// POPTA extension of random delay scheduler model from // G. Norman, D. Parker and J. Sproston // Model Checking for Probabilistic Timed Automata. // Formal Methods in System Design, 43(2):164-190, 2013 // added when a task is finished the first processor can enter a lower power state // (consumes less power but longer to next perform tasks as has to warm up first) popta // sleep variable of processor 1 is hidden observables task1, task2, task3, task4, task5, task6, p1, p2, x1, x2, c1, c2 //, sleep1 endobservables const double sleep; // probability P1 sleeps after finishing a task module scheduler // task status: 0 - not started, 1|2 - on processor 1|2, 3 - finished task1 : [0..3]; // A+B task2 : [0..3]; // CxD task3 : [0..3]; // Cx(A+B) task4 : [0..3]; // (A+B)+(CxD) task5 : [0..3]; // DxCx(A+B) task6 : [0..3]; // (DxCx(A+B)) + ((A+B)+(CxD)) // start task 1 [p1_add1] task1=0 -> (task1'=1); [p2_add1] task1=0 -> (task1'=2); // start task 2 [p1_mult2] task2=0 -> (task2'=1); [p2_mult2] task2=0 -> (task2'=2); // start task 3 (must wait for task 1 to complete) [p1_mult3] task3=0 & task1=3 -> (task3'=1); [p2_mult3] task3=0 & task1=3 -> (task3'=2); // start task 4 (must wait for tasks 1 and 2 to complete) [p1_add4] task4=0 & task1=3 & task2=3 -> (task4'=1); [p2_add4] task4=0 & task1=3 & task2=3 -> (task4'=2); // start task 5 (must wait for task 3 to complete) [p1_mult5] task5=0 & task3=3 -> (task5'=1); [p2_mult5] task5=0 & task3=3 -> (task5'=2); // start task 6 (must wait for tasks 4 and 5 to complete) [p1_add6] task6=0 & task4=3 & task5=3 -> (task6'=1); [p2_add6] task6=0 & task4=3 & task5=3 -> (task6'=2); // a task finishes on processor 1 [p1_done] task1=1 -> (task1'=3); [p1_done] task2=1 -> (task2'=3); [p1_done] task3=1 -> (task3'=3); [p1_done] task4=1 -> (task4'=3); [p1_done] task5=1 -> (task5'=3); [p1_done] task6=1 -> (task6'=3); // a task finishes on processor 2 [p2_done] task1=2 -> (task1'=3); [p2_done] task2=2 -> (task2'=3); [p2_done] task3=2 -> (task3'=3); [p2_done] task4=2 -> (task4'=3); [p2_done] task5=2 -> (task5'=3); [p2_done] task6=2 -> (task6'=3); endmodule // processor 1 module P1 p1 : [0..6]; // 0 - initial location // 1 - inactive (idle or sleep) // 2,3 - waking (adding and multiplying) // 4 - adding // 5 - multiplying // 6 - done c1 : [0..2]; // used for the randomised delay sleep1 : [0..1]; // when processor is in sleep mode x1 : clock; // local clock invariant (p1=0 => x1<=0) & (p1=1 => true) & (p1=2 => x1<=4) & (p1=3 => x1<=4) & (p1=4 => x1<=1) & ((p1=5 & c1=0) => x1<=2) & ((p1=5 & c1>0) => x1<=1) & (p1=6 => x1<=0) endinvariant // initialise [start] p1=0 -> 0.5 : (p1'=1) & (sleep1'=0) + 0.5 : (p1'=1) & (sleep1'=1); // start from sleep state [p1_add1] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add [p1_add4] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add [p1_add6] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add [p1_mult2] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply [p1_mult3] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply [p1_mult5] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply // start from idle state [p1_add1] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add [p1_add4] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add [p1_add6] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add [p1_mult2] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply [p1_mult3] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply [p1_mult5] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply // wake from sleep [p1] p1=2 & x1=4 -> (p1'=4) & (x1'=0); // add [p1] p1=3 & x1=4 -> (p1'=5) & (x1'=0); // multiply // adding [p1] p1=4 & x1=1 & c1=0 -> 1/3 : (p1'=6) & (x1'=0) & (c1'=0) + 2/3 : (c1'=1) & (x1'=0); [p1] p1=4 & x1=1 & c1=1 -> 1/2 : (p1'=6) & (x1'=0) & (c1'=0) + 1/2 : (c1'=2) & (x1'=0); [p1] p1=4 & x1=1 & c1=2 -> (p1'=6) & (x1'=0) & (c1'=0); // multiplying [p1] p1=5 & x1=2 & c1=0 -> 1/3 : (p1'=6) & (x1'=0) & (c1'=0) + 2/3 : (c1'=1) & (x1'=0); [p1] p1=5 & x1=1 & c1=1 -> 1/2 : (p1'=6) & (x1'=0) & (c1'=0) + 1/2 : (c1'=2) & (x1'=0); [p1] p1=5 & x1=1 & c1=2 -> (p1'=6) & (x1'=0) & (c1'=0); // done [p1_done] p1=6 -> (1-sleep) : (p1'=1) + sleep : (p1'=1) & (sleep1'=1); endmodule // processor 2 module P2 p2 : [0..3]; c2 : [0..2]; x2 : clock; invariant (p1=1 => true) & ((p2=1 & c2=0) => x2<=4) & ((p2=1 & c2>0)=> x2<=1) & ((p2=2 & c2=0) => x2<=6) & ((p2=2 & c2>0) => x2<=1) & (p2=3 => x2<=0) endinvariant // addition [p2_add1] (p2=0) -> (p2'=1) & (x2'=0); // start [p2_add4] (p2=0) -> (p2'=1) & (x2'=0); // start [p2_add6] (p2=0) -> (p2'=1) & (x2'=0); // start [p2] (p2=1) & (x2=4) & (c2=0) -> 1/3 : (p2'=3) & (x2'=0) & (c2'=0) + 2/3 : (c2'=1) & (x2'=0); [p2] (p2=1) & (x2=1) & (c2=1) -> 1/2 : (p2'=3) & (x2'=0) & (c2'=0) + 1/2 : (c2'=2) & (x2'=0); [p2_done] (p2=1) & (x2=1) & (c2=2) -> (p2'=0) & (x2'=0) & (c2'=0); // multi [p2_mult2] (p2=0) -> (p2'=2) & (x2'=0); // start [p2_mult3] (p2=0) -> (p2'=2) & (x2'=0); // start [p2_mult5] (p2=0) -> (p2'=2) & (x2'=0); // start [p2] (p2=2) & (x2=6) & (c2=0) -> 1/3 : (p2'=3) & (x2'=0) & (c2'=0) + 2/3 : (c2'=1) & (x2'=0); [p2] (p2=2) & (x2=1) & (c2=1) -> 1/2 : (p2'=3) & (x2'=0) & (c2'=0) + 1/2 : (c2'=2) & (x2'=0); [p2_done] (p2=2) & (x2=1) & (c2=2) -> (p2'=0) & (x2'=0) & (c2'=0); // done [p2_done] (p2=3) -> (p2'=0); // finish endmodule // reward structures // time rewards "time" true : 1; endrewards // energy rewards "energy" p1=0 & sleep1=1 : 1/1000; p1=0 & sleep1=0 : 10/1000; p1>0 : 90/1000; p2=0 : 20/1000; p2>0 : 30/1000; endrewards label "tasks_complete" = (task6=3);