imp.lp().column_to_reported_index(j); lconstraint_kind kind = is_low? GE : LE; if (strict) kind = static_cast(kind / 2); if (!m_imp.bound_is_interesting(j, kind, v)) return; unsigned k; // index to ibounds if (is_low) { if (try_get_value(m_improved_lower_bounds, j, k)) { auto & found_bound = m_ibounds[k]; if (v > found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) { found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict); TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout);); } } else { m_improved_lower_bounds[j] = m_ibounds.size(); m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict)); TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout);); } } else { // the upper bound case if (try_get_value(m_improved_upper_bounds, j, k)) { auto & found_bound = m_ibounds[k]; if (v < found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) { found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict); TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout);); } } else { m_improved_upper_bounds[j] = m_ibounds.size(); m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict)); TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout);); } } } void consume(const mpq& a, constraint_index ci) { m_imp.consume(a, ci); } const mpq& val(unsigned j) const { return lp().get_column_value(j).x; } const mpq& val(const vertex* v) const { return val(v->column()); } void try_add_equation_with_lp_fixed_tables(const vertex *v) { SASSERT(m_fixed_vertex); unsigned v_j = v->column(); unsigned j = null_lpvar; if (!lp().find_in_fixed_tables(val(v_j), is_int(v_j), j)) return; TRACE("cheap_eq", tout << "v_j = "; lp().print_column_info(v_j, tout) << std::endl;); TRACE("cheap_eq", tout << "v = "; print_vert(tout, v) << std::endl;); TRACE("cheap_eq", tout << "found j " << j << std::endl; lp().print_column_info(j, tout)<< std::endl;); TRACE("cheap_eq", tout << "found j = " << j << std::endl;); vector path = connect_in_tree(v, m_fixed_vertex); explanation ex = get_explanation_from_path(path); ex.add_expl(m_fixed_vertex_explanation); explain_fixed_column(j, ex); add_eq_on_columns(ex, j, v->column()); } void try_add_equation_with_val_table(const vertex *v) { SASSERT(m_fixed_vertex); unsigned v_j = v->column(); const vertex *u = nullptr; if (!m_vals_to_verts.find(val(v_j), u)) { m_vals_to_verts.insert(val(v_j), v); return; } unsigned j = u->column(); if (j == v_j || is_int(j) != is_int(v_j)) return; TRACE("cheap_eq", tout << "found j=" << j << " for v="; print_vert(tout, v) << "\n in m_vals_to_verts\n";); vector path = connect_in_tree(u, v); explanation ex = get_explanation_from_path(path); ex.add_expl(m_fixed_vertex_explanation); add_eq_on_columns(ex, j, v_j); } bool tree_contains_r(vertex* root, vertex *v) const { if (*root == *v) return true; for (auto e : root->edges()) { if (tree_contains_r(e.target(), v)) return true; } return false; } // pol for polarity int pol(const vertex* v) const { return pol(v->column()); } int pol(unsigned j) const { return m_pol[j]; } void set_polarity(const vertex* v, int p) { SASSERT(p == 1 || p == -1); unsigned j = v->column(); SASSERT(!m_pol.contains(j)); m_pol.insert(j, p); } void check_and_set_polarity(vertex* v, int polarity, unsigned row_index, vertex*v_parent) { int prev_pol; if (!m_pol.find(v->column(), prev_pol)) { set_polarity(v, polarity); return; } if (prev_pol == polarity) return; // we have a path L between v and parent with p(L) = -1, that means we can // create an equality of the form x + x = a, where x = v->column() = u->column() vector path = connect_in_tree(v, v_parent); m_fixed_vertex_explanation = get_explanation_from_path(path); explain_fixed_in_row(row_index, m_fixed_vertex_explanation); set_fixed_vertex(v); TRACE("cheap_eq", tout << "polarity switch: " << polarity << "\nv = "; print_vert(tout , v) << "\nu = "; tout << "fixed vertex explanation\n"; for (auto p : m_fixed_vertex_explanation) lp().constraints().display(tout, [this](lpvar j) { return lp().get_variable_name(j);}, p.ci());); } bool tree_contains(vertex *v) const { if (!m_root) return false; return tree_contains_r(m_root, v); } vertex * alloc_v(unsigned column) { vertex * v = alloc(vertex, column); m_vertices.insert(column, v); SASSERT(!tree_contains(v)); return v; } static bool not_set(unsigned j) { return j == UINT_MAX; } static bool is_set(unsigned j) { return j != UINT_MAX; } void create_root(unsigned row_index) { SASSERT(!m_root && !m_fixed_vertex); unsigned x, y; int polarity; TRACE("cheap_eq_det", print_row(tout, row_index);); if (!is_tree_offset_row(row_index, x, y, polarity)) { TRACE("cheap_eq_det", tout << "not an offset row\n";); return; } TRACE("cheap_eq", print_row(tout, row_index);); m_root = alloc_v(x); set_polarity(m_root, 1); // keep m_root in the positive table if (not_set(y)) { set_fixed_vertex(m_root); explain_fixed_in_row(row_index, m_fixed_vertex_explanation); } else { vertex *v = add_child_with_check(row_index, y, m_root, polarity); if (v) explore_under(v); } explore_under(m_root); } unsigned column(unsigned row, unsigned index) { return lp().get_row(row)[index].var(); } bool fixed_phase() const { return m_fixed_vertex; } // Returns the vertex to start exploration from, or nullptr. // It is assumed that parent->column() is present in the row vertex* get_child_from_row(unsigned row_index, vertex* parent) { TRACE("cheap_eq_det", print_row(tout, row_index);); unsigned x, y; int row_polarity; if (!is_tree_offset_row(row_index, x, y, row_polarity)) { TRACE("cheap_eq_det", tout << "not an offset row\n"; ); return nullptr; } if (not_set(y)) { // there is only one fixed variable in the row if (!fixed_phase()) { set_fixed_vertex(parent); explain_fixed_in_row(row_index, m_fixed_vertex_explanation); } return nullptr; } SASSERT(is_set(x) && is_set(y)); unsigned col = other(x, y, parent->column()); return add_child_with_check(row_index, col, parent, row_polarity); } vertex * add_child_with_check(unsigned row_index, unsigned col, vertex* parent, int row_polarity) { vertex* vy; if (m_vertices.find(col, vy)) { SASSERT(vy != nullptr); if (!fixed_phase()) { check_and_set_polarity(vy, pol(parent) * row_polarity, row_index, parent); } return nullptr; // it is not a new vertex } vy = alloc_v(col); parent->add_child(row_index, vy); if (!fixed_phase()) check_and_set_polarity(vy, row_polarity * pol(parent), row_index, parent); return vy; } bool is_equal(lpvar j, lpvar k) const { return m_imp.is_equal(col_to_imp(j), col_to_imp(k)); } void check_for_eq_and_add_to_val_table(vertex* v, map, default_eq>& table) { TRACE("cheap_eq", tout << "v = "; print_vert(tout, v) << "\n";); const vertex *k; // the other vertex if (table.find(val(v), k)) { TRACE("cheap_eq", tout << "found k " ; print_vert(tout, k) << "\n";); if (k->column() != v->column() && is_int(k->column()) == is_int(v->column()) && !is_equal(k->column(), v->column())) { report_eq(k, v); } else { TRACE("cheap_eq", tout << "no report\n";); } } else { TRACE("cheap_eq", tout << "registered: " << val(v) << " -> { "; print_vert(tout, v) << "} \n";); table.insert(val(v), v); } } void check_for_eq_and_add_to_val_tables(vertex* v) { TRACE("cheap_eq_det", print_vert(tout, v) << "\n";); if (!fixed_phase()) { if (pol(v->column()) == -1) check_for_eq_and_add_to_val_table(v, m_vals_to_verts_neg); else check_for_eq_and_add_to_val_table(v, m_vals_to_verts); } } void clear_for_eq() { m_visited_rows.reset(); m_visited_columns.reset(); m_root = nullptr; } std::ostream& print_edge(const edge& e, std::ostream& out) const { out << e.source()->column() << "->" << e.target()->column() << "\n"; return print_row(out, e.row()); } std::ostream& print_path(const vector& path, std::ostream& out) const { out << "path = \n"; for (const edge& k : path) { print_edge(k, out) << "\n"; } return out; } // we have v_i and v_j, indices of vertices at the same offsets void report_eq(const vertex* v_i, const vertex* v_j) { SASSERT(v_i != v_j); SASSERT(lp().get_column_value(v_i->column()) == lp().get_column_value(v_j->column())); TRACE("cheap_eq", tout << v_i->column() << " = " << v_j->column() << "\nu = "; print_vert(tout, v_i) << "\nv = "; print_vert(tout, v_j) <<"\n"; ); vector path = connect_in_tree(v_i, v_j); lp::explanation exp = get_explanation_from_path(path); add_eq_on_columns(exp, v_i->column(), v_j->column()); } std::ostream& print_expl(std::ostream & out, const explanation& exp) const { for (auto p : exp) { lp().constraints().display(out, [this](lpvar j) { return lp().get_variable_name(j);}, p.ci()); } return out; } void add_eq_on_columns(const explanation& exp, lpvar j, lpvar k) { SASSERT(j != k); unsigned je = lp().column_to_reported_index(j); unsigned ke = lp().column_to_reported_index(k); TRACE("cheap_eq", tout << "reporting eq " << j << ", " << k << "\n"; tout << "reported idx " << je << ", " << ke << "\n"; print_expl(tout, exp); tout << "theory_vars v" << lp().local_to_external(je) << " == v" << lp().local_to_external(ke) << "\n"; ); m_imp.add_eq(je, ke, exp); lp().settings().stats().m_cheap_eqs++; } // column to theory_var unsigned col_to_imp(unsigned j) const { return lp().local_to_external(lp().column_to_reported_index(j)); } // theory_var to column unsigned imp_to_col(unsigned j) const { return lp().external_to_column_index(j); } bool is_int(lpvar j) const { return lp().column_is_int(j); } explanation get_explanation_from_path(vector& path) const { explanation ex; for (edge &e : path) explain_fixed_in_row(e.row(), ex); return ex; } void explain_fixed_in_row(unsigned row, explanation& ex) const { TRACE("cheap_eq", tout << lp().get_row(row) << std::endl; ); for (const auto & c : lp().get_row(row)) { if (lp().is_fixed(c.var())) { explain_fixed_column(c.var(), ex); } } } void explain_fixed_column(unsigned j, explanation & ex) const { SASSERT(column_is_fixed(j)); constraint_index lc, uc; lp().get_bound_constraint_witnesses_for_column(j, lc, uc); ex.push_back(lc); ex.push_back(uc); } vector connect_in_tree(const vertex* u, const vertex* v) const { vector path; TRACE("cheap_eq_details", tout << "u = " ; print_vert(tout, u); tout << "\nv = ";print_vert(tout, v) << "\n";); vector v_branch; // equalize the levels while (u->level() > v->level()) { path.push_back(u->edge_from_parent().reverse()); u = u->parent(); } while (u->level() < v->level()) { v_branch.push_back(v->edge_from_parent()); v = v->parent(); } SASSERT(u->level() == v->level()); TRACE("cheap_eq_details", tout << "u = " ; print_vert(tout, u); tout << "\nv = "; print_vert(tout, v) << "\n";); while (u != v) { path.push_back(u->edge_from_parent().reverse()); v_branch.push_back(v->edge_from_parent()); u = u->parent(); v = v->parent(); } for (unsigned i = v_branch.size(); i--; ) { path.push_back(v_branch[i]); } TRACE("cheap_eq", print_path(path, tout);); return path; } bool tree_is_correct() const { std::unordered_set vs; return tree_is_correct(m_root, vs); } bool tree_is_correct(vertex* v, std::unordered_set& visited_verts) const { if (fixed_phase()) return true; if (visited_verts.find(v->column()) != visited_verts.end()) return false; visited_verts.insert(v->column()); for (auto e : v->edges()) { if (!tree_is_correct(e.target(), visited_verts)) return false; } return true; } std::ostream& print_tree(std::ostream & out, vertex* v) const { print_vert(out, v); out << "\nchildren :\n"; for (auto c : v->edges()) { out << "row = "; print_row(out, c.row()); print_tree(out, c.target()); } return out; } void try_add_equation_with_fixed_tables(const vertex* v) { try_add_equation_with_lp_fixed_tables(v); try_add_equation_with_val_table(v); } void create_fixed_eqs(const vertex* v) { try_add_equation_with_fixed_tables(v); for (auto e: v->edges()) try_add_equation_with_fixed_tables(e.target()); } void handle_fixed_phase() { create_fixed_eqs(m_root); } void cheap_eq_tree(unsigned row_index) { TRACE("cheap_eq_det", tout << "row_index = " << row_index << "\n";); if (!check_insert(m_visited_rows, row_index)) return; // already explored create_root(row_index); if (m_root == nullptr) { return; } TRACE("cheap_eq", tout << "tree = "; print_tree(tout, m_root) << "\n";); SASSERT(tree_is_correct()); if (fixed_phase()) handle_fixed_phase(); TRACE("cheap_eq", tout << "done for row_index " << row_index << "\n";); TRACE("cheap_eq", tout << "tree size = " << verts_size();); delete_tree(m_root); m_root = nullptr; set_fixed_vertex(nullptr); m_fixed_vertex_explanation.clear(); m_vals_to_verts.reset(); m_vals_to_verts_neg.reset(); m_pol.reset(); m_vertices.reset(); } std::ostream& print_row(std::ostream & out, unsigned row_index) const { unsigned x, y; int polarity; if (true || !is_tree_offset_row(row_index, x, y, polarity)) return lp().get_int_solver()->display_row_info(out, row_index); bool first = true; for (const auto &c: lp().A_r().m_rows[row_index]) { if (lp().column_is_fixed(c.var())) continue; if (c.coeff().is_one()) { if (!first) out << "+"; } else if (c.coeff().is_minus_one()) out << "-"; out << lp().get_variable_name(c.var()) << " "; first = false; } out << "\n"; return out; } void set_fixed_vertex(vertex *v) { TRACE("cheap_eq", if (v) print_vert(tout, v); else tout << "set m_fixed_vertex to nullptr"; tout << "\n";); SASSERT(!m_fixed_vertex || v == nullptr); m_fixed_vertex = v; } unsigned verts_size() const { return subtree_size(m_root); } unsigned subtree_size(vertex* v) const { unsigned r = 1; // 1 for v for (auto e : v->edges()) r += subtree_size(e.target()); return r; } void delete_tree(vertex * v) { for (auto p : v->edges()) delete_tree(p.target()); dealloc(v); } template bool check_insert(C& table, unsigned j) { if (table.contains(j)) return false; table.insert(j); return true; } void go_over_vertex_column(vertex * v) { lpvar j = v->column(); if (!check_insert(m_visited_columns, j)) return; for (const auto & c : lp().get_column(j)) { unsigned row_index = c.var(); if (!check_insert(m_visited_rows, row_index)) continue; vertex *u = get_child_from_row(row_index, v); if (u) { // debug // if (verts_size() > 3) { // std::cout << "big tree\n"; // TRACE("cheap_eq", print_tree(tout, m_root);); // exit(1); // } // end debug explore_under(u); } } } void explore_under(vertex * v) { check_for_eq_and_add_to_val_tables(v); go_over_vertex_column(v); } // In case of only one non fixed column, and the function returns true, // this column would be represened by x. bool is_tree_offset_row( unsigned row_index, unsigned & x, unsigned & y, int & polarity ) const { x = y = UINT_MAX; const row_cell* x_cell = nullptr; const row_cell* y_cell = nullptr; const auto & row = lp().get_row(row_index); for (unsigned k = 0; k < row.size(); k++) { const auto& c = row[k]; if (column_is_fixed(c.var())) continue; if (not_set(x)) { if (c.coeff().is_one() || c.coeff().is_minus_one()) { x = c.var(); x_cell = & c; } else { return false; } } else if (not_set(y)) { if (c.coeff().is_one() || c.coeff().is_minus_one()) { y = c.var(); y_cell = & c; } else return false; } else return false; } if (is_set(x)) { if (is_set(y)) polarity = x_cell->coeff().is_pos() == y_cell->coeff().is_pos()? -1 : 1; else polarity = 1; return true; } return false; } }; }