// self stabilisation algorithm Beauquier, Gradinariu and Johnen // gxn/dxp 18/07/02 mdp // module of process 1 module process1 d1 : bool; // probabilistic variable p1 : bool; // deterministic variable [] d1=d11 & p1=p11 -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1); [] d1=d11 & !p1=p11 -> (d1'=!d1); endmodule // add further processes through renaming module process2 = process1 [ p1=p2, p11=p1, d1=d2, d11=d1 ] endmodule module process3 = process1 [ p1=p3, p11=p2, d1=d3, d11=d2 ] endmodule module process4 = process1 [ p1=p4, p11=p3, d1=d4, d11=d3 ] endmodule module process5 = process1 [ p1=p5, p11=p4, d1=d5, d11=d4 ] endmodule module process6 = process1 [ p1=p6, p11=p5, d1=d6, d11=d5 ] endmodule module process7 = process1 [ p1=p7, p11=p6, d1=d7, d11=d6 ] endmodule module process8 = process1 [ p1=p8, p11=p7, d1=d8, d11=d7 ] endmodule module process9 = process1 [ p1=p9, p11=p8, d1=d9, d11=d8 ] endmodule module process10 = process1 [ p1=p10, p11=p9, d1=d10, d11=d9 ] endmodule module process11 = process1 [ p1=p11, p11=p10, d1=d11, d11=d10 ] endmodule // cost - 1 in each state (expected steps) rewards "steps" true : 1; endrewards // initial states - any state with more than 1 token, that is all states init true endinit // formula, for use in properties: number of tokens formula num_tokens = (p1=p2?1:0)+(p2=p3?1:0)+(p3=p4?1:0)+(p4=p5?1:0)+(p5=p6?1:0)+(p6=p7?1:0)+(p7=p8?1:0)+(p8=p9?1:0)+(p9=p10?1:0)+(p10=p11?1:0)+(p11=p1?1:0);