// self stabilisation algorithm Beauquier, Gradinariu and Johnen // gxn/dxp 18/07/02 mdp // module of process 1 module process1 d1 : bool; // probabilistic variable p1 : bool; // deterministic variable [] d1=d9 & p1=p9 -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1); [] d1=d9 & !p1=p9 -> (d1'=!d1); endmodule // add further processes through renaming module process2 = process1 [ p1=p2, p9=p1, d1=d2, d9=d1 ] endmodule module process3 = process1 [ p1=p3, p9=p2, d1=d3, d9=d2 ] endmodule module process4 = process1 [ p1=p4, p9=p3, d1=d4, d9=d3 ] endmodule module process5 = process1 [ p1=p5, p9=p4, d1=d5, d9=d4 ] endmodule module process6 = process1 [ p1=p6, p9=p5, d1=d6, d9=d5 ] endmodule module process7 = process1 [ p1=p7, p9=p6, d1=d7, d9=d6 ] endmodule module process8 = process1 [ p1=p8, p9=p7, d1=d8, d9=d7 ] endmodule module process9 = process1 [ p1=p9, p9=p8, d1=d9, d9=d8 ] endmodule // cost - 1 in each state (expected steps) rewards "steps" true : 1; endrewards // initial states - any state with more than 1 token, that is all states init true endinit // formula, for use in properties: number of tokens formula num_tokens = (p1=p2?1:0)+(p2=p3?1:0)+(p3=p4?1:0)+(p4=p5?1:0)+(p5=p6?1:0)+(p6=p7?1:0)+(p7=p8?1:0)+(p8=p9?1:0)+(p9=p1?1:0);