// model of dining cryptographers // gxn/dxp 15/11/06 mdp // number of cryptographers const int N = 4; // constants used in renaming (identities of cryptographers) const int p1 = 1; const int p2 = 2; const int p3 = 3; const int p4 = 4; // global variable which decides who pays // (0 - master pays, i=1..N - cryptographer i pays) global pay : [0..N]; // module for first cryptographer module crypt1 coin1 : [0..2]; // value of its coin s1 : [0..1]; // its status (0 = not done, 1 = done) agree1 : [0..1]; // what it states (0 = disagree, 1 = agree) // flip coin [] coin1=0 -> 0.5 : (coin1'=1) + 0.5 : (coin1'=2); // make statement (once relevant coins have been flipped) // agree (coins the same and does not pay) [] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay!=p1) -> (s1'=1) & (agree1'=1); // disagree (coins different and does not pay) [] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay!=p1) -> (s1'=1); // disagree (coins the same and pays) [] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay=p1) -> (s1'=1); // agree (coins different and pays) [] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay=p1) -> (s1'=1) & (agree1'=1); // synchronising loop when finished to avoid deadlock [done] s1=1 -> true; endmodule // construct further cryptographers with renaming module crypt2 = crypt1 [ coin1=coin2, s1=s2, agree1=agree2, p1=p2, coin2=coin3 ] endmodule module crypt3 = crypt1 [ coin1=coin3, s1=s3, agree1=agree3, p1=p3, coin2=coin4 ] endmodule module crypt4 = crypt1 [ coin1=coin4, s1=s4, agree1=agree4, p1=p4, coin2=coin1 ] endmodule // set of initial states // (cryptographers in their initial state, "pay" can be anything) init coin1=0&s1=0&agree1=0 & coin2=0&s2=0&agree2=0 & coin3=0&s3=0&agree3=0 & coin4=0&s4=0&agree4=0 endinit // unique integer representing outcome formula outcome = 8*agree1 + 4*agree2 + 2*agree3 + 1*agree4 ; // parity of number of "agree"s (0 = even, 1 = odd) formula parity = func(mod, agree1+agree2+agree3+agree4, 2); // label denoting states where protocol has finished label "done" = s1=1&s2=1&s3=1&s4=1; // label denoting states where number of "agree"s is even label "even" = func(mod,(agree1+agree2+agree3+agree4),2)=0; // label denoting states where number of "agree"s is even label "odd" = func(mod,(agree1+agree2+agree3+agree4),2)=1;