GLEE: A WLP-based Bounded Verification Tool for GCL Programs

Thomas van Maaren (9825827)
Tjalle Schoonderwoerd (4771931)

Lars Slijkoord (7767080)
Utrecht University
Utrecht, Netherlands

Abstract

We present the tool GLEE, a tool for performing automated analysis
of GCL programs using bounded symbolic verification based on
weakest liberal preconditions.

GLEE can handle all basic functionality of GCL, as well as make
use of user-annotated loop invariants.

Its implementation features multiple optimisations and heurist-
ics, making ranging from a couple percent, to around 90% faster
verification in some situations.

1 Introduction

Symbolic execution is a program analysis technique which can
be used to verify whether a program meets its specification. In
contrast to regular testing, the program is not executed using con-
crete states, but using symbolic values in place of variables. Such
symbolic execution will create one or multiple formulae express-
ing properties about the correctness of the program, which can be
checked for validity using model checker, typically a satisfiability
modulo theories (SMT) solver [5]. By using such a technique, auto-
matic verification programs attempt to reason about all potential
executions of a program! rather than a finite number of them as in
traditional testing.

Symbolic execution techniques can be divided into two categor-
ies: forwards and backwards. In forwards symbolic execution, a
symbolic state of the program, mapping variables to symbolic val-
ues, is kept and updated throughout the process, checking if any
assertions encountered are implied by the symbolic state. In con-
trast, with backwards symbolic execution, the process works back-
wards from the specification, calculating which conditions must
hold before executing the program in order to ensure the assertions
hold.

In this paper, we will mainly focus on backwards symbolic exe-
cution.

1.1 Key Challenges

In theory, symbolic execution can guarantee that a program meets
its specification, without ever giving a false positive (where the
program has a bug which is not caught) or false negative (where
the program is correct, but is not identified as such) as a result.

In practice however, there are multiple key challenges which
make it impossible to actually exhaustively analyse every program
path [1]. Some of these are:

o Representing memory — Programs typically make use of com-
plex data structures and pointers, which are more difficult
to represent than simple data types such as numbers.

!In practice, there are multiple reasons why it might still be impossible to reason about
every potential execution. See section 1.1.

® Representing environment — In addition to complex data struc-
tures, many programs also interact with an environment,
e.g. a file system or network. These side effects also need to
be modelled, and it might prove infeasible to check every
potential side effect.

o Path explosion - Many language constructs cause conditional
execution, which might lead to an exponentially increasing
number of execution paths which need to be verified, in-
creasing both the load on the memory and the time taken to
verify all of them. Loops can even cause a potentially infinite
number of paths, making it impossible to exhaustively verify
all paths.?

o Constraint solving — While modern model checkers are cap-
able of verifying large formulae, doing so may take a signi-
ficant amount of time, especially for large formulae. Even if
it is possible to fully verify a program, solving all constraints
might still take too long for any practical application.

In this paper, we will focus mainly on the problems of path
explosion and constraint solving.

1.2 Related Work

There are several other ways to keep path explosion minimised
besides the technique we present in this paper. One of the ways
to keep it minimised is by prioritising path exploration with the
use of heuristics as explained in [3]. Their paper lists 4 different
approaches to limit path explosion with heuristics. The first ef-
fective approach is by using the static control-flow graph (CFG)
to guide exploration toward the path closest from an uncovered
instruction. The second approach is by using random exploration
across paths, choosing randomly at branches to either explore one
before the other. The third approach is to interleave symbolic ex-
ploration with random testing, which combines random testing
to quickly reach deep exploration states with symbolic execution.
The fourth and final approach discussed is combining symbolic
execution with evolutionary search. This uses a fitness function to
decide on exploration of certain paths.

Besides heuristics, their paper also discusses sound program ana-
lysis techniques. These include merging explored paths statically
that are then passed to the constraint solver. Another technique
is defined as using compositional techniques to improve symbolic
execution by caching and reusing analysis of lower-level functions.
This is not needed nor implementable in our case, since the variation
of GCL we verify does not have function calls. Lastly there is the
possibility of pruning redundant paths during exploration, when

2However, there are cases where it is possible, and there exist heuristics to attempt to
perform sound verification of loops using a bounded number of paths.

Course Program Semantic & Verification, 24/25,

a path reaches a point in the program with the same constraints,
after which the rest of the path is already known and verified.

The previous part looked at some forms of reduction in path
exploration, but another way to reduce the runtime is by optimising
the generation of constraints. In [3], irrelevant constraint elimin-
ation is mentioned, where feasibility is for example checked on
an negated branch was would be the case with WLP. If the input
generated contains variables not found in the negated branch, they
can be removed since they are irrelevant. Another way to optimise
would be to do something called incremental solving. Constraint
sets generated often have large parts which are similar between
different sets. This means the solution of a certain set can be reused
in another set. This is mostly used in bounded symbolic execution
such as KLEE where it can be used in for example the so called
counter-example caching scheme [2]. Our program also has some
kind of incremental solving, in the sense that the sets are stored in
the environment of the solver incrementally.

1.3 Our Work

We present a prototype tool for the automatic verification of GCL
programs, using backwards symbolic execution based on weakest
liberal preconditions. The tool supports all basic features of GCL,
including integer, boolean and array types, if-statements, while
loops, and specifications using assert and assume. On top of that,
it supports verifying annotated loop invariants.

The implementation includes various optimisations and heurist-
ics like incremental calculations, pruning infeasible paths and front-
end simplification. Details of the techniques used are explained in
section 3.

2 Preliminaries

We use a variant of GCL, a simple programming language first
defined by Edsger Dijkstra in [6]. The exact syntax, as well as
a parser for this language (written in Haskell) can be found on
GitHub.? Here, the benchmark programs we used can be found as
well.

Bounded Verification. Since it is not possible to exhaustively
verify all execution paths (see section 1.1), we only verify full paths
of some bounded length, controlled by a parameter K. This means
only paths that reach the end of the program within K steps are
verified.

Weakest Preconditions. The weakest precondition (WP) of a state-
ment S with respect to some boolean formula Q (the postcondition),
is the weakest formula P such that the Hoare triple {P} S {Q} is
valid and S terminates when executed from some state satisfying P
[6]. It is denoted P = wp(S, Q).

A weakest liberal precondition (WLP) is similar to a WP, but
drops the termination requirement. It is denoted P = wip(S, Q).

3 Implementation Techniques

Next, we will highlight the techniques we used and the choices we
made for implementing GLEE.*

3https://github.com/wooshrow/gclparser
“4The full source code of the program can be found on GitHub: https://github.com/Tjalle-
S/PSV-project/tree/main.

Thomas van Maaren (9825827), Tjalle Schoonderwoerd (4771931), and Lars Slijkoord (7767080)

GLEE is implemented using Haskell. The reasons for this choice
are that it is a lazy language, and in particular because algebraic
data types provide an elegant way to represent programs.S We use
the Z3 theorem prover[4] as the back-end SMT solver. Z3 is used
to check any expression created by GLEE for satisfiability.

3.1 Basic implementation

Execution tree. The abstract syntax tree representing the program
is first transformed into an execution tree. Every node contains a
single statements, and any number of children. Any path from the
root of the execution tree is a program path, so any node with more
than one child is a branching point.

The tree is constructed as follows:

e Any statement of the form if g then S; else Sy is trans-
formed into a single skip-node, with one child branch con-
taining the assumption that g holds, S and then the rest of
the program, the other containing the assumption that —g
holds, Sy and then the rest of the program.

e Loops are unrolled into series of if-statements (this will be ex-
plained in more detail later), and are then handled identically
to if-statements.

o In a sequence of statements S; and Sy, first, an execution tree
for both is created. Then all leaves of the execution tree of
S are replaced with nodes that have the second execution
tree as child.

During the construction of the tree, the program keeps track of any
variables that are defined. This information is used in the trans-
formation of blocks, and expressions with quantifiers, where any
duplicate variable names are renamed in order to prevent shadow-
ing.

Loop unrolling. In order to deal with loops in the program code,
they are unrolled by repeatedly creating two branches, one in which
the loop exits (equivalent to assume ~g), one in which the loop
continues (equivalent to assume g; S; while g do S).

Bounding. Unless a loop invariant is specified, it is impossible to
verify all possible execution paths of a program, since we cannot
tell beforehand how often a loop will be executed and would have
to verify an infinite number of executions. To avoid this problem,
we cut any branches of the execution tree that are longer than K.
Since the implementation language, Haskell, is lazy, this means that
execution paths that are not verified are also not generated. This
avoids the program getting into infinite recursion.

3.2 Optimisations

Incremental WLP calculations. Instead of fully calculating each
WLP before using Z3 to verify it, it is calculated on the fly while
the tree is traversed. The steps to do this are as follows:

e Whenever an expression needs to be used (for verifying as-
sumptions and assertions, and at the end of an execution
path), it is transformed as required by potential earlier state-
ments, using a saved predicate transformer function.

¢ Any time an assumption is encountered, it is stored in the
Z3 context and saved for the rest of the execution path.

5And, of course, because the parser is only available in Haskell.

https://github.com/wooshrow/gclparser
https://github.com/Tjalle-S/PSV-project/tree/main
https://github.com/Tjalle-S/PSV-project/tree/main

GLEE: A WLP-based Bounded Verification Tool for GCL Programs

e Any time an (intermediate) assertion is encountered, it is
immediately verified.

e Any time any other statement is encountered along the path,
the saved predicate transformer is updated and passed on.

e Whenever the end of an execution path is reached, the cal-
culated WLP is verified.

This approach reduces the number of calls to Z3, and allows easily
checking for infeasible paths.

Infeasibility checks. Any time an assumption is encountered, the
current list of assumptions (the branch condition) is checked for
feasibility using Z3. If there is no assignment of variables satisfying
the assumptions, the branch is immediately accepted. Otherwise,
verification continues normally.

Verifying loop invariants®. For verifying loop invariants, we use
the standard inference rule for while loops, in the partial correctness
implementation. Given a Hoare triple {P} while g do S {Q} and
an invariant I, we need to verify the following conditions:

1P =1

() {IA=g}S{D}
B) Ur-c) = Q

In the verification, this corresponds with the following steps:

(1) Add an assertion that I holds before the loop.

(2) Create a branch. This contains the assumption that I A g
holds, then S, then the assertion that I holds.

(3) Create another branch. Add an assumption that I A g holds
after the loop, and remove the loop itself, continuing with
the rest of the program.

In both branches, the names of variables that are modified in S need
to be replaced by fresh ones, since assumptions made before the
loop about these variables might not hold within or after the loop.

Expression simplification. Before an expression is sent to Z3, it
is simplified. This simplification is done on binary operators and
negation. The rules used are common rules for simplifying bin-
ary operators with respect to boolean algebra and mathematical
simplification.

4 Results

We ran GLEE on four benchmark programs. These are slightly mod-

ified versions of the programs memberOf, divNyN and pullUp, and

bsort. The modification involved adding loop invariant to those

programs that did not have it, to test the effect on those programs as

well. For most benchmarks, we do not check invariants, as correct

invariants mean that relatively few calculations are required.
There are statistics on the following data:

e Running time. The time it took for GLEE to complete the
verification.

e Number of paths verified. This means all paths that are fol-
lowed to the end, and not pruned.

o Number of branches pruned. This means the amount of times
a branch has been pruned, regardless of the number of paths
that are cut off by the prune.

SThis is the implementation for the loop-invariant optional.

Course Program Semantic & Verification, 24/25,

e Formula size. This means the total number of leafs (literals,
variables and sizeof) of formulae sent to Z3 for verification.
Keep in mind that some of these formulae may be used
multiple times, due to the incremental calculations.

There is an experiment parameter, N, which controlled the min-
imum length of arrays for most programs (and the divisor for
divByN.

4.1 Invalid Programs

The invalid programs were run at a depth sufficient to detect the
violation for al

In figure 1, it can be seen that the violation in the invalid variants
of the benchmark programs is found in a very short amount of time.
Figures 2 and 3 reveal that the reason is that they are found almost
immediately, after which the program can immediately report the
violation and stop. Figure 4 shows that not many paths needed to
be pruned either.

In this set of benchmarks, bsort is an exception, since it is the
only one that was run with invariant detection on. The reason for
this is that this is the benchmark intended for this optimisation, and
that GLEE was unable to verify bsort with sufficient depth to find
the violation for high values of N. memberOf was run with K = 66,
divByN with K = 50 and pullUp with K = 58. For bsort, depth is
irrelevant, as long as all paths reach the end of the program. Any
higher value of K has no influence, since loops are removed by the
invariant detection.

® pullp @ divByN memberOf @ bsort

0.20
0.15
< 010
Q
£
0.05
— et — —~—
—
0.00
2 4 6 8 10

Figure 1: Runtime of the invalid versions of the programs.

4.2 Valid Programs

All benchmarks on the valid variants of the programs are run with
N =10.

Incremental WLP Calculations. This was an optimisation that
was made early during the development of GLEE, and is deeply
ingrained into the program. It is therefore not a heuristic that can
be enabled or disabled, and as such, no benchmarks are available.
However, during development, we saw that with K = 60, verifying
the programs memberOf and divByN was roughly 60% faster than
before.

Course Program Semantic & Verification, 24/25,

® pulup @ divByN memberOf @ bsort

10

LN (size)

Figure 2: Formulae size of the invalid versions of the pro-
grams (where size is transformed with the natural logarithm).

® pulllp @ divByN memberOf @ bsort

4

paths

Figure 3: Amount of paths of the invalid versions of the
programs.

® pullup @ divByN memberOf @ bsort

6

branches

Figure 4: Amount of branched pruned of the invalid versions
of the programs.

When running the program with no heuristics enabled, the
runtime of the programs drives up exponentially for most pro-
grams as K is increased, as can be seen in figure 5. We will now
compare the different heuristics with the results seen in this figure.

Infeasibility Checks. In figure 6 we can see that depending on
the program, there may or may not be an increase or decrease in

Thomas van Maaren (9825827), Tjalle Schoonderwoerd (4771931), and Lars Slijkoord (7767080)

@ memberOf @ divByN pullUp @ Bsort

500

100
50
10 e
0 20 30 40 50

1

time (ms)

K

Figure 5: Runtime of the valid versions of the programs.

® memberOf @ divByN pulllp @ Bsort

5000
1000
500
100
50
10 20 30 40 50 60

time (ms)

10

K

Figure 6: Runtime of the valid versions of the programs with
infeasibility checks.

runtime. We see that with pruning, member0f is roughly 40% slower,
while pullUp is 30% faster, bsort is 70% faster and divByN is more
than 90% faster. This wide range of increase and decrease can be
related to the simple fact that member0Of does not have many of its
paths pruned, thus the checking for infeasible paths takes extra
time, while the other programs have most of its paths pruned.

@ memberOf @ divByN pullup @ Bsort

25

20

time (ms)

20 40 60 80

Figure 7: Runtime of the valid versions of the programs with
loop invariants.

GLEE: A WLP-based Bounded Verification Tool for GCL Programs

Verifying Loop Invariants. In figure 7 we are able to see the
biggest speed-up of all heuristics when our tool uses loop invari-
ants. All programs take around 15 ms to complete, even when the
depth is increased. From this we can conclude that the speedup
grows while the depth grows, as in other cases the time increases
with larger values of K while here it stays roughly constant. If the
invariant are correctly annotated, we can conclude that the tool is
sound and complete.

@ memberOf @ divByN pulllp @ Bsort

500

100

50

time (ms)
(K

Figure 8: Runtime of the valid versions of the programs with
expression simplification.

Expression Simplification. In figure 8 we see almost no decrease
in runtime with expression simplification compared to the runtime
without it as seen in figure 5. All programs do receive some speed-
up, although not significantly much, except bsort. bsort appears
to profit from having the expression solved before solving the WLP.

® memberOf @ divByN pulllp @ Bsort

5000

1000
500

Figure 9: Runtime of the valid versions of the programs with
expression simplification and infeasibility checking.

Course Program Semantic & Verification, 24/25,

Heuristics combined. In figure 9 we have enabled all heuristics
except for the using loop invariants. We can see mostly the same
trends found in the results from checking for infeasibility. The result
are exactly as expected, just slightly faster runtimes than the times
found in figure 6.

5 Conclusion

In this project we set out to write a verifier for GCL programs. We
did this by creating a WLP for every execution path of our program.
These are verified on the fly with incremental WLP verification. To
reduce the amount of the paths we also implemented a pruner and
to reduce the size of the expressions we implemented a front-end
simplifier. As a bonus we have made it possible for the verifier to
make use of user-specified invariants, reducing the size of the exe-
cution tree and the WLP’s. In the end we saw that all our heuristics
improved the performance of our program in most cases.

5.1 Future Work

There are some optimisations which are not yet implemented in
GLEE, but would be good to have. Some of those are:

o There are two different ways to create quantifiers in Z3. We
found that the one we currently use (using global variables)
seems significantly slower than the alternative (using De
Bruijn indices). However, we have not been able to get this
to work, as it lead to Z3 diverging and never finishing in
some cases.

o Infeasibility checking leads to significantly worse perform-
ance on the benchmark program memberOf. Ideally, there
would be some heuristic to detect when pruning is unlikely to
have an effect, so the checks could automatically be skipped.

References

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
51, 3, Article 50 (2018).

[2] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In OSDI, Vol. 8. 209-224.

[3] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82-90.

[4] Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan
and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337-340.

[5] Leonardo De Moura and Nikolaj Bjerner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69-77.

[6] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Commun. ACM 18, 8 (1975), 453-457.

	Abstract
	1 Introduction
	1.1 Key Challenges
	1.2 Related Work
	1.3 Our Work

	2 Preliminaries
	3 Implementation Techniques
	3.1 Basic implementation
	3.2 Optimisations

	4 Results
	4.1 Invalid Programs
	4.2 Valid Programs

	5 Conclusion
	5.1 Future Work

	References

