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Abstract13

A challenge for event organizers is attracting the maximum number of attendees. In this paper we14

introduce the borrel scheduling problem. We prove that no deterministic algorithm can achieve a15

constant competitiveness for the problem in a number of online settings with different restrictions.16

Moreover, we show that this problem is NP-hard in the offline setting even for a restricted case.17

To cope with this hardness we have created a brute forcing algorithm for an offline setting. We18

introduce a social matrix to take social relationships into account in the borrel scheduling problem,19

which is also solved by our offline algoritm. Finally we evaluate our offline algorithm with a number20

of experiments.21
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1 Introduction25

Image you are part of the student organization responsible for organizing “borrels” (social26

gatherings) for freshmen. However, the freshmen have many obligations such as deadlines,27

group meetings, exams, ect. These obligations are flexible and can be rescheduled or delayed,28

but they still need to be completed eventually. Freshmen are eager to attend the borrels and29

will do so as long as they don’t have any conflicting obligations. However, if their schedules30

clash with their obligations, they will prioritize those obligations over the borrel. Borrels are31

typically free for students to attend, but they do incur costs for the student organization,32

such as renting a venue, providing snacks, and other logistical expenses. It’s common for33

borrels to offer the first drink for free, but any additional drinks must be purchased. The34

revenue generated from drink sales is used to help cover the borrels costs. If students35

enjoy themselves, they’re more likely to buy drinks. One key factor that can enhance their36

experience is being able to attend the borrels with their friends. Therefore, it’s in the student37

organization’s interest to not only focus on attendance but also on maximizing the happiness38

of the freshman by scheduling borrels in a way that allows groups of friends to participate39

together. This can boost the overall success of the event both socially and financially.40

41

This paper will present two offline algorithms for scheduling borrels: one focused on42

optimizing student attendance, and the other designed to maximize the overall happiness of the43
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freshman by considering factors like social connections and shared availability. Additionally,44

we will provide problem competitive ratios for online algorithms which focusing on maximizing45

the attendance of freshmen at the borrels in multiple scenario’s.46

1.1 Literature review47

We will visit several relevant problems in the literature, the first of which is the Social Event48

Scheduling Problem (SES) [1]. In this context, the goal is to schedule a series of events or49

borrels while maximizing attendance or overall utility, considering that third-party events (in50

our problems context obligations) are already scheduled. Utility is defined as the expected51

attendance across all scheduled events. The difference between Borrels Scheduling and Social52

Event Scheduling lies in how competing events are treated. In the SES problem, competing53

events are those that have already been scheduled by third parties, resulting in fixed time54

slots. In contrast, our constraints, which can be viewed as competing events, can often be55

postponed within their designated time windows. Furthermore, in the SES problem, each56

event is assigned a probability indicating a user’s likelihood of attending. If two events57

overlap, the probability distribution determines which event the user will choose. However,58

if there are 5 events, we cannot impose a requirement for users to attend exactly 4 out of 559

third-party events (the obligations) while leaving the remaining event slots for our events60

(borrels). In our case, the probability of attending an event changes based on which event the61

user chooses to attend. There is no trivial way to translate the Borrel Scheduling problem62

into the SES problem.63

64

Another relevant problem is the Optimization Of Calendar Events. Especially when65

optimizing the scheduling of meetings within large organizations, where the objective is66

to maximize attendance while considering each participant’s individual schedule/calendar.67

Since it is not always feasible for everyone to attend, the focus shifts to maximizing the68

number of attendees at the meeting which is similar to our problem [2] [4]. However, solutions69

derived from this model are not directly applicable to our problem. In these frameworks, a70

participant calendars time slots are either marked available or unavailable which is different71

from our problem. In our case, there is a time window within which certain obligations must72

be fulfilled, but the exact timing has yet to be determined. This differs from the SES problem73

because the Optimization Of Calendar Events allows for soft constraints. Soft constraints74

refer to events in a user’s schedule that can be rescheduled to another date for a small penalty75

cost. This approach resembles the Borrel Scheduling problem, where rescheduling is allowed76

if the event can be moved to another time within the available time slot. However, incorpor-77

ating this flexibility significantly complicates the problem, making it more challenging to solve.78

79

The final relevant problem is the Job Scheduling Problem with Deadlines [3], which80

closely parallels the obligation and borrel planning aspects of our study. In this scenario,81

each obligation can be viewed as a job that needs to be scheduled on a specific machine, with82

both a deadline and a start time. Similarly, we have borrels that also need to be scheduled83

on these machines. In our problems context, we want to maximize for the scheduling borrels84

on different machines simultaneously, the same as maximizing attendance at the events.85

However, this is different from the objective in the job scheduling problem with deadlines86

which is to minimize the makespan while ensuring that all tasks remain feasible within their87

respective constraints. There is no trivial way to translate the Borrel Scheduling problem to88

the Job Scheduling problem with deadlines.89
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2 Preliminaries90

2.1 Formal problem definition91

The timeline is partitioned into t integral time slots. The time interval from time 0 (inclusively)92

to time 1 (exclusively) is time slot 1, and the time interval from time i− 1 (inclusively) to93

time i (exclusively) is time slot i for all i ≥ 1. There are m borrels, and each borrel h has94

a length of bh time slots. There are n students. Each student i has a set of obligations95

Ii = {(Ii,1, pi,1), (Ii,2, pi,2), ..., (Ii,li
, pi,li

)}, where Ii,j = [ri,j , di,j ] is a time interval from time96

slot ri,j to time slot di,j , and pi,j is the time slots needed by the obligation j that has to be97

finished within Ii,j . A feasible schedule for a student i of obligation j is a schedule Si,j ,98

which is a set of time slots, such that Si,j ⊆ Ii,j and |Si,j | = pi,j . Moreover, for a student i99

and two of their obligations j and j′, Si,j ∩ Si,j′ = ∅. Note that we assume pi,j are integral100

for all i and j, and we cannot assign a time slot partially to an obligation. As a borrels101

planner, you aim to schedule each borrel h starting at time slot sh and lasting until time102

slot sh + bh − 1, such that as many students attend the borrels as possible. More formally,103

you want to find the start time sh of each borrel h such that there exists a set of feasible104

schedules Si,j for every pair of student i and obligation j such that the conflict among the105

borrels and the students’ schedules, [sh, sh + bh− 1]∩Si,j ≠ ∅ for some i and j, is minimized.106

We also assume that borrels start at integral time (that is, the beginning of a time slot).107

2.1.1 Offline setting108

In the offline setting, all the parameters are known to the algorithm from the very beginning.109

That is, the algorithm knows t, m, bh for all h ∈ [1, m], n, and Ii for all i ∈ [1, n]. Once the110

algorithm receives the information, it should suggest schedules for all borrels.111

2.1.2 Online setting112

In the online setting, the online algorithm knows the number of time slots (t), the number of113

students (n), the number of borrels (m), and all bh for each borrel h in the beginning but114

only learns about Ii,j = [ri,j , di,j ] and pi,j at the beginning of time slot ri,j (that is, at time115

ri,j − 1). The online algorithm has to decide if a borrel will start at time slot x + 1 right at116

time x (that is, the beginning of time slot x + 1). Formally, at time x (that is, the beginning117

of time slot x + 1), the algorithm first learns the obligations that have release time at time118

slot x + 1 and then decides if it wants to schedule a borrel starting from time slot x + 1.119

2.1.3 Decision problem120

In order to prove the complexity class of borrel scheduling it needs to be formulated as a121

decision problem. The aim of the original problem is to schedule each borrel h starting at122

time slot sh and lasting until time slot sh + bh − 1, such that as many students attend the123

borrels as possible. In the decision version of this problem the aim is then to decide if there124

exists an assignment of borrels to timeslots such that there are at least k attendances in125

total for some k ∈ N.126

2.1.4 Borrel scheduling with at most 2 concurrent obligations (BS-2CO)127

We define a special case of borrel scheduling, henceforth referred to as BP-2CO, where each128

student has at most two obligations at every timeslot. More formally, For all students i and129
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any three obligations o1, o2, o3 ∈ Ii they do not span a common timeslot unless some of these130

obligations are the same: (o1 ̸= o2 ∧ o2 ̸= o3 ∧ o3 ̸= o1) =⇒ o1 ∩ o2 ∩ o3 = ∅.131

The decision version of this problem is defined analogous to the decision version of the132

original version 2.1.3.133

2.2 Set cover134

In order to prove NP-hardness, we will consider the set cover decision problem with a universe135

U = {u1, u2, ..., u|U |} containing all possible elements and the set S = {S1, S2, ..., S|S|}136

containing subsets of the universe U and a goal g ∈ N. The set S must contain all elements137

in the universe, so its union must equal U :
⋃

Sa∈S Sa = U . The aim in the set cover problem138

is to decide if there exists a subset A of S such that the union of A is equal to U and |A| ≤ g.139

3 Problem competitive ratio140

3.1 Base problem141

To prove the competitive ratio of the base problem we will start by taking in to consideration142

the following adversary cases:143

A := {t = 2, m = 1, b1 = 1,∀i : 1 < i ≤ n : Ii = {([t1, t1], 1)}}144

OPT (A) = n where b1 is held at t2145

B := {t = 2, m = 1, b1 = 1, I1 = {([t2, t2], 1)},∀i : 1 < i ≤ n : Ii = {([t1, t1], 1), ([t2, t2]1)}}146

OPT (B) = 1 where b1 is held at t1147

148

For both cases every student except for one has an obligation at timeslot t1. Note that A ⊂ B,149

and the adversary can freely choose to switch after t = 1 between these cases depending on150

the behaviour of any arbitrary online algorithm.151

Since there exists one borrel b1 with length 1 every online algorithm can either plan this152

borrel on t1 or not, creating two possible cases.153

If some algorithm ALG1 chooses to host the borrel on t1 then the adversary case is A where154

ALG1(A) = 1 and OPT (A) = n giving a competitive ratio of OP T (A)
ALG1(A) = n

1 = n.155

If some algorithm ALG2 chooses not to host the borrel on t1 then the adversary case is B156

where ALG2(B) = 0 and OPT (B) = 1 giving a competitive ratio of OP T (B)
ALG2(B) = 1

0 =∞157

158

This gives the problem a competitive ratio of n159

160

Moreover, every algorithm hoping to attain a competitive ratio c < ∞ should always161

plan a borrel the first chance it gets to avoid having a score of 0.162

3.2 Multiple borrels163

Now we will investigate the competitive ratio when m = 2. Every algorithm must still164

schedule a borrel at the first possible moment where at least one person can attend for165

the same reasons as m = 1, but after that the algorithm has a lot more freedom and can’t166

be “forced” to perform an action anymore. This still isn’t enough to achieve a constant167

competitive ratio however.168

To provide a lower bound of the competitive ratio of the problem with m = 2, we’ll look at169

the following set of cases:170

A := {t = 3, m = 2, b1 = 1, b2 = 1, I1 = {([t2, t3], 2)},∀i : 1 < i ≤ n : Ii = {([t1, t1], 1), ([t2, t3], 2)}}171

OPT (A) = 1, where b1 is held at t1. b2 can be held at any time and not affect the score.172
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∀1 ≤ p ≤ n : Bp := {t = 3, m = 2, b1 = 1, b2 = 1, I1 = {([t2, t2], 1)},∀i : p < i ≤ n : Ii =173

{([t1, t1], 1), ([t2, t2], 1)},∀j : 1 < j ≤ p : Ij = {([t1, t1], 1)}174

OPT (Bp) = n + p where b1 is held at t2, and b2 is held at t3.175

∀1 ≤ p ≤ n : Cp := {t = 3, m = 2, b1 = 1, b2 = 1, I1 = {([t2, t2], 1), ([t3, t3], 1)},∀i : p < i ≤176

n : Ii = {([t1, t1], 1), ([t2, t2], 1), ([t3, t3], 1)},∀j : 1 < j ≤ p : Ij = {([t1, t1], 1), ([t3, t3], 1)}}177

OPT (Cp) = p + 1, with b1 held at t1 and b2 at time t2.178

Adversary cases Bp and Cp can be understood as cases where p people will be able to attend179

at t2. To start, any arbitrary online algorithm must schedule a borrel at t1, because if this180

the algorithm decides to forgo this, the adversary can switch to case A, which would result181

in a competitive ratio OP T (A)
ALG(A) = 1

0 =∞. Therefore, we will assume every algorithm chooses182

to schedule their first borrel at timeslot t1.183

For the purpose of contradiction, we assume an online algorithm ALG with a competitive184

ratio of c exists. This algorithm must forgo scheduling a borrel at t2 if there are less than n
c185

students that can attend. However, this still gives a contradiction.186

Consider B⌊ n
c ⌋−1. If ALG does schedule a borrel at timeslot t2, the amount of people that187

will be able to attend is equal to ⌊n
c ⌋ − 1 + 1 = ⌊n

c ⌋. This would result in a competitive ratio188

of
OP T (B⌊ n

c
⌋−1)

ALG(B⌊ n
c

⌋−1) = n+⌊ n
c ⌋−1

⌊ n
c ⌋ ≥ c + 1− c

n . As long as n > c, c + 1− c
n > c so the performance189

is worse than c · OPT (B⌊ n
c ⌋−1). Therefore an algorithm that would schedule a borrel at190

timeslot t2 for p = ⌊n
c ⌋ − 1 would not have a competitive ratio of c. This means an online191

algorithm that schedules a borrel at t2 for B⌊ n
c ⌋−1 cannot have a constant competitive ratio192

c.193

Now consider the case where ALG does not schedule a borrel at timeslot t2. Looking194

at the case C⌊ n
c ⌋−1 will give us that ALG(C⌊ n

c ⌋−1) = 1 + 0, as the first borrel must be195

placed at t1 with 1 person attending, and the second borrel must be planned at t3 with196

0 people attending. OPT (C⌊ n
c ⌋−1) = ⌊n

c ⌋ − 1 + 1 = ⌊n
c ⌋. Therefore the competitive ratio197

for any algorithm that does not schedule a borrel at t2 in the case of C⌊ n
c ⌋−1 is equal to198

OP T (C⌊ n
c

⌋−1)
ALG(C⌊ n

c
⌋−1) = ⌊ n

c ⌋
1 = ⌊n

c ⌋ which is greater than c for every n > c2 + c.199

Since ALG cannot attain a competitive ratio of c regardless of the decision it makes200

in the case of p = ⌊n
c ⌋ − 1, ALG cannot have a competitive ratio of c and therefore our201

assumption that an online algorithm with a constant competitive ratio exists must be false.202

3.3 Lookahead203

Next we will look at the problem where the algorithm can look k timeslots ahead instead204

of 1. So in a setting with k = 3 the algorithm would be able to see obligation information205

about timeslots {t1, t2, t3} at timeslot t1 and timeslots {t2, t3, t4} at timeslot t2.206

207

If k ≥ t the problem is simply the offline problem and thus trivial with a competitive208

ratio of c = 1.209

210

For a smaller k the competitive ratio can be proven similarly to the base problem with211

adversary cases:212

A := {t = k + 1, m = 1, b1 = 1,∀i : 1 < i ≤ n : Ii = {([t1, tk], 1)}}213

OPT (A) = n where b1 is held at tk+1214

B := {t = k+1, m = 1, b1 = 1, I1 = {([tk+1, tk+1], 1)},∀i : 1 < i ≤ n : Ii = {([t1, tk], 1), ([tk+1, tk+1]1)}}215

OPT (B) = 1 where b1 is held at t1216

217

At timeslot t1 any algorithm will see a timeslot with 1 free student at t1 and 0 free students218
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at {t2...tk} creating once again the same choice every algorithm must make at t1 for hosting219

a borrel at t1.220

221

Then like the base problem: If some algorithm ALG1 chooses to host the borrel on t1222

then the adversary case is A where ALG1(A) = 1 and OPT (A) = n giving a competitive223

ratio of OP T (A)
ALG1(A) = n

1 = n.224

If some algorithm ALG2 chooses not to host the borrel on t1 then the adversary case is B225

where ALG2(B) = 0 and OPT (B) = 1 giving a competitive ratio of OP T (B)
ALG2(B) = 1

0 =∞. The226

adversary can freely switch between these after the algorithm has chosen whether to plan a227

borrel at t1, as the revealed information is exact same.228

229

This gives this problem also a competitive ratio of n.230

3.4 Combination of lookahead and multiple borrels231

Combining all previous restrictions is unfortunately also uncompetitive. This can be proven232

with the same proof as the one used to proof multiple borrels 3.2 is uncompetive, with the233

addition of “stalling obligations” to make lookahead ineffective. These stalling obligations234

could be obligations between the obligations placed in the original proof with a lenght greater235

than or equal to the amount of lookahead. This would provide the algorithm with the same236

amount of information as in the case of multiple borrels, and would therefore achieve the237

same competitiveness.238

4 BS-2CO is NP-complete239

In this section we show that the special case BS-2CO of borrel scheduling decision problem240

(described in 2.1.4) is NP-complete. We start by showing that this decision problem is in241

NP. Then we will take the set cover decision problem, which is NP-complete [5], and reduce242

it to the BS-2CO decision problem. Then we will have shown that the decision version of243

BS-2CO is NP-complete. The aforementioned reduction also proves the NP-hardness of the244

base borrel scheduling problem since it is at least as hard as BS-2CO.245

4.1 BS-2CO is in NP246

In order to prove that the decision version of the special case of borrel scheduling BS-2CO247

2.1.4 is in NP, we define a certificate.248

Definition of certificate polynomial in size Given for each borrel a starting timeslot and a249

set of students attending it such that there exists some fullfilment of the obligations where250

the students can attend those borrels, this certificate consists of251

a list of m integers wi where the i’th value denotes the starting timeslot of the i’th borrel.252

This is O(m) and thus polynomial in the input size.253

for each borrel h a list of values ah,i where the i’th value is 1 if student i attends borrel254

h in the chosen schedule and 0 otherwise. This is O(m · n) and thus polynimal in the255

input size.256

We can see that the size of this certificate is polynomial in the input size.257
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Existance of certificate for yes-instances We also know that this certificate exists for all258

yes-instances, because for every instance where it is possible to have k attendances there259

exists, by definition, some assignment of borrels and some schedule of obligations such that260

the students can attend at least k borrels. This assignment of borrels is equal to the desired261

values wi in the certificate and the schedule of obligations can be translated to the booleans262

ah,i by checking if borrel h overlaps with any of the scheduled obligations of student i.263

Verification Given a decision problem BS-2CO and a certificate with integers wi and264

booleans ah,i we propose a greedy algorithm that can verify this certificate in polynomial265

time. Note that, the verifier can consider each student serparately, because the specific266

borrels that need to be attended by that students are given and the obligations of different267

students are independent. Therefore without loss of generality we will only consider the268

feasibility of the schedule for a single student.269

Given the lists Bi of borrels bh that must be attended by students i and the list Ai of270

obligations Ii,j of this student, the verifier works in 3 stages:271

Sorting the input and checking borrel overlap We start by sorting the list of borrels in272

ascending order of starting timeslot and sorting the list of obligations in ascending order of273

starting timeslot (start of the interval). Now for each borrel that is supposed to be attended274

by the student the verifier checks that there is no overlap between the attended borrels. This275

can easily be done in linear time since we have sorted the borrels.276

Shift and shorten obligations Then the verifier can use the information that the borrels bh277

in Bi must be attended, to shorten and shift obligations. This is possible without changing278

the feasibility of the schedule, because in a feasilble schedule no obligations can be worked279

on during these selected borrels. The schedule is therefore exactly as feasible after removing280

the invervals of these borrels from the obligations. This can be done by iterating through281

the start- and end times of all obligations in ascending order and subtracting the number of282

timeslots of attended borrels that precedes this start- or end time from it. So, for a start- or283

end timeslot x of an obligation, we subtract
∑

bh∈Px
min {bh, bh + (sh − x)} from it where284

Px is the set of all borrels that have an end time before or equal to x. See 1.

Figure 1 The shift of obligations
285
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Fill in obligations in earliest deadline order Now since we already removed the overlap286

between obligations and borrels that need to be attended, we only need to find out if there287

exists some way to schedule all obligations within their respective intervals. This can be288

done greedily by prioritizing the obligations with the earliest deadline of the two concurrent289

deadlines. The algorithm goes through all obligation intervals in ascending order of starting290

timeslot and always works as much as possible on the unfulfilled obligation with the earliest291

deadline (until the start of a new obligation, then it re-evaluates which obligation has the292

earliest deadline). If this algorithm encounters an obligation that cannot be fulfilled, then293

we know that this schedule if infeasible. Otherwise, the schedule is shown to be feasible.294

After succesfully filling in all obligations for all students, we can count all scheduled borrel295

attendances Bi for all students to verify that it is indeed possible to have k attendances.296

Proof of optimality We can assume without loss of generality that there are exactly two297

concurrent obligations for every students at every timeslot after removing the intervals of298

the borrels (the “Shift and shorten” step). This is because we can always add an obligation299

(at most polynomially many) with workload of 0 to fill up any gaps.300

We show the optimality of the greedy obligation checking by induction. We split the301

timeslots into sections by splitting on deadlines. I.E., we consinder the maximal time sections302

that do not contain a deadline in the middle (but start and end in a deadline) in chronological303

order. We show that if all obligations in the sections before a given section are scheduled304

optimally then after the algorithm the obligations are scheduled optimally until after this305

inteval as well.306

Given a section [a, b] of timeslots in which two concurrent obligations Ii,x, Ii,y we reduce307

the workload of the obligation by how many timeslots it was scheduled for before the start308

of this section a and we set the start times of the obligation interval ri,x to be at least the309

start of the section a. Now there are two obligations of which at most one extends beyond310

(has a deadline later than the end of) this section. If the deadlines of both obligations are311

exactly at the end of the section di,x = di,y = b then we can trivially say that an optimal312

schedule for these two obligations is completely filling in there two obligations in any order.313

Therefore we only need to consider the case where exactly one deadline is later than the end314

of the section; we will call this obligation Ii,x.315

We know that obligation Ii,y is must have a deadline equal to b (otherwise the end of316

the section would not be there), therefore we will need to work on this obligation for pi,y317

in the interval [a, b]. Then we can work on obligation Ii,x only for the remaining time in318

this section (b + 1− a)− pi,y. We can see that our algorithms schedules the obligations in319

this way and that this is also (at least as feasible as) the optimal schedule up to this point,320

because there can be at most b + 1− a timeslots of work done and the amount of that which321

is worked on Ii,x is forced.322

4.2 Reduction of set cover problem to BS-2CO323

In this section we reduce the set cover decision problem to the special BS-2CO case of borrel324

the scheduling decision problem. We do this by constructing a special instance of the borrel325

scheduling problem given any instance of set cover. Then we show that there exists a set326

cover of less than some k sets if and only if the outcome of this instance of BS-2CO is positive.327

This shows that the borrel scheduling decision problem is NP-hard and therefore, together328

with the previous proof that it is NP, shows that it is NP-complete. Additionally, since this329

shows that a special case of the borrel scheduling problem is NP-hard, we have shown that330

the base problem of borrel scheduling is also NP-hard.331
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Construction of the reduction Given an instance of the set cover decision problem with a332

universe U = {u1, u2, ..., u|U |}, a set S = {S1, S2, ..., S|S|} containing subsets of the universe333

U , and a goal g ∈ N. We create an instance of borrel scheduling with the following parameters:334

t = |S| the number of timeslots is equal to the number of sets in S.335

n = |U | the number of students is equal to the size of the universe.336

m = g the number of borrels is equal to the set cover goal.337

bh = 1 the length of each borrel h is 1.338

Furthermore, for all students i and subsets Sa ∈ S we create an obligation j with Ii,j = [a, a]339

and pi,j = 1 for student i if i ̸∈ Sa. Additionally we add an obligation x to each student i340

with Ii,x = [1, t] and pi,x = |{a : i ∈ Sa}| − 1. The borrel decision problem is to determine if341

there exists a schedule such that there are at least |U | attendances. See 2

Figure 2 The reduction from set cover to borrel planning
342

Proof of the reduction We will show that this instance of the borrel scheduling problem is343

equivalent to the original set cover problem.344

Note, first, that each student can attend at most one borrel, since there is one timeslot345

for each set in S and for every student i there is an obligation of length 1 for every set in S346

that contains i and there is an obligation of length one less that the number of sets in S that347

do not contain i. We can also see that a student i can only attend a borrel at timeslot j if i348

is in the j’th set Sj .349

Then if the borrel scheduling problem decided that there is a feasible borrel schedule350

such that there are at least |U | attendances with k borrels, then these must be |U | different351

students and therefore all elements in the universe.352

This borrel schedule must also use at most k borrels corresponding to sets in S to cover353

this universe. This shows if there exists a borrel schedule such that at least |U | students can354

attend, then there must exist a set cover for the original problem of size at most g.355

356

Then, conversely, if the original set cover instance can be covered in at most g sets, we357

can show that there exists some assignment of the borrels such that there are at least |U |358

attendances. Given the g sets that cover the universe, the g borrels can be scheduled at the359

timeslots corresponding to those sets. Then each student can attend at least one borrel since360

the sets cover the entire universe, resulting in at least |U | attendances.361

Since we have shown that a yes-instance of the special instance of borrel scheduling implies a362
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yes-instance of the original set cover, and we have shown that a yes-instance of the original363

set cover implies a yes-instance of the borrel scheduling (and by contraposition a no-instance364

of borrel scheduling implies a no-instance of the set cover) it follows that the constructed365

special instance of borrel scheduling problem and the set cover problem are equivalent and366

thus set cover can be reduced to borrel scheduling.367

Lastly we define s as the total number of elements in subsets of S, s =
∑

Sa∈S |Sa|, and368

then we can see that this reduction can be done in polynomial time because we can369

Define the number of students and timeslots and borrels trivially in polynomial time in s.370

Define the length of all borrels in O(|S|) = O(s) and thus polynomial time in s.371

Define all O(|U |2) obligations in O(s) time each and thus polynomial time in s.372

Since the input size is at least s and all parts of the reduction can be done in time polynomial373

in s, we have shown that the reduction can be done in polynomial time. This means that374

BS-2CO is NP-hard. And since the base problem of borrel scheduling at least as hard, it is375

also NP-hard. Moreover, since the base problem (and thus BS-2CO) is a special case of the376

borrel scheduling with social matrix (i.e., the case with the identity matrix), we have shown377

that borrel scheduling with a social matrix is also NP-hard.378

5 Offline Algorithms379

In this section we will provide an algorithm for the base case as well as an algorithm for380

solving a variation of the base case. The source code can be found at https://github.com/381

tvmaaren/ADS-Borrels/tree/main/offline%20algoritm. As we will see in section 4 the382

problem is NP-hard and therefore providing a polynomial algorithm for this problem would383

prove that NP=P. It is therefore not worthwhile to try and find a polynomial algorithm for384

this problem and therefore all the algorithms in this section will have exponential time. Even385

though this is quite bad, it is still possible to make an algorithm better than going through386

all possibilities.387

5.1 Iterators388

Our algorithms will be a brute force algorithm for a great part. This makes it necessary to389

iterate over all different possibilities. We will see that in some cases our algorithm can be390

made faster by choosing a good ordering in our iteration.391

5.1.1 Borrel positions392

First of all we want to iterate over all possible borrel positions. If for example the amount of393

borrels is 2 (m = 2), the first borrel is of length 3 and the second of length 1 (b = {3, 1})394

and the amount of timeslots is 5 (t = 5) we see that starting time of the borrels have (s)395

have 15 possibilities:396

{1, 1}, {2, 1}, {3, 1}, {1, 2}, {2, 2}, {3, 2}, {1, 3}, {2, 3},397

{3, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 5}, {2, 5}, {3, 5}.398

Note that bh + sh − 1 ≤ t always has to hold to ensure that the borrel is completely inside of399

the time interval. We can construct a general iterator, by increasing the s1 until it hits the400

end of the time interval. After this it increases s2 by 1 and it can start over again with s1.401

It does this until s2 hit the end of the time interval and it increments s3 and so on. Our402

borrel iterator is defined in the appendix (see algorithm 1).403

https://github.com/tvmaaren/ADS-Borrels/tree/main/offline%20algoritm
https://github.com/tvmaaren/ADS-Borrels/tree/main/offline%20algoritm
https://github.com/tvmaaren/ADS-Borrels/tree/main/offline%20algoritm
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Now we will prove that the borrel iterator is correct. This means that the borrel iterator404

iterator should at some point reach every possible case. Let X be the set of all possible cases405

X := {s ∈ {1, . . . , t}n | sh + bh − 1 ≤ t}. (1)406

Given that we have a fixed amount of borrels m, a fixed length of borrels b and a fixed amount407

of time slots t. We define f : {1, . . . , t}n → {1, . . . , t}n as f(s) = (π2 ◦ borrelIt)(t, m, b, s)408

where π2 is the second projection.409

▶ Theorem 1. {fn((1, . . . , 1)) | n ∈ N} = X.410

Proof. We can give every element of s ∈ X the following index.411

i(s) =
m∑

h=1

(
(sh − 1) ·

h−1∏
h′=1

(t + 1− bh)
)

412

This index will range from 0 to
∏m

h=1(t+1−bh)−1 = #X−1. We will see that i◦f ◦i−1(n) =413

(n + 1)mod#X. Let n ∈ {0, . . . , #X − 1} and s = i−1(n).414

Assume n = #X − 1. We see that n = #X − 1 if and only if sh = t + 1− bh for all h.415

We therefore see that (sh + 1) + bh − 1 ≤ t is not true, hence sh will be set to 0 fore every h,416

hence i(f(i−1(n))) = i(f(s)) = i(0, . . . , 0) = 0 = (n + 1) mod #x.417

Assume n < #X − 1. Let k be the smallest values such that sk ≠ t + 1− bh. We see that418

sh will be zero for all h < k and sk will be incremented by one and sh for h > k will remain419

the same. We see that f(s) = (0, . . . , 0, sk + 1, sk+1, . . . , sm), hence420

i ◦ f ◦ i−1(n) = i(0, . . . , 0, sk + 1, sk+1, . . . , sm)421

= i(t + 1− b1, . . . , t + 1− bk−1, sk, . . . , sm) + 1422

= i(s) + 1 = n + 1 = (n + 1) mod #X − 1.423

We therefore see that {i ◦ fn ◦ i−1(0) | n ∈ N} = {0, . . . , #X − 1}, hence424

{fn(1, . . . , 1) | n ∈ N} = X425

◀426

5.1.2 Subsets427

For each student we need to make a decision on which borrels they should attend. Again we428

need to go through all possibilities to see which choice is the best. The easiest way of doing429

this is by using the binary counter method. Given a set T we make a binary number b that430

has the same amount of bits as T has elements. A 1 in the i-th digit indicates that the i-th431

element of T is part of S and a 0 indicates that it is not part of S. By incrementing this432

number until all bits are set to 1 we get all possible subsets. For example if T = {12, 2, 4}433

we get the following iteration as seen in table 1.434

b 000 001 010 011 100 101 110 111
S ∅ {12} {2} {2, 12} {4} {12, 4} {2, 4} {12,2,4}

Table 1 Subset iteration when using the binary counter method.

The downside of using this method in our case is that we would be doing a lot of435

unnecessary work. Assume that it is possible for a student to go to a set of borrels B. If436
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C ⊂ B we know that C can not contain more borrels and therefore it will always be able to437

go to the borrels in C. It is therefore much better to use an iteration where bigger subsets438

come first (See table 2). The subset iterator will use a separate procedure called the fixed439

subset iterator which will iterate over subsets of the same size (see algorithm 2). The subset440

iterator will keep lowering the size of the sets until there are no elements left (see algorithm441

3).442

S {12, 2, 4} {12, 2} {12, 4} {2,4} {12} {2} {4} ∅
Table 2 Subset iteration when asserting that bigger subsets should come first.

We will first prove that the fixed subset iterator is correct, by proving that it will443

eventually pass through all subsets of the given size.444

For a given finite set C = {c1, . . . , c#C} we will define f : √(C) → √(C) as f(A) =445

π2 ◦ fSubIt(A, C) where π2 is the second projection.446

▶ Lemma 2. Define447

i∗ := max{1 ≤ i ≤ #C | ci ∈ A | ci ∈ A, #({ci, . . . , c#C} ∩A) ≤ #C − i}448

. Then449

f(A) = C\{ci} ∪ {ci, . . . , ci+j}\{ci+j+1, . . . , c#C}450

for an A ⊂ C unequal to A ̸= {c1, . . . c#A}451

Proof. We see that once the program has reached line 8 of algorithm 2 that ci ∈ A and452

that j ≤ #C − i. We also see that that j was inceremented every time ci ∈ A, hence453

j = #({ci, . . . , c#C} ∩ A), so #({ci, . . . , c#C} ∩ A) ≤ #C − i. We also that the i at line 8454

is the biggest with this property, because the algorithm has started with f = #C, and has455

decremented i since. Therefore we can say that i = i∗ at line 8.456

Now we see that457

f(A) = C\{ci} ∪ {ci, . . . , ci+j}\{ci+j+1, . . . , c#C}.458

◀459

We will now give every A ⊂ C the following index i(A) :=
∑#C

i=1 2i−1 · 1ci∈A. For any460

number n ∈ N we define #n as the amount of 1’s in n’s binary notation. For example #4 = 1461

and #10 = 2. Note that #i(A) = #A for any set subset A.462

▶ Lemma 3. Let 0 ≤ n < 2#C . Assume that there exists a smallest 0 ≤ k < n such that463

#k = #n, then i ◦ f ◦ i−1(n) = k464

Let n = i(A) for a A ⊂ C and k = i(D) for a D ⊂ C. Take k < l < n. If l <465

i−1(A ∩ {c1, . . . , ci∗) we see that #l > #k = #n. We know that #({ci∗ , . . . , c#C} ∩ A) ≤466

#C − i∗ and #({ci∗+1, . . . , c#C} ∩A) ≥ #C − i∗− 1, because i∗ is the maximum. Therefore467

#({ci∗ , . . . , c#C}∩A) = 1+#({ci∗+1, . . . , c#C}∩A) ≤ #C−i∗, hence #({ci∗ , . . . , c#C}∩A) =468

#C − i∗. If l ≥ i−1(A∩ {c1, . . . , ci∗), there has to be a i > i∗ such that ci ∈ A. Because i∗ is469

the maximum we know that #({ci, . . . , c#C} ∩A) > #C − i∗, hence {ci, . . . , c#C} ⊂ A and470

therefore #l < #n. We conclude that l cannot have the property that #k = #n, hence k is471

the smallest value such that #k = #n.472
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Proof. We leave this as an exercise for the reader. ◀473

▶ Theorem 4. The fSubIt(A, C) procedure will eventually pass through all subsets of C that474

have the same size as A.475

Proof. Let 0 ≤ m ≤ #C. Define X := {0 ≤ 1 < n < 2#C | #n = m} Take the476

set A := {c#C , . . . , c#C−m+1}. We see that i(A) = max(X). Because X is finite and477

because of lemma , we see that {(i ◦ f ◦ i−1)n(A) | n ∈ N} = X. This means that478

{fn(A) | n ∈ N} = i−1(X) = {A′ ⊂ C | #A′ = t}. Hence we see that all subsets of length t479

are passed by the fixed subset iterator. ◀480

5.2 Base case481

Now we will provide an algorithm for the base case. You can find the algorithm in the482

appendix (See algorithm 6).483

The algorithm will return s, o and v. sh for every borrel h is the time where borrel h484

starts. For every student i and for every obligation j of student i, we define oi,j as the set of485

timeslots that obligation j should be performed. v is the the value of this case, which is the486

sum of the amount borrels that every student is able to attend. The s∗, o∗ and v∗ variables487

represent the best case found so far.488

The algorithm works by iterating of all possible borrel positions as discussed in section489

5.1.1. For every student it will then iterate over borrel subsets as discussed in section 5.1.2.490

The ChooseObl procedure is used to check if it can attend all borrels and to provide the491

times the student will be working on the obligation. Whenever it finds a borrel subset it can492

attend, the loop ends, because all subsets that come afterwards will not have a greater size.493

The choose obligation procedure works by having a set U of all the taken timeslots. It494

first adds all the borrels and returns false if there is an overlap. It will then use the fixed495

subset iteration to look at all the possible times for the obligations and seeing if it can find a496

case where there are no overlaps.497

5.3 Social Matrix algorithm498

In the original problem every borrel attendance had the same value. Now we will introduce499

a social matrix. This social matrix will tell us how much students like each other. The value500

is calculated by taking the vector Vh defined as501

Vh,i =
{

1 if student i is present at borrel h

0 if studenti is not present at borrel h
502

and multiplying it with the social matrix:503

v =
m∑

h=1
V T

h ·M · Vh.504

Algorithm 8 is the algorithm for the case with social matrix.505
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6 Complexity506

We will now calculate the time complexity of the borrel algorithm. We see that we first507

iterate over all possible borrel positions. We know that there are
∏m

h=1(t− bh + 1) possible508

borrel positions. We then loop over the n students. Within the student loop we loop over al509

borrel subsets. In the worst case we will need to loop 2m times. For every borrel subset we510

will need to check if the student can attend these borrels. In the chooseObl procedure we511

first loop over all the borrels wich takes m time and afterwards we will be looping over all512

the fixed size subsets of the obligations. We know that for any student i and obligation j of513

student i, there are (di,j−ri,j+1)Cpij subsets of size pi,j . Within this loop it will need to go514

throug all obligations to check if there is a overlap. The time complexity becomes515

O

( m∏
h=1

t− bh + 1
)
· n · 2m

m +
n∑

i=1

ℓi∏
j=1

(di,j−ri,j+1)Cpij · ℓi

 .516

7 Experiments517

In this section, we present computational results from our algorithm, which has optimally518

solved the base problem. Our primary focus is on the efficiency of our algorithm, as detailed519

in the algorithm section, where we demonstrate that it consistently delivers optimal solutions.520

Our approach utilizes a brute-force method enhanced with strategic shortcuts, making it a521

robust benchmark for other researchers. These results will help determine whether alternative522

strategies can outperform our exhaustive search for the optimal solution.523

In table 3 you see the runtime of every instance.524

Name of instance Time in seconds
Example 0.007611
Group a 0.016793
Group b 0.707175
Group c 0.000965
Group d (1) 0.000245
Group d (2) 0.112592
Group d (3) 0.827414
Group e 0.357478
Group f (many) 0.323208
Group f (overlap) 0.003717
Group g 0.000751
Group h 0.000779
Group i (Overlapping Borrels) 0.003077
Group i (Online Destroyer 1) 0.000045
Group i (Online Destroyer 2) 0.000050
Group i (Simple pre-emption) 0.000142

Table 3 Runtime of the algorithm on all the instances. CPU: Intel i5-7200U (4) 3.100GHz, OS:
Manjaro Linux x86_64
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8 Conclusion525

In this paper we have established the NP-hardness of the borrel scheduling (with social526

matrix) problem. This result shows the intrinsic difficulty of solving the problem even in an527

offline setting. We have also provided a brute force approach to solving the offline problem,528

with experiments showing the performance of this algorithm. These performance statistics529

may be used as benchmarks for researchers looking to create a more refined offline algorithm.530

For the online variant of the problem we have proven that no algoritm can achieve constant531

competitiveness in a number of different settings. With this we have shown that even with532

multiple restrictions to the problem, online algorithms will still provide poor attendence.533

534

Our findings provide significant theoretical insights into the landscape of the borrel scheduling535

problem. Future work may investigate heuristic based offline algorithms to solve the offline536

problem more efficiently or seek specialized algorithms that perform well under specific537

conditions of the problem.538

9 Appendix539

Algorithm 1 Borrel iteration

1: procedure borrelIt(t, m, b, s)
2: for h← 1, m do
3: sh ← sh + 1
4: if sh + bh − 1 ≤ t then
5: return (False,s)
6: else
7: sh ← 0
8: end if
9: end for

10: return (True,s)
11: end procedure

Algorithm 2 Fixed Subset iterator.

1: procedure fSubIt(sub,set)
2: i← #set
3: for j ← 1,#sub do
4: while seti /∈ sub do
5: i← i− 1
6: end while
7: if j ≤ #set− i then
8: sub← sub\{seti} ∪ {seti, . . . , seti+j}\{seti+j+1, . . . , set#set}
9: return(False,sub)

10: end if
11: i← i− 1
12: end for
13: return(True,{set1, . . . , set#sub)
14: end procedure
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Algorithm 3 Subset iterator.

1: procedure subIt(sub,set)
2: if #sub=0 then
3: return(True,set)
4: end if
5: if ( thenend)
6: return(False,{set1, . . . , set#sub−1)
7: else
8: return(False,sub)
9: end if

10: end procedure

Algorithm 4 Checks if the current obligation times are valid.

procedure obligationoverlap(t,obl,k,r,p,d,U):
V ← ∅
for j ← 1, k do

if (U ∪ V ) ∩ oblj = ∅ then
V ← V ∪ oblj

else
return True

end if
end for
return False

end procedure
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Algorithm 5 Choose obligation times.

1: procedure chooseObl(t,borSub,b,s,r,p,d,k)
2: U ← ∅
3: for j ← 1, k do oblj ← {rj , ..., rj + pj − 1}
4: end for
5: for h← 1, #b do
6: A← sh, ..., sh + bh − 1
7: if A ∩ U ̸= ∅ then
8: return(False, obl)
9: end if

10: U ← U ∪ {sh, ..., sh + bh − 1}
11: end for
12: loop ← True
13: while loop do
14: if ¬obligationoverlap(t,obl,k,r,p,d,U)) then
15: return(True, obl)
16: end if
17: for i← 1, k do
18: (end,oblj) ← fSubsIt(oblj , {rj , ..., dj})
19: loop ← ¬end
20: if end then
21: oblj ← {rj , ..., rj + pj − 1}
22: else
23: break
24: end if
25: end for
26: end while
27: end procedure
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Algorithm 6 Finds the optimum borrel times.

procedure initialState(t, m, b, n, I, p)
for h← 1, m do

sh ← 0
end for
for i← 1, n do

for j ← 1, ℓi do
oi,j ← {ri,j , ..., ri,j + pi,j − 1}

end for
end for
v ← 1
return(s,o,v)

end procedure

procedure borrel(t, m, b, n, I, p, ℓ)
(s, o, v)← initialState(t, m, b, n, I, p, ℓ)
(s∗, o∗, v∗)← initialState(t, m, b, n, I, p, ℓ)
while True do

v ← 0
for i← 1, n do

borSub ← {1, ..., m}
vS ← 0
while True do

(canAttend,obl) ← chooseObl(t, borSub, b, s, ri, di, pi, ℓi)
if canAttend then:

vS ← #borSub
o∗

i < −obl
break

end if
(end,borSub) ← subsIt(borSub,1,...,m)
if subsIt(borSub) then

break
end if

end while
v ← v + vS

end for
if v∗ < v then

(s∗, o∗, v∗)← (s, o, v)
end if
(end,s) ← borrelIt(t, m, b, s)
if end then

break
end if
return(s,o,v);

end while
end procedure
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Algorithm 7 Calculate the value using the social matrix

procedure calcValue(borSub, M, n, m)
v ← 0
for k ← 1, m do

for i← 1, n do
if k ∈ borSubi then

for j ← 1, n do
if k ∈ borSubj then

v ← v + Mi,j

end if
end for

end if
end for

end for
return(False)

end procedure
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Algorithm 8 Borrel with social matrix

procedure borrel(t, m, b, n, I, p, M, ℓ)
(s∗, o∗, v∗)← initialState(t, m, b, n, I, p, ℓ)
(s∗∗, o∗∗, v∗∗)← initialState(t, m, b, n, I, p, ℓ)
while True do

v∗ ← 0
for i← 1, n do

borSubi ← {1, ..., m}
end for
end ← False
while ¬end do

validSubsets ← True
for i← 1, n do (canAttend,oi) ← chooseObl(t, borSub, b, s, ri, pi, di, ℓi)

if ¬canAttend then
validSubsets ← False
break

end if
end for
if validSubsets then

v ← calcValue(borSub, M, n, m)
if v > v∗ then

o∗ ← o

v∗ ← v

end if
end if
for i← 1, n do

(end,borSubi) ← subsIt(borSubi, {1, ..., m})
if end then

borSubi ← {1, ..., m}
end if

end for
end while
if v∗∗ < v∗ then

(s∗∗, o∗∗, v∗∗)← (s∗, o∗, v∗)
end if
(end,s∗) <- borrelIt(t, m, b, s∗)
if end then

break
end if
return(s, o, v);

end while
end procedure
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