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CHAPTER 1

Introduction: some standard spaces

1. Keywords for this course

In this course we study topological spaces. One may remember that in group theory one studies

groups- and a group is a set G together with some extra-structure (the group operation) which allows

us to multiply the elements of G. Similarly, a topological space is a set X together with some “extra-

structure” which allows us to make sense of “two points getting close to each other” or, even better, it

allows us to make sense of statements like: a sequence (xn)n≥1 of elements of X converges to x ∈ X . Of

course, if X is endowed with a “metric” (i.e. a way to measure, or to give sense to, “the distance between

two points of X”), then such statements have a clear intuitive meaning and can easily be made precise.

However, the correct extra-structure that is needed is a bit more subtle- it is the notion of topology on X

which will be explained in the next chapter.

The interesting functions in topology are the continuous functions. One may remember that, in group

theory, the interesting functions between two groups G1 and G2 are not all arbitrary functions f : G1 −→
G2, but just those which “respect the group structure” (group homomorphisms). Similarly, in topology,

the interesting maps between two topological spaces X and Y are those functions f : X −→Y which are

continuous. Continuous means that “it respects the topological structures”- and this will be made precise

later. But roughly speaking, f being continuous means that it maps convergent sequences to convergent

sequences: if (xn)n≥1 is a sequence in X converging to x ∈ X , then the sequence ( f (xn))n≥1 of elements

of Y converges to f (x) ∈Y .

The correct notion of isomorphism in topology is that of homeomorphism. In particular, we do not

really distinguish between spaces which are homeomorphic. Thinking again back at group theory, there

we do not really distinguish between groups which are isomorphic- and there the notion of isomorphism

was: a bijection which preserves the group structure. Similarly, in topology, a homeomorphism between

two topological spaces X and Y is a bijection f : X →Y so that f and f−1 are both continuous (note the

apparent difference with group theory: there, a group isomorphism was a bijection f : G1 → G2 such

that f is a group homomorphism. The reason that, in group theory, we do not require that f−1 is itself a

group homomorphism, is simple: it follows from the rest!).

Some of the main questions in topology are:

1. how to decide whether two spaces are homeomorphic (= the same topologically) or not?

2. how to decide whether a space is metrizable (i.e. the topology comes from a metric)?

3. when can a space be embedded (”pictured”) in the plane, in the space, or in a higher Rn?

These questions played the role of a driving force in Topology. Most of what we do in this course is

motivated by these questions; in particular, we will see several results that give answers to them. There

are several ways to tackle these questions. The first one - and this will keep us busy for a while- is that

of finding special properties of topological spaces, called topological properties (such as Hausdorffness,

connectedness, compactness, etc). For instance, a space which is compact (or connected, or etc) can

never be homeomorphic to one which is not. Another way is that of associating topological invariants
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6 1. INTRODUCTION: SOME STANDARD SPACES

to topological spaces, so that, if two spaces have distinct topological invariant, they cannot be home-

omorphic. The topological invariants could be numbers (such as “the number of distinct connected

components”, or “the number of wholes”, or ”the Euler characteristic”), but they can also be more com-

plicated algebraic objects such as groups. The study of such topological invariants is another field on its

own (and is part of the course ”Topologie en Meetkunde”); what we will do here is to indicate from time

to time the existence of such invariants.

In this course we will also devote quite some time to topological constructions- i.e. methods that allow

us to construct new topological spaces out of ones that we already know (such as taking the product of

two topological spaces, the cone of a space, quotients).

Finally, I would like to mention that these lecture notes are based on the book ”Topology” by James

Munkres. But please be aware that the lecture notes should be self contained (however, you can have

a look at the book if you want to find out more). The reason for writing lecture notes is that the book

itself requires a larger number of lectures in order to achieve some of the main theorems of topology. In

particular, in this lecture notes we present more direct approaches/proofs to such theorems. Sometimes,

the price to pay is that the theorem we prove are not in full generality. Our principle is that: choose the

version of the theorem that is most interesting for examples (as opposed to “most general”) and then find

the shortest proof.
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2. Spaces

In this chapter we present several examples of “topological spaces” before introducing the formal

definition of “topological space” (but trying to point out the need for one). Hence please be aware: some

of the statements made in this chapter are rather loose (un-precise)- and I try to make that clear by using

quotes; the spaces that we mention here are rather explicit and intuitive, and when saying “space” (as

opposed to “set”), we have in mind the underlying set (of elements, also called points) as well as the fact

that we can talk (at least intuitively) about its points “getting closer to each other ” (or, even better, about

convergence of sequences of points in the set). For those who insist of being precise, let us mention

that, in this chapter, all our spaces are metric spaces (so that convergence has a precise meaning); even

better, although in some examples this is not entirely obvious, all the examples from this chapter are just

subspaces of some Euclidean space Rn. Recall here:

Definition 1.1 Let X be a set. A metric on X is a function

d : X ×X → R

which associates to a pair (x,y) of points x and y of X , a real number d(x,y), called the distance between

x and y, such that the following conditions hold:

(M1) d(x,y) ≥ 0 for all x,y ∈ X .

(M2) d(x,y) = 0 if and only if x = y.

(M3) d(x,y) = d(y,x).
(M4) (triangle inequality) d(x,y)+d(y,z) ≥ d(x,z) for all x,y,z ∈ X .

A metric space is a pair (X ,d) consisting of a set X together with a metric d.

Metric spaces are particular cases of “topological spaces”- since they allow us to talk about conver-

gence and continuity. More precisely, given a metric space (X ,d), and a sequence (xn)n≥1 of points of

X , we say that (xn)n≥1 converges to x ∈ X (in (X ,d), or with respect to d) if limn→∞ d(xn,x) = 0. When

there is no danger of confusion (i.e. most of the times), we will just say that X is a metric space without

specifying d. Given two metric spaces X and Y , a function f : X →Y is called continuous if for any con-

vergent sequence (xn)n≥1 in X , converging to some x ∈ X , the sequence ( f (xn))n≥1 converges (in Y ) to

f (x). A continuous map f is called a homeomorphism if it is bijective and its inverse f−1 is continuous

as well. Two spaces are called homeomorphic if there exists a homeomorphism between them.

The most intuitive examples of spaces are the real line R, the plane R2, the space R3 or, more generally,

the Euclidean space

Rk = {(x1, . . . ,xk) : x1, . . . ,xn ∈ R}
defined for any integer k ≥ 1. For them we use the Euclidean metric and the notion of convergence and

continuity with respect to this metric:

d(x,y) =
√

(x1 − y1)2 + . . .+(xk − yk)2

(for x = (x1, . . . ,xk), y = (y1, . . . ,yk) ∈ Rk). Another interesting metric on Rk is the square metric ρ,

defined by:

ρ(x,y) = max{|x1 − y1|, . . . , |xn − yn|}.
The next exercise exercise shows that, although the notion of metric allows us to talk about conver-

gence, metrics do not encode convergence faithfully (two very different looking metrics can induce the

same convergent sequences, hence the same “space”). The key of understanding the “topological con-

tent” of metrics (i.e. the one that allows us to talk about convergent sequences) is the notion of open

subsets- to which we will come back later.

E Exercise 1.1 Show that a sequence of points of Rn is convergent with respect to the Euclidean metric if

and only if it is convergent with respect to the square metric.
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Inside these Euclidean spaces sit other interesting topological spaces such as intervals, circles, spheres,

etc. In general, any subset

X ⊂Rk

can naturally be viewed as a “space” (and as metric spaces with the Euclidean metric).

E Exercise 1.2 Show that, for any two numbers a < b

(1) the interval [a,b] is homeomorphic to [0,1].
(2) the interval [a,b) is homeomorphic to [0,1) and also to [0,∞).
(3) the interval (a,b) is homeomorphic to (0,1) and also to (0,∞) and to R.

E Exercise 1.3 Explain why the three subset of the plane drawn in Figure 1 are homeomorphic.

FIGURE 1.

E Exercise 1.4 Which of the subset of the plane drawn in Figure 2 do you think are homeomorphic? (be

aware that, at this point, we do not have the tools to prove which two are not!).

FIGURE 2.
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3. The circle

In R2 one has the unit circle

S1 = {(x,y) ∈ R2 : x2 + y2 = 1},
the open disk

◦
D

2 = {(x,y) ∈ R2 : x2 + y2 < 1},
the closed disk

D2 = {(x,y) ∈ R2 : x2 + y2 ≤ 1}.
Next, we mentione the standard parametrization of the unit circle: any point on the circle can be written

as

eit := (cos(t),sin(t))

for some t ∈ R. This gives rise to a function

e : R→ S1, e(t) = eit

which is continuous (explain why!). A nice picture of this function is obtained by first spiraling R above

the circle and then projecting it down, as in Figure 3.

S
1

p

|R

S

h(−1)

h(0)

h(1)

h(2)

h

FIGURE 3.

E Exercise 1.5 Make Figure 3 more precise. More precisely, find an explicit subspace S ⊂ R3 which looks

like the spiral, and a homeomorphism h between R and S, so that the map e above is obtained by first

applying h and then applying the projection p (p(x,y,z) = (x,y)). (Hint: {(x,y,z) ∈ R3 : x = cos(z),y =
sin(z)}).

Note also that, if one restricts to t ∈ [0,2π), we obtain a continuous bijection

f : [0,2π)→ S1.

However, [0,2π) and S1 behave quite differently as topological spaces, or, more precisely, they are not

homeomorphic. Note that this does not only mean that f is not a homeomorphism; it means that neither

f nor any other bijection between [0,2π) and S1 is a homeomorphism. It will be only later, after some

study of topological properties (e.g. compactness), that we will be able to prove this statement. At this

point however, one can solve the following

E Exercise 1.6 Show that the map f : [0,2π)→ S1 is not a homeomorphism.

Next, there is yet another way one can look at the unit circle: as obtained from the unit interval [0,1] by

“banding it” and “gluing” its end points, as pictured in Figure 5. This “gluing process” will be made more

precise later and will give yet another general method for constructing interesting topological spaces.



10 1. INTRODUCTION: SOME STANDARD SPACES

0 | | 2 | |
____

t

f

f(t)

t

t

FIGURE 4.

0 1

Take the interval [0, 1] Start banding it 
approaching 0 and 1

Glue the end points

FIGURE 5.

In general, by a (topological) circle we mean any space which is homeomorphic to S1. In general, they

may be placed in the space in a rather non-trivial way. Some examples of circles are:

- circles S1
r with a radius r > 0 different from 1, or other circles placed somewhere else in the

plane.

- pictures obtained by twisting a circle in the space, such as in Figure 6.

- even pictures which, in the space, are obtained by braking apart a circle, knotting it, and then

gluing it back (see Figure 7).

FIGURE 6.

FIGURE 7.
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E Exercise 1.7 Explain on pictures that all the spaces enumerated above are homeomorphic to S1. If you

find it strange, try to explain to yourself what makes it look strange (is it really the circles, or is it more

about the ambient spaces in which you realize the circles?).

Similarly, by a (topological) disk we we mean any space which is homeomorphic to D2. For instance,

the unit square

[0,1]× [0,1] = {(x,y) ∈ R2 : x,y ∈ [0,1]}
is an important example of topological disk. More precisely, one has the following:

E Exercise 1.8 Show that the unit disk D2 is homeomorphic to the unit square, by a homeomorphism which

restricts to a homeomorphism between the unit circle S1 and the boundary of the unit square.
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FIGURE 8.



12 1. INTRODUCTION: SOME STANDARD SPACES

4. The sphere and its higher dimensional versions

For each n, we have the n-sphere

Sn = {(x0, . . . ,xn) ∈ Rn+1 : (x0)
2 + . . .+(xn)

2 = 1} ⊂ Rn+1,

the open (n+1)-disk

◦
D

n+1 = {(x0, . . . ,xn) ∈ Rn+1 : (x0)
2 + . . .+(xn)

2 < 1} ⊂ Rn+1,

and similarly the closed (n+1)-disk Dn+1.

The points

pN = (0, . . . ,0,1), pS = (0, . . . ,0,−1) ∈ Sn

are usually called the north and the south pole, respectively, and

Sn
+ = {(x0, . . . ,xn) : xn ≥ 0,Sn

− = {(x0. . . . ,xn) : xn ≤ 0}
are called the north and the south hemisphere, respectively. See figure 9.

−
n

S

S
n

−

+

n−1
S

D
n

the plane x  = 0n

x
n

O

p
N

p
S

FIGURE 9.

E Exercise 1.9 Explain on a picture that Sn
+ ∩ Sn

− is homeomorphic to Sn−1, and Sn
+ and Sn

− are both

homeomorphic to Dn.

As with the circle, we will call a sphere (or an n-sphere) any space which is homeomorphic to S2 (or

Sn). Also, we call a disk (or n-disk, or open n-disk) any space which is homeomorphic to D2 (or Dn, or
◦
D n). For instance, the previous exercise shows that the two hemispheres Sn

+ and Sn
− are n-disks, and Sn

is the union of two n-disks whose intersection is an n−1-sphere. This also indicates that Sn can actually

be obtained by gluing two copies of Dn along their boundaries. And, still as for circles, there are many

subspaces of Euclidean spaces which are spheres (or disks, or etc), but look quite different from the

actual unit sphere (or unit disk, or etc). An important example has already been seen in Exercise 1.8 .

Another interpretation of Sn is as adding to Rn “a point at infinity”. (to be made precise later on). This

can be explained using the stereographic projection

f : Sn −{pN} → Rn

which associates to a point p ∈ Sn the intersection of the line pN p with the horizontal hyperplane (see

Figure 10).

E Exercise 1.10 Explain on the picture that the stereographic projection is a homeomorphism between

Sn −{pN} and Rn, and that it cannot be extended to a continuous function defined on the entire Sn. Then
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p

p

N

S

 The stereographic projection (sending the red points to the blue ones)

p

f(p)

FIGURE 10.

try to give a meaning to: “Sn can be obtained from Rn by adding a point at infinity to”. Also, find the

explicit formula for f .

Here is anther construction of the n-sphere. Take a copy of Dn, grab its boundary Sn−1 ⊂ Dn and glue

it together (so that it becomes a point). You then get Sn (see Figure 11).

S
n−1D

n

S

O

(0, ... , 0, 1)

n

n
glue the boundary of D   to a point to obtain S

n

FIGURE 11.

E Exercise 1.11 Find explicitly the function

f : D2 → S2

from Figure 11, check that f−1(pN) is precisely S1 ⊂ D2, then generalize to arbitrary dimensions.

Another interesting way of obtaining the sphere S2 is by taking the unit disk D2, dividing its boundary

circle S1 into two equal sides and gluing the two half circles as indicated in the Figure 12.

A related construction of the sphere, which is quite important, is the following: take the disk D2 and

divide now it boundary circle into four equal sides, or take the unit square and its sides, and label them

as in Figure 13. Glue now the two arcs denoted by a and the two arcs denoted by b.
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a a
a a

glue

a

The sphere obtained from the disk by glueing the two
        half circles denoted by "a" on the picture 

<−−−−−>

FIGURE 12.

b

b

bb

b

a

a

a

a

a

The sphere obtained from a disk or a square glueing as indicated in the picture

FIGURE 13.
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5. The Moebius band

“The Moebius band” is a standard name for subspaces of R3 which are obtained from the unit square

[0,1]× [0,1] by “gluing” two opposite sides after twisting the square one time, as shown in Figure 14.

As in the discussion about the unit circle (obtained from the unit interval by “gluing” its end points), this

IV: the Moebius band

(the orientations do not match!)

II: approach the vertical sides

III: twist so that the orientations of the
        sides match

I: Start with [0, 1]x[0, 1]

FIGURE 14.

“gluing process” should be understood intuitively, and the precise meaning in topology will be explained

later. The following exercise provides a possible parametrization of the Moebius band (inside R3).

E Exercise 1.12 Consider

f : [0,1]× [0,1]→ R3,

f (t,s) = ((2+(2s−1)sin(πt))cos(2πt),(2+(2s−1)sin(πt))sin(2πt),(2s−1)cos(πt)).

You may want to check that f (t,s) = f (t ′,s′) holds only in the following cases:

(1) (t,s) = (t ′,s′).
(2) t = 0, t ′ = 1 and s′ = 1− s.

(3) t = 1, t ′ = 0 and s′ = 1− s.

(but this also follows from the discussion below). Based on this, explain why the image of f can be

considered as the result of gluing the opposite sides of a square with the reverse orientation.

To understand where these formulas come from, and to describe explicit models of the Moebius band

in R3, we can imagine the Moebius band as obtained by starting with a segment in R3 and rotating it

around its middle point, while its middle point is being rotated on a circle. See Figure 15.

The rotations take place at the same time (uniformly), and while the segment rotates by 180◦, the

middle point makes a full rotation (360◦). To write down explicit formulas, assume that

• the circle is situated in the XOY plane, is centered at the origin, and has radius R.

• the length of the segment is 2r and the starting position A0B0 of the segment is perpendicular

on XOY with middle point P0 = (R,0,0).
• at any moment, the segment stays in the plane through the origin and its middle point, which is

perpendicular on the XOY plane.
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a
a/2

45

90
o

o

A

B

A

B

0

0

 a

 a

P0

P a

R

r sin(a/2)

r

O

X

Y

Z

Explicit realization of the Moebius band in |R  : M
     3

      R, r

FIGURE 15.

We denote by MR,r the resulting subspace of R3 (note that we need to impose the condition R > r). To

parametrize MR,r, we parametrize the movement by the angle a which determines the middle point on

the circle:

Pa = (Rcos(a),Rsin(a),0).

At this point, the precise position of the segment, denoted AaBa, is determined by the angle that it makes

with the perpendicular on the plane XOY through Pa; call it b. This angle depends on a. Due to the

assumptions (namely that while a goes from 0 to 2π, b only goes from 0 to π, and that the rotations are

uniform), we have b = a/2 (see 15). We deduce

Aa = {(R+ r sin(a/2))cos(a),(R+ r sin(a/2))sin(a),r cos(a/2)),

and a similar formula for Ba (obtained by replacing r by −r). Then, the Moebius band MR,r is:

(5.1) MR,r = {(R+ t sin(a/2))cos(a),(R+ t sin(a/2))sin(a), t cos(a/2)) : a ∈ [0,2π], t ∈ [−r,r]}
Note that, although this depends on R and r, different choices of R and r produce homeomorphic spaces.

To fix one example, one usually takes R = 2 and r = 1.

E Exercise 1.13 Do the following:

(1) Make a model of the Moebius band and cut it through the middle circle. You get a new con-

nected object. Do you think it is a new Moebius band? Then cut it again through the middle

circle and see what you get.

(2) Prove (without using a paper model) that if you cut the Moebius band through the middle circle,

you obtain a (space homeomorphic to a) cylinder. What happens if you cut it again?
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6. The torus

“The torus” is a standard name for subspaces of R3 which look like a doughnut.

The simplest construction of the torus is by a gluing process: one starts with the unit square and then

one glues each pair of opposite sides, as shown in Figure 16.

a a aa

b

b

b

a

b

FIGURE 16.

As in the case of circles, spheres, disks, etc, by a torus we mean any space which is homeomorphic

to the doughnut. Let’s find explicit models (in R3) for the torus. To achieve that, we will build it by

placing our hand in the origin in the space, and use it to rotate a rope which at the other end has attached

a non-flexible circle. The surface that the rotating circle describes is clearly a torus (see Figure 17).

O

X

Y

Z

R

r

T
R, r

b

a

FIGURE 17.

To describe the resulting space explicitly, we assume that the rope rotates inside the XOY plane (i.e.

the circle rotates around the OZ axis). Also, we assume that the initial position of the circle is in the XOZ

plane, with center of coordinates (R,0,0), and let r be the radius of the circle (R > r because the length of
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the rope is R−r). We denote by T 2
R,r the resulting subspace of R3. A point on T 2

R,r is uniquely determined

by the angles a and b indicated on the picture (Figure 17), and we find the parametric description:

(6.1) T 2
R,r = {(R+ rcos(a))cos(b),(R+ rcos(a))sin(b), rsin(a)) : a,b ∈ [0,2π]} ⊂ R3.

E Exercise 1.14 Show that

(6.2) T 2
R,r = {(x,y,z) ∈R3 : (

√

x2 + y2 −R)2 + z2 = r2}.

Although T 2
R,r depends on R and r, different choices of R and r produce homeomorphic spaces.

There is yet another interpretation of the torus, as the Cartesian product of two circles:

S1 ×S1 = {(z,z′) : z,z′ ∈ S1} ⊂ R2 ×R2 = R4.

Note that, priory, this product is in the 4-dimensional space. The torus can be viewed as a homeomorphic

copy inside R3.

E Exercise 1.15 Show that

f : S1 ×S1 → T 2
R,r, f (eia,eib) = ((R+ rcos(a))cos(b),(R+ rcos(a))sin(b),rsin(a))

is a bijection. Explain the map in the picture, and convince yourself that it is a homeomorphism.

Proving directly that f is a homeomorphism is not really pleasant, but the simplest way of proving that

it is actually a homeomorphism will require the notion of compactness (and we will come back to this at

the appropriate time).

The previous exercise shows that, topologically, a torus is the cartesian product of the circle with itslef.

More generally, for any integer n ≥ 1, an n-torus is any space homeomorphic to

S1 × . . .×S1

︸ ︷︷ ︸

n times

.

E Exercise 1.16 Show that an n-torus can be embedded in Rn+1.

Related to the torus is the double torus, pictured in Figure 18. Similarly, for each g ≥ 1 integer, one

can talk about the torus with g-holes.

FIGURE 18.

Note that the double torus can be realized from two disjoint copies of the torus, by removing a small

ball from each one of them, and then gluing them along the resulting circles (Figure 19).

glue the

circles

Cut a small
disk from 
each tori

FIGURE 19.
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E Exercise 1.17 How should one glue the sides of a pentagon so that the result is a cut torus? (Hint: see

Figure 20 and try to understand it. Try to make a paper model).

b

a

a

b

hence it is

minus a small ball: 

obtained from a square

is

the cut torus:

as described by the labeling

identifying (some of) its sides

obtained from a pentagon by

c

c

b

b

a

c

e

a

FIGURE 20.

E Exercise 1.18 Show that the double torus can be obtained from an octagon by gluing some of its sides.

(Hint: see Figure 21 and try to understand it. Try to make a paper model).
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FIGURE 21.

E Exercise 1.19 Show that the surface of a cup with a handle is homeomorphic to the torus (what about a

cup with no handle?).

E Exercise 1.20 Inside the sphere S3 exhibit a subspace that is a torus.
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E Exercise 1.21 By a full torus we mean any space homeomorphic to S1 ×D2.

• Can you explain the terminology?

• Describe a full torus inside the 3-sphere S3.

E Exercise 1.22 As an analogue of Exercise 1.17 but for the Moebius band, show that if one glues the sides

of a pentagon according to Figure 22 then one obtains a Moebius band with a hole inside.
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FIGURE 22.

E Exercise 1.23 And, as the analogue of Exercise 1.18 show how the double Moebius band (Figure 23)

can be obtained from a (full) polygon by gluing some of its sides.

FIGURE 23.
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7. The Klein bottle

We have seen that, starting from an unit square and gluing some of its sides, we can produce the

sphere (Figure 13), the Moebius band (Figure 14) or the torus (Figure 16). What if we try to glue the

sides differently? The next in this list of example would be the space obtained by gluing the opposite

sides of the square but reversing the orientation for one of them, as indicated in Figure 24. The resulting

space is called the Klein bottle, denoted here by K. Trying to repeat what we have done in the previous

examples, we have trouble when “twisting the cylinder”. Is that really a problem? It is now worth having

a look back at what we have already seen:

- starting with an interval and gluing its end points, although the interval sits on the real line, we

did not require the gluing to be performed without leaving the real line (it would not have been

possible). Instead, we used one extra-dimension to have more freedom and we obtained the

circle.

- similarly, when we constructed the Moebius band or the torus, although we started in the plane

with a square, we did not require the gluing to take place inside the plane (it wouldn’t even have

been possible). Instead, we used an extra-dimension to have more freedom for “twisting”, and

the result was sitting in the space R3 =R2 ×R.

Something very similar happens in the case of the Klein bottle: what seems to be a problem only indicates

the fact that the gluing cannot be performed in R3; instead, it indicates that K cannot be pictured in R3,

or, more precisely, that K cannot be embedded in R3. Instead, K can be embedded in R4. The following

exercise is an indication of that.

b b

a

a

b
b

first glue the sides a

and glue them 
then twist the sides b (not possible on |R   )

3

3
       The Klein botlle: fake picture in |R

FIGURE 24.

E Exercise 1.24 Consider the map

f̃ : [0,1]× [0,1]→ R4,

f̃ (t,s) = ((2− cos(2πs)cos(2πt),(2− cos(2πs)sin(2πt),sin(2πs)cos(πt),sin(2πs)sin(πt)).

Explain why the image of this map in R4 can be interpreted as the space obtained from the square by

gluing its opposite sides as indicated in the picture (hence can serve as a model for the Klein bottle).

E Exercise 1.25 Explain how can one obtain a Klein bottle by starting with two Moebius bands and gluing

them along their boundaries.
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(Hint: look at Figure 25).
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8. The projective plane P2

In the same spirit as that of the Klein bottle, let’s now try to glue the sides of the square as indicated

on the left hand side of Figure 26.
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FIGURE 26.

Still as in the case of the Klein bottle, it is difficult to picture the result because it cannot be embedded

in R3 (but it can be embedded in R4!). However, the result is very interesting: it can be interpreted as the

set of all lines in R3 passing through the origin- denoted P2. Let’s us adopt here the standard definition

of the projective space:

P2 := {l : l ⊂R3 is a line through the origin},
(i.e. l ⊂ R3 is a one-dimensional vector subspace). Note that this is a “space” in the sense that there

is a clear intuitive meaning for “two lines getting close to each other”. We will explain how P2 can be

interpreted as the result of the gluing that appears in Figure 26.

Step 1: First of all, there is a simple map:

f : S2 → P2

which associates to a point on the sphere, the line through it and the origin. Since every line intersects

the sphere exactly in two (antipodal) points, this map is surjective and has the special property:

f (z) = f (z′)⇐⇒ z = z′ or z =−z′ (z and z′ are antipodal).

In other words, P2 can be seen as the result of gluing the antipodal points of the sphere.

Step 2: In this gluing process, the lower hemisphere is glued over the upper one. We see that, the

result of this gluing can also be seen as follows: start with the upper hemisphere S2
+ and then glue the

antipodal points which are on its boundary circle.

Step 3: Next, the upper hemisphere is homeomorphic to the horizontal unit disk (by the projection on

the horizontal plane). Hence we could just start with the unit disk D2 and glue the opposite points on its

boundary circle.

Step 4: Finally, recall that the unit ball is homeomorphic to the square (by a homeomorphism that

sends the unit circle to the contour of the square). We conclude that our space can be obtained by the

gluing indicated in the initial picture (Figure 26).

Note that, since P2 can be interpreted as the result of gluing the antipodal points of S2, the following

exercise indicates why P2 can be seen inside R4:

E Exercise 1.26 Show that

f̃ : S2 → R4 , f̃ (x,y,z) = (x2 − y2,xy,xz,yz)
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has the property that, for p, p′ ∈ S2, f (p) = f (p′) holds if and only if p and p′ are either equal or

antipodal.

Note also that (a model of) the Moebius band can be seen as sitting inside (a model of) the projective

plane M →֒ P2. To see this, recall that P2 can be seen as obtained from D2 by gluing the antipodal points

on its boundary. Consider inside D2 the “band”

B = {(x,y) ∈ D2 : −1

2
≤ y ≤ 1

2
}.⊂ D2.

The gluing process that produces P2 affects B in the following way: it glues the “opposite curved sides”

of B as in the picture (Figure 27), and gives us the Moebius band.

x

−x

The Moebius band inside the projective plane

FIGURE 27.

Paying attention to what happens to D2 −B in the gluing process, you can now try the following.

E Exercise 1.27 Indicate how P2 can be obtained by starting from a Moebius band and a disk, and glue

them along the boundary circle.
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9. Gluing (or quotients)

We have already seen some examples of spaces obtained by gluing some of their points. When the

gluing becomes less intuitive or more complicated, we start asking ourselves:

(1) What gluing really means?

(2) What is the result of such a gluing?

Here we address these questions. In examples such the circle, torus or Moebius band, the answer was

clear intuitively:

(1) Gluing had the intuitive meaning- done effectively by using paper models.

(2) the result was a new object, or rather a shape (it depends on how much we twist and pull the

piece of paper).

Emphasize again that there was no preferred torus or Moebius band, but rather models for it (each two

models being homeomorphic). Moving to the Klein bottle, things started to become less intuitive, since

the result of the gluing cannot be pictured in R3 (and things become probably even worse in the case of

the projective plane). But, as we explained above, if we use an extra-dimension, the Klein bottle exist in

R4- and Exercise 1.24 produces a subset of R4 which is an explicit model for it.

And things become much worse if we now start performing more complicated gluing of more compli-

cated objects (one can even get “spaces” which cannot be “embedded” in any of the spaces Rn!). It is

then useful to a have a more conceptual (but abstract) understanding of what “gluing” and “the result of

a gluing” means.

Start with a set X and assume that we want to glue some of its points. Which points we want to glue

form the initial “gluing data”, which can be regarded as a subset

R ⊂ X ×X

consisting of all pairs (x,y) with the property that we want x and y to be glued. This subset must have

some special properties (e.g., if we want to glue x to y, y to z, then we also have to glue x to z). This

brings us to the notions of equivalence relation that we now recall.

Definition 1.2 An equivalence relation on a set X is a subset R ⊂ X ×X satisfying the following:

1. If (x,y) ∈ R and (y,z) ∈ R, then (x,z) ∈ R.

2. If (x,y) ∈ R then also (y,x) ∈ R.

3. (x,x) ∈ R for all x ∈ X .

Hence, as a gluing data we start with any equivalence relation on X .

E Exercise 1.28 Describe explicitely the equivalence relation R on the square X = [0,1]× [0,1] which

describe the gluing that we performed to construct the Moebius band. Similarly for the equivalence

relation on the disk that described the gluing from Figure 11.

What should the result of the gluing be? First of all, it is going to be a new set Y . Secondly, any

point of X should give a point in Y , i.e. there should be a function π : X → Y which should be surjective

(the gluing should not introduce new points). Finally, π should really reflect the gluing, in the sense that

π(x) = π(y) should only happen when (x,y) ∈ R. Here is the formal definition.

Definition 1.3 Given an equivalence relation R on a set X , a quotient of X modulo R is a pair (Y,π)
consisting of a set Y and a surjection π : X → Y (called the quotient map) with the property that

π(x) = π(y)⇐⇒ (x,y) ∈ R.

Hence, a quotient of X modulo R can be viewed as a model for the set obtained from X by gluing its

points according to R.



26 1. INTRODUCTION: SOME STANDARD SPACES

Example 1.4 Consider X = [0,1] together with the equivalence relation R that corresponds to the gluing

of 0 and 1. I.e.:

(t,s) ∈ R ⇐⇒ (t = s) or (t = 0,s = 1) or (t = 1,s = 0).

Then a model for X/R is the circle S1 together with

π := e : [0,1]→ S1, t 7→ (cos(2πt),sin(2πt)).

Indeed, e(t) = e(s) happens if and only if (t,s) ∈ R.

Example 1.5 Consider on X = R3 \{0} the equivalence relation R defined by

(x,y) ∈ R ⇐⇒ y = λ · x for some λ ∈ R∗.

Then the projective space P2 (the set of all lines in R3, passing through the origin), with

π : R3 \{0} → P2, π(x) := the (unique) line through the origin and x

is a quotient of X modulo R.

Example 1.6 Consider on X = R3 \{0} the equivalence relation R defined by

(x,y) ∈ R ⇐⇒ y = λ · x for some λ ∈ R>0.

Then the 2-sphere S2 together with

π : R3 \{0} → S2, π(x) =
1

||x||x

is a quotient of X modulo R (think of a picture!).

E Exercise 1.29 Describe the equivalence relation R on [0,1]× [0,1] that encodes the gluing that we per-

formed when constructing the torus. Then prove that the explicit model T 2
R,r of the torus given by formula

(6.2) is a quotient of [0,1]× [0,1] modulo R, in the sense of the previous definition (of course, you also

have to describe the map π).

One can wonder “how many” abstract quotients can one build? Well, only one – up to isomorphism.

More precisely:

E Exercise 1.30 Show that if (Y1,π1) and (Y2,π2) are two quotients of X modulo R, then there exists and is

unique a bijection f : Y1 →Y2 such that f ◦π1 = π2.

One can also wonder: can one always build quotients? The answer is yes but, in full generality (for

arbitrary X and R), one has to construct the model abstractly. Namely, for each x ∈ X we define the

R-equivalence class of x as

R(x) := {y ∈ X : (x,y) ∈ R}
(a subset of X ) and define

X/R = {R(x) : x ∈ X}
(a new set whose elements are subsets of X ). There is a simple function

πR : X → X/R, πR(x) = R(x),

called the canonical projection. This is the abstract quotient of X modulo R.

Example 1.7 Let n ≥ 1 be an integer. Consider X = Z with the equivalence relation Rn defined by:

(x,y) ∈ Rn ⇐⇒ x ≡ y (mod n).

Then the equivalence class of an arbitrary element k ∈ Z is

Rn(k) = {. . . ,k−2n,k,k−n,k+n,k+2n, . . .} (usually denoted (k modn) or just k̂).

Of course, Z/Rn is the usual set Zn of integers modulo n.
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Example 1.8 Let us return to Example 1.6. Then, for x ∈ X = R3 \{0}, its equivalence class is

R(x) = {λ · x : λ ∈ R>0},
which even has a geometric interpretation in this case: it is the half line from the origin passing through

x. Hence X/R is the set of such half lines. The bijection between X/R and S2 is clear because a half line

is uniquely determined by its intersection with the sphere!

Example 1.9 Let us return to Example 1.5. Then, for x ∈ X = R3 \{0}, its equivalence class is

R(x) = {λ · x : λ ∈ R∗}
which, again, can be interpreted as the line through the origin and x (but with the origin removed). This

is in clear bijection with P2.

Example 1.10 Let us return to the gluing of the end-points of [0,1] (Example 1.4). The example is

simpler, but X/R will look a bit more abstract: it is the collection of subsets of [0,1] consisting of

(1) the subset {0,1}.

(2) for each t ∈ (0,1) the subset {t}.

Also, the projection πR is given by

πR(0) = {0,1}, πR(1) = {0,1}, and πR(t) = {t} for t ∈ (0,1).

We see that, by the very construction (and, in some sense tautologically) (X/R,πR) is a quotient of X

modulo R. Of course, there is nothing particular about this example, and the same statement (and for the

same tautological reasons) holds in general:

E Exercise 1.31 Show that:

(1) For any equivalence relation R on a set X , (X/R,πR) is a quotient of X modulo R.

(2) For any surjective map, f : X →Y , there is a unique relation R on X such that (Y, f ) is a quotient

of X modulo R.

Remark 1.11 This discussion has been set-theoretical, so let’s now go back to the case that X is a subset

of some Rn, and R is some equivalence relation on X . It is clear that, in such a “topological setting”,

we do not look for arbitrary models (quotients), but only for those which are in agreement with our

intuition. In other words we are looking for “topological quotients” (“topological models”). What that

really means will be made precise later on (since it requires the precise notion of topology). As a first

attempt one could look for quotients (Y,π) of X modulo R with the property that

(1) Y is itself is a subspace of some Rk.

(2) π is continuous.

These requirements pose two problems:

- Insisting that Y is a subspace of some Rk is too strong- see e.g. the exercise below. (Instead, Y

will be just “topological space”).

- The list of requirements is not complete. This can already be seen when R = {(x,x) : x ∈ X}
(i.e. when no gluing is required). Clearly, in this case, a “topological model” is X itself, and

any other model should be homeomorphic to X . However, the requirements above only say that

π : X → Y is a continuous bijection which, as we have already seen, does not imply that π is a

homeomorphism.

As we already said, the precise list of requirements will be made precise later on. (There is a good news

however: if X is “compact”, then any quotient (Y,π) of X modulo R which satisfies (1) and (2) above, is

a good topological model!).
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E Exercise 1.32 Let X ⊂ R2 like in Figure 28 (the shaded region). Describe an equivalence relation on X

such that the result of the gluing is a sphere S2. Then another one to get a torus. Then one that gives a

disjoint union of a sphere and a torus.

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

FIGURE 28.

E Exercise 1.33 Let X = S1, and we want to glue any two points eia,eib ∈ S1 with the property that b = a+
2π

√
2. Show that there is no model (Y,π) with Y -a subset of some space Rn and π : X →Y continuous.

E Exercise 1.34 Let

Pn := {l : l ⊂ Rn+1 is a line through the origin},
(i.e. l ⊂ Rn+1 is a one-dimensional vector subspace). Explain how Pn (with the appropriate quotient

maps) can be seen as:

(1) a quotient of Rn+1 \{0} modulo an equivalence relation that you have to specify (see second

part of Exercise 1.31).

(2) obtained from Sn by gluing every pairs of its antipodal points.

(3) obtained from Dn by gluing every pair of antipodal points situated on the boundary sphere Sn−1.
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10. Metric aspects versus topological ones

Of course, most of what we discussed so far can be done withing the world of metric spaces- a notion

that did allow us to talk about convergence, continuity, homeomorphisms. There are however several

reasons to allow for more flexibility and leave this world.

One was already indicated in Exercise 1.1 which shows that metric spaces do not encode convergence

faithfully. Very different looking metrics on Rn (e.g. the Euclidean d and the square one ρ- in that

exercise) can induce the same notion of convergence, i.e. they induce the same “topology” on Rn- the

one that we sense with our intuition. Of course, that exercise just tells us that Id : (Rn,d) → Rn,ρ) is

a homeomorphism, or that d and ρ induce the same “topology” on Rn (we will make this precise a few

line below).

The key of understanding the “topological content” of metrics (i.e. the one that allows us to talk about

convergent sequences) is the notion of opens with respect to a metric. This is the first step toward the

abstract notion of topological space.

Definition 1.12 Let (X ,d) be a metric space. For x ∈ X , ε > 0 one defines the open ball with center x

and radius ε (with respect to d):

Bd(x,ε) = {y ∈ X : d(y,x) < ε}.
A set U ⊂ X is called open with respect to d if

(10.1) ∀ x ∈U ∃ ε > 0 such that B(x,ε)⊂U.

The topology induced by d, denoted Td, is the collection of all such opens U ⊂ X .

With this we have:

E Exercise 1.35 Let d and d′ be two metrics on the set X . Show that convergence in X with respect to d

coincides with convergence in X with respect to d′ if and only if Td = Td′ .

It is not a surprise that the notion of convergence and continuity can be rephrased using opens only .

E Exercise 1.36 Let (X ,d) be a metric space, (xn)n≥1 a sequence in X , x ∈ X . Then (xn)n≥1 converges to x

(in (X ,d)) if and only if: for any open U ∈ Td containing x, there exists an integer nU such that

xn ∈U ∀ n ≥ nU .

E Exercise 1.37 Let (X ,d) and (Y,d′) be two metric spaces, and f : X →Y a function. Then f is continuous

if and only if

f−1(U) ∈ Td ∀ U ∈ Td′ .

The main conclusion is that the topological content of a metric space (X ,d) is retained by the family

Td of opens in the metric space. This is the first example of a topology. I would like to emphasize here

that our previous discussion does NOT mean that we should not use metrics and that we should not talk

about metric spaces. Not at all! When metrics are around, we should take advantage of them and use

them! However, one should be aware that some of the simple operations that we make with metric spaces

(e.g. gluing) may take us out of the world of metric spaces. But, even when staying withing the world

of metric spaces, it is extremely useful to be aware of what depends on the metric itself and what just on

the topology that the metric induces. We give two examples here.

Compactness The first example is the notion of compactness. You have probably seen this notion for

subspaces of Rn: a subset Rn is called compact if it is bounded and closed in Rn (see Dictaat Inleiding

Analyse, Stelling 4.20, page 78). With this definiton it is very easy to work with compactness (... of
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subspaces of Rn). E.g., the torus, the Moebius band, etc, they are all compact. However, one should be

careful here: what we can say is that all the models of the torus, etc that we built are compact. What

about the other ones? In other words, is compactness a topological condition? I.e., if A ⊂Rn and B ⊂Rm

are homeomorphic, is it true that the compactness of A implies the compactness of B? With the previous

definition of compactness, the answer may be no, as both the condition “bounded” and “closed” make

reference to the way that A sits inside Rn, and even to the Euclidean metric on Rn (for boundedness).

See also Exercise 1.39 below. However, as we shall see, the answer is: yes, compactness is a topological

property (and this is extremely useful).

Completeness Another notion that is extremely important when we talk about metric spaces is that of

completeness. Recall (see Dictaat Inleiding Analyse, page 74):

Definition 1.13 Given a metric space (X ,d) and a sequence (xn)n≥1 in X , we say that (xn)n≥1 is a

Cauchy sequence if

lim
n,m→∞

d(xn,xm) = 0,

i.e., for each ε > 0, there exists an integer nε such that

d(xn,xm)< ε

for all n,m ≥ nε. One says that (X ,d) is complete if any Cauchy sequence is is convergent. We say that

A ⊂ X is complete if A, together with the restriction of d to A, is complete.

For instance, Rn with the Euclidean metric is complete, as is any closed subspace of Rn. Now, is

completeness a topological property? This time, the answer is no, as the following exercise shows. But,

again, this does not mean that we should ignore completeness in this course (and we will not). We should

be aware that it is not a topological property, but use it whenever possible!

E Exercise 1.38 On R we consider the metric d′(x,y) = |ex − ey|. Show that

(1) d′ induces the same topology on R as the Euclidean metric d.

(2) although (R,d) is complete, (R,d′) is not.

(Hint: log(1
n
)).

E Exercise 1.39 For a metric space (X ,d) we define d̂ : X ×X → R by

d̂(x,y) = min{d(x,y),1}.
Show that:

(1) d̂ is a metric inducing the same topology on X as d.

(2) (X ,d) is complete if and only if (X , d̂) is.
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1. Topological spaces

We start with the abstract definition of topological spaces.

Definition 2.1 A topology on a set X is a collection T of subsets of X , satisfying the following axioms:

(T1) /0 and X belong to T .

(T2) The intersection of any two sets from T is again in T .

(T3) The union of any collection of sets of T is again in T .

A topological space is a pair (X ,T ) consisting of a set X and a topology T on X .

A subset U ⊂ X is called open in the topological space (X ,T ) if it belongs to T .

A subset A ⊂ X is called closed in the topological space (X ,T ) if X −A is open.

Given two topologies T and T ′ on X , we say that T ′ is larger (or finer) than T , or that T is smaller

(or coarser) than T ′, if T ⊂ T ′.

E Exercise 2.1 Show that, in a topological space (X ,T ), any finite intersection of open sets is open: for

each k ≥ 1 integer, U1, . . . ,Uk ∈ T , one must have U1 ∩ . . .∩Uk ∈ T . Would it be reasonable to require

that arbitrary intersections of open sets is open? What can you say about intersections or union of closed

subsets of (X ,T )?

Conventions 2.2 When referring to a topological space (X ,T ), when no confusion may arise, we will

simply say that “X is a topological space”. Also, the opens in (X ,T ) will simply be called “opens in X”

(and similarly for “closed”).

In other words, we will not mention T all the time; its presence is implicit in the statement “X is a

topological space”, which allows us to talk about “opens in X”.

Example 2.3 (Extreme topologies) On any set X we can define the following:

(1) The trivial topology on X , Ttriv: the topology whose open sets are only /0 and X .

(2) The discrete topology on X , Tdis: the topology whose open sets are all subsets of X .

(3) The co-finite topology on X , Tcf: the topology whose open sets are the empty set and comple-

ments of finite subsets of X .

(4) The co-countable topology on X , Tcc: the topology whose open sets are the empty set and

complements of subsets of X which are at most countable.

An important class of examples comes from metrics.

Proposition 2.4 For any metric space (X ,d), the family Td of opens in X with respect to d is a topology

on X . Moreover, this is the smallest topology on X with the property that it contains all the balls

Bd(x;r) = {y ∈ X : d(x,y) < r} (x ∈ X ,r > 0).

PROOF. Axiom (T1) is immediate. To prove (T2), let U,V ∈Td and we want to prove that U∩V ∈ Td.

We have to show that, for any point x ∈ U ∩V , there exists r > 0 such that Bd(x,r) ⊂ U ∩V . So, let

x ∈U ∩V . That means that x ∈U and x ∈V . Since U,V ∈ Td, we find r1 > 0 and r2 > 0 such that

Bd(x,r1)⊂U,Bd(x,r2)⊂V.

Then r = min{r1,r2}, has the desired property: Bd(x,r) ⊂U ∩V .

To prove axiom (T3), let {Ui : i ∈ I} be a family of elements Ui ∈ Td (indexed by a set I) and we

want to prove that U := ∪i∈IUi ∈ Td. We have to show that, for any point x ∈U , there exists r > 0 such

that Bd(x,r) ⊂ U . So, let x ∈ U . Then x ∈ Ui for some i ∈ I; since Ui ∈ Td, we find r > 0 such that

Bd(x,r) ⊂Ui. Since Ui ⊂U , r has the desired property Bd(x,r) ⊂U .
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Assume now that T is a topology on X which contains all the balls and we prove that Td ⊂ T . Let

U ∈ Td and we prove U ∈ T . From the definition of Td , for each x ∈U we find rx > 0 with

{x} ⊂ B(x;rx)⊂U.

Taking the union over all x ∈U we deduce that

U ⊂ ∪x∈U B(x;rx)⊂U.

Hence U = ∪xB(x,rx) and then, since all the balls belong to T , U belongs itself to T . �

Definition 2.5 A topological space (X ,T ) is called metrizable if there exists a metric d on X such that

T = Td .

Remark 2.6 And here is one of the important problems in topology:

which topological spaces are metrizable?

More exactly, one would like to find the special properties that a topology must have so that it is induced

by a metric. Such properties will be discussed throughout the entire course.

The most basic metric is the Euclidean metric on Rn which was behind the entire discussion of Chapter

1. Also, the Euclidean metric can be (and was) used as a metric on any subset A ⊂ Rn.

Conventions 2.7 The topology on Rn induced by the Euclidean metric is called the Euclidean topology

on Rn. Whenever we talk about “the space Rn” without specifying the topology, we always mean the

Euclidean topology. Similarly for subsets A ⊂ Rn.

For other examples of topologies on R you should look at Exercise 2.19. General methods to construct

topologies will be discussed in the next chapter. Here we mention:

Example 2.8 (subspace topology) In general, given a topological space (X ,T ), any subset A⊂X inherits

a topology on its own. More precisely, one defines the restriction of T to A, or the topology induced by

T on A (or simply the induced topology on A) as:

T |A := {B ⊂ A : B =U ∩A for some U ∈ T }.

E Exercise 2.2 Show that T |A is indeed a topology.

Conventions 2.9 Given a topological space (X ,T ), whenever we deal with a subset A ⊂ X without

specifying the topology on it, we allways consider A endowed with T |A.

To remove ambiguities, you should look at Exercise 2.23.

Definition 2.10 Given a topological space (X ,T ) and A,B ⊂ X , we say that B is open in A if B ⊂ A and

B is an open in the topological space (A,T |A). Similarly, we say that B is closed in A if B ⊂ A and B is

closed in the topological space (A,T |A).

E Exercise 2.3 The interval [0,1) ⊂R:

(i) is neither open nor closed in (−1,2).
(ii) is open in [0,∞) but it is not closed in [0,∞).

(iii) is closed in (−1,1) but it is not open in (−1,1).
(iv) it is both open and closed in (−∞,−1)∪ [0,1)∪ (2,∞).
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2. Continuous functions; homeomorphisms

Definition 2.11 Given two topological spaces (X ,TX) and (Y,TY ), and a function f : X →Y , we say that

f is continuous (with respect to the topologies TX and TY ) if:

f−1(U) ∈ TX ∀ U ∈ TY .

E Exercise 2.4 Show that a map f : X →Y between two topological spaces (X with some topology TX , and

Y with some topology TY ) is continuous if and only if f−1(A) is closed in X for any closed subspace A

of Y .

Example 2.12 Some extreme examples first:

(1) If Y is given the trivial topology then, for any other topological space (X ,TX), any function

f : (X ,TX)→ (Y,Ttriv) is automatically continuous.

(2) If X is given the discrete topology then, for any other topological space (Y,TY ), any function

f : (X ,Tdis)→ (Y,TY ) is automatically continuous.

(3) The composition of two continuous functions is continuous: If f : (X ,TX) → (Y,TY ) and g :

(Y,TY )→ (Z,TZ) are continuous, then so is g◦ f : (X ,TX)→ (Z,TZ). Indeed, for any U ∈ TZ ,

V := g−1(U) ∈ TY , hence

( f ◦g)−1(U) = g−1( f−1(U)) = g−1(V )

must be in TX .

(4) For any topological space (X ,T ), the identity map IdX : (X ,T )→ (X ,T ) is continuous. More

generally, if T1 and T2 are two topologies on X , then the identity map IdX : (X ,T1) → (X ,T2)
is continuous if and only if T2 is smaller than T1.

Example 2.13 Given f : X →Y a map between two metric spaces (X ,d) and (Y,d′), Exercise 1.37 says

that f : X → Y is continuous as a map between metric spaces (in the sense discussed in the previous

chapter) if and only if f : (X ,Td)→ (Y,Td′) is continuous as a map between topological spaces.

That is good news: all functions f : Rn → Rm between Euclidean spaces that we knew (e.g. from the

Analysis course) to be continuous, are continuous in the sense of the previous definition as well. This

applies in particular to all the elementary functions such as polynomial ones, exp, sin, cos, etc.

Even more, if f : Rn →Rm is continuous and A ⊂Rn, B ⊂Rm such that f (A)⊂ B, then the restriction

of f to A, viewed as a function from A to B, is automatically continuous (check that!). Finally, the usual

operations of continuous functions are continuous:

E Exercise 2.5 Let X be a topological space, f1, . . . , fn : X → R and consider

f := ( f1, . . . , fn) : X → Rn.

Show that f is continuous if and only if f1, . . . , fn are. Deduce that the sum and the product of two

continuous functions f ,g : X → R are themselves continuous.

Definition 2.14 Given two topological spaces (X ,TX) and (Y,TY ), a homeomorphism between them is

a bijective function f : X →Y with the property that f and f−1 are continuous. We say that X and Y are

homeomorphic if there exists a homeomorphism between them.

Remark 2.15 In the definition of the notion of homeomorphism (and as we have seen already in the

previous chapter), it is not enough to require that f : (X ,TX) → (Y,TY ) is continuous and bijective (it
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may happen that f−1 is not continuous!). For f−1 to be continuous, one would need that for each U ⊂ X

open, f (U)⊂ Y is open. Functions with this property (that send opens to opens) are called open maps.

For instance, the function

f : [0,2π)→ S1, f (t) = (cos(t),sin(t)),

that we also discussed in the previous chapter, is continuous and bijective, but it is not a homeomorphism.

More precisely, it is not open: [0,π) is open in X , while f ([0,2π)) is a half circle closed at one end and

open at the other- hence not open (Figure 4 in the previous chapter).

Remark 2.16 We would like to emphasize that the notion of “homeomorphism” is the correct notion

“isomorphism in the topological world”. A homeomorphism f : X → Y allows us to move from X to Y

and backwards carrying along any topological argument (i.e. any argument which is based on the notion

of opens) and without loosing any topological information. For this reason, in topology, homeomorphic

spaces are not viewed as being different from each other.

Another important question in Topology is:

how do we decide if two spaces are homeomorphic or not?

Actually, all the topological properties that we will discuss in this course (the countability axioms, Haus-

dorffness, connectedness, compactness, etc) could be motivated by this problem. For instance, try to

prove now that (0,2) and (0,1) ∪ (1,2) are not homeomorphic (if you managed, you have probably

discovered the notion of connectedness). Try to prove that the open disk and the closed disk are not

homeomorphic (if you managed, you have probably discovered the notion of compactness). Let us be

slightly more precise about the meaning of “topological property”.

Conventions 2.17 We call topological property any property P of topological spaces (that a space may

or may not satisfy) such that, if X and Y are homeomorphic, then X has the property P if and only if Y

has it.

For instance, the property of being metrizable (see Definition 2.5) is a topological property:

E Exercise 2.6 Let X and Y be two homeomorphic topological spaces. Show that X is metrizable if and

only if Y is.

Definition 2.18 A continuous function f : X →Y (between two topological spaces) is called an embedding

if f is injective and, as a function from X to its image f (X), it is a homeomorphism (where f (X)⊂ Y is

endowed with the induced topology).

Example 2.19 There are injective continuous maps that are not embeddings. This is the case already

with the function f (α) = (cos(α),sin(α)) already discussed, viewed as a function f : [0,2π)→ R2.

Remark 2.20 Again, one of the important questions in Topology is:

understand when a space X can be embedded in another given space Y

When Y = R2, that means intuitively that Xcan be pictured topologically on a piece of paper. When

Y = R3, it is about being able to make models of X in space. Of course, one of the most interesting

versions of this question is whether X can be embedded in some RN for some N. As we have seen, the

torus and the Moebius band can be embedded in R3; one can prove that they cannot be embedded in R2;

also, one can prove that the Klein bottle cannot be embedded in R3. However, all these proofs are far

from trivial.
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3. Neighborhoods and convergent sequences

Definition 2.21 Given a topological space (X ,T ), x ∈ X , a neighborhood of x (in the topological space

(X ,T )) is any subset V ⊂ X with the property that there exists U ∈ T such that

x ∈U ⊂V.

When V is itself open, we call it an open neighborhood of x. We denote:

T (x) := {U ∈ T : x ∈U}, N (x) = {V ⊂ X : ∃ U ∈ T (x) such that U ⊂V}.

Example 2.22 In a metric space (X ,d), from the definition of Td we deduce:

(3.1) N (x) = {V ⊂ X : ∃ ε > 0 such that B(x,ε)⊂V}.

Remark 2.23 What are neighborhoods good for? They are the “ topological pieces” which are relevant

when looking at properties which are “local”, in the sense that they depend only on what happens “near

points”. For instance, we can talk about continuity at a point.

Definition 2.24 We say that a function f : (X ,TX)→ (Y,TY ) is continuous at x if

(3.2) f−1(V ) ∈ NX(x) ∀ V ∈ NY ( f (x).

Proposition 2.25 A function is continuous if and only if it is continuous at all points.

PROOF. Assume first that f is continuous, x ∈ X . For V ∈ N ( f (x)), there exists U ∈ T ( f (x)) with

U ⊂ V ; then f−1(U) is open, contains x and is contained in f−1(V ); hence f−1(V ) ∈ N (x). For the

converse, assume that f is continuous at all points. Let U ⊂ Y open; we prove that f−1(U) is open. For

each x ∈ f−1(U), continuity at x implies that f−1(U) is a neighborhood of x, hence we find Ux ⊂ f−1(U),
with Ux-open containing x. It follows that f−1(U) is the union of all Ux with x ∈ f−1(U), hence it must

be open. �

Neighborhoods also allow us to talk about convergence.

Definition 2.26 Given a sequence (xn)n≥1 of elements of in a topological space (X ,TX), x ∈ X , we say

that (xn)n≥1 converges to x in (X ,T )), and we write xn → x (or limn→∞ xn = x) if for each V ∈ Nx, there

exists an integer nV such that

(3.3) xn ∈V ∀ n ≥ nV .

Example 2.27 Let X be a set. Then, in (X ,Ttriv), any sequence (xn)n≥1 of points in X converges to

any x ∈ X . In contrast, in (X ,Tdis), a sequence (xn)n≥1 converges to an x ∈ X if and only if (xn)n≥1 is

stationary equal to x, i.e. there exists n0 such that xn = x for all n ≥ n0.

To clarify the relationship between convergence and continuity, we introduce:

Definition 2.28 Let (X ,TX), (Y,TY ) be topological spaces, f : X → Y . We say that f is sequentially

continuous if, for any sequence (xn)n≥1 in X , x ∈ X , we have:

xn → x in (X ,TX) =⇒ f (xn)→ f (x) in (Y,TY ).
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Theorem 2.29 Any continuous function is sequentially continuous.

PROOF. Assume that xn → x (in (X ,TX)). To show that f (xn)→ f (x) (in (Y,TY ), let V ∈ N ( f (x))
arbitrary and we have to find nV such that f (xn) ∈V for all n ≥ nV . Since f is continuous, we must have

f−1(V ) ∈ N (x); since xn → x, we find nV such that xn ∈ f−1(V ) for all n ≥ nV . Clearly, this nV has the

desired properties. �

Definition 2.30 Let (X ,T ) be a topological space and x ∈ X . A basis of neighborhoods of x (in the

topological space (X ,T )) is a collection Bx of neighborhoods of x with the property that

∀ V ∈ T (x) ∃ B ∈ Bx : B ⊂V.

Example 2.31 If (X ,d) is a metric space, x ∈ X , the family of all balls centered at x,

(3.4) Bd(x) := {B(x;ε) : ε > 0},
is a basis of neighborhoods of x.

Remark 2.32 What are bases of neighborhoods good for? They are collections of neighborhoods which

are “rich enough” to encode the local topology around the point. I.e., instead of proving conditions for

all V ∈ N (x), it is enough to do it only for the elements of a basis. For instance, in the definition of

convergence xn → x (Definition 2.26), if we have a basis Bx of neighborhoods of x, it suffices to check

the condition from the definition only for neighborhoods V ∈ Bx (why?). In the case of a metric space

(X ,d), we recover the more familiar description of convergence: using the basis (3.4) we find that xn → x

if and only if:

∀ ε > 0, ∃ nε ∈ N : d(xn,x) < ε ∀ n ≥ nε.

A similar discussion applies to the notion of continuity at a point- Definition 2.24: if we have a basis

B f (x) of neighborhoods of f (x), then it suffices to check (3.2) for all V ∈ B f (x). As before, if f is a map

between two metric spaces (X ,dX) and (Y,dY ), we find the more familiar description of continuity: using

the basis (3.4) (with x replaced by f (x)), and using (3.1), we find that f is continuous at x if and only if,

for all ε > 0, there exists δ > 0 such that

dY ( f (y), f (x)) < ε ∀ y ∈ X satisfying dX(y,x) < δ.

Definition 2.33 We say that (X ,T ) satisfies the first countability axiom, or that it is 1st-countable, if for

each point x ∈ X there exists a countable basis of neighborhoods of x.

E Exercise 2.7 Show that the first-countability is a topological property.

Example 2.34 Any metric space (X ,d) is 1st countable: for x ∈ X ,

B ′
d(x) := {B(x;

1

n
) : n ∈ N}

is a countable basis of neighborhoods of x. Hence, in relation with the metrizability problem, we deduce:

if a topological space is metrizable, then it must be 1st countable.

E Exercise 2.8 Let (X ,T ) be a topological space and x ∈ X . Show that if x admits a countable basis of

neighborhoods, then one can also find a decreasing one, i.e. one of type

Bx = {B1,B2,B3, . . .},with . . .⊂ B3 ⊂ B2 ⊂ B1.

(Hint: Bn =V1 ∩V2 ∩ . . .∩Vn).
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The role of the first countability axiom is a theoretical one: “it is the axiom under which the notion of

sequence can be used in its full power”. For instance, Theorem 2.29 can be improved:

Theorem 2.35 If X is 1st countable (in particular, if X is a metric space) then a map f : X → Y is

continuous if and only if it is sequentially continuous.

PROOF. We are left with the converse implication. Assume f -continuous. By Prop. 2.25, we find

x ∈ X such that f is not continuous at x. Hence we find V ∈ N ( f (x)) such that f−1(V ) /∈ N (x). Let

{Bn : n ∈ N} be a countable basis of neighborhoods of x; by the previous exercise, we may assume it is

decreasing. Since f−1(V ) /∈ N (x), for each n we find xn ∈ Bn − f−1(V ). Since xn ∈ Bn, it follows that

(xn)n≥1 converges to x (see Remark 2.32). But note that ( f (xn)) cannot converge to f (x) since f (xn) /∈V

for all n. This contradicts the hypothesis. �

Another good illustration of the fact that, under the first-countability axiom, “convergent sequences

contain all the information about the topology”, is given in Exercise 2.48. Another illustration is the

characterisation of Hausdorffness (Theorem 2.46 below).



4. INSIDE A TOPOLOGICAL SPACE: CLOSURE, INTERIOR AND BOUNDARY 39

4. Inside a topological space: closure, interior and boundary

Definition 2.36 Let (X ,T ) be a topological space. Given A ⊂ X , define:

• the interior of A:
◦
A=

⋃

U−open contained in A

U.

(The union is over all the subsets U of A which are open in (X ,T )). It is sometimes denoted by

Int(A). Note that
◦
A is open, is contained in A, and it is the largest set with these properties.

• the closure of A:

A =
⋂

F−closed containing A

F.

(The intersection is over all the subsets F of X which contain A and are closed in (X ,T )). It is

sometimes denoted by Cl(A). Note that A is closed, contains A, and it is the smallest set with

these properties.

• the boundary of A:

∂(A) = A−
◦
A .

x

y

z

.

.
.

X

A

boundary point

interior point

not in the 
  closure

FIGURE 1.

Lemma 2.37 Let (X ,T ) be a topological space, x ∈ X , and assume that Bx is a basis of neighborhoods

around x. Then:

(i) x ∈
◦
A if and only if there exists U ∈ Bx such that U ⊂ A.

(ii) x ∈ A if and only if, for all U ∈ Bx, U ∩A 6= /0.

(iii) If (X ,T ) is metrizable (or just 1st countable) then x ∈ A if and only if there exists a sequence

(an)n≥1 of elements of A such that an → x.

See Figure 1.

PROOF. (of the lemma) You should first convince yourself that (i) is easy; we prove here (ii) and

(iii). To prove the equivalence in (ii), is sufficient to prove the equivalence of the negations, i.e.

[x /∈ A]⇐⇒ [∃ U ∈ Bx : U ∩A = /0].
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From the definition of A, the left hand side is equivalent to:

∃ F − closed : A ⊂ F,x /∈ F.

Since closed sets are those of type F = X −U with U -open, this is equivalent to

∃ U −open : A∩U = /0,x ∈U,

i.e.: there exists U ∈ T (x) such that U ∩A = /0. On the other hand, any U ∈ T (x) contains at least one

B ∈ Bx, and the condition U ∩A = /0 will not be destroyed if we replace U by B. This concludes the

proof of (ii). For (iii), first assume that x = liman for some sequence of elements of A. Then, for any

U ∈ T (x), we find nU such that an ∈U for all n ≥ nU , which shows that U ∩A 6= /0. By (ii), x ∈ A. For

the converse, one uses that fact that B(x, 1
n
)∩A 6= /0 hence, for each n, we find an ∈ A with d(an,x) <

1
n
.

Clearly an → a. �

Example 2.38 Take the “open disk” in the plane

A =
◦
D

2(= {(x,y) ∈ R2 : x2 + y2 < 1}).
Then the interior of A is A itself (it is open!), the closure is the “closed disk”

A = D2(= {(x,y) ∈ R2 : x2 + y2 ≤ 1}),
while the boundary is the unit circle

∂(A) = S1(= {(x,y) ∈ R2 : x2 + y2 = 1}).

Example 2.39 Take A = [0,1)∪{2}∪ [3,4) in X = R. Using the lemma (and the basis given by open

intervals) we find
◦
A= (0,1)∪ (3,4), A = [0,1]∪{2}∪ [3,4], ∂(A) = {0,1,2,3,4}.

However, considering A inside X ′ = [0,4) (with the topology induced from R),

◦
A= [0,1)∪ (3,4), A = [0,1]∪{2}∪ [3,4),∂(A) = {1,2,3}.

For the case of metric spaces, let us point out the following corollary. To state it, recall that given a

metric space (X ,d), A ⊂ X , and x ∈ X , one defines the distance between x and A as

d(x,A) = inf{d(x,a) : a ∈ A}.

Corollary 2.40 If A is a subspace of a metric space (X ,d), x ∈ X , then the following are equivalent:

(1) x ∈ A.

(2) there exists a sequence (an) of elements of A such that an → x.

(3) d(x,A) = 0.

PROOF. The equivalence of (1) and (2) follows directly from (iii) of the lemma. Next, the condition

(3) means that, for all ε > 0, there exists a ∈ A such that d(x,a) < ε. In other words, A∩B(x,ε) 6= /0 for

all ε > 0. Using (iii) of the lemma (with Bx being the collection of all balls centered at x), we find that

(3) is equivalent to (1). �

Definition 2.41 Given a topological space X , a subset A ⊂ X is called dense in X if A = X .

Example 2.42
◦
Dn is dense in Dn; Q is dense in R.



5. HAUSDORFFNESS; 2ND COUNTABILITY; TOPOLOGICAL MANIFOLDS 41

5. Hausdorffness; 2nd countability; topological manifolds

One of the powers of the notion of topological space comes from its generality, which gives it a

great flexibility when it comes to examples and general constructions. However, in many respects the

definition is “too general”. For instance, for proving interesting results one often has to impose extra-

axioms. Sometimes these axioms are rather strong (e.g. compactness), but sometimes they are rather

weak (in the sense that most of the interesting examples satisfy them anyway). The most important

such (weak) axiom is “Hausdorffness”. This axiom is also important for the metrizability problem, for

which we have to understand the special topological properties that a topology must satisfy in order to

be induced by a metric. And Hausdorffness is the most basic one.

Definition 2.43 We say that a topological space (X ,T ) is Hausdorff if for any x,y ∈ X with x 6= y, there

exist V ∈ N (x) and W ∈ N (y) such that V ∩W = /0.

Example 2.44 Looking at the extreme topologies: Ttriv is not Hausdorff (unless X is empty or consists of

one point only), while Tdis is Hausdorff. In the light of the Hausdorffness property, the cofinal topology

Tc f becomes more interesting (see Exercise 2.70).

E Exercise 2.9 Show that Hausdorffness is a topological property.

As promised, one has:

Proposition 2.45 Any metric space is Hausdorff.

PROOF. Given (X ,d), x,y ∈ X distinct, we must have r := d(x,y) > 0. We then choose V = B(x; r
2
),

W = B(y; r
2
). We claim these are disjoint. If not, we find z in their intersection, i.e. z ∈ Z such that d(x,z)

and d(y,z) are both less than r
2
. From the triangle inequality for d we obtain the following contradiction

r = d(x,y) < d(x,z)+d(z,y) <
r

2
+

r

2
= r.

�

However, one of the main reasons that Hausdorffness is often imposed comes from the fact that, under

it, sequences behave “as expected”.

Theorem 2.46 Let (X ,T ) be a topological space. If X is Hausdorff, then every sequence (xn)n≥1 has at

most one limit in X . The converse holds if we assume that (X ,T ) is 1st countable.

PROOF. Assume that X is Hausdorff. Assume that there exists a sequence (xn)n≥1 in X converging

both to x ∈ X and y ∈ X , with x 6= y; the aim is to reach a contradiction. Choose V ∈ N (x) and W ∈ N (y)
such that V ∩W = /0. Then we find nV and nW such that xn ∈ V for all n ≥ nV , and similarly for W .

Choosing n > max{nV ,nW}, this will contradict the fact that V and W are disjoint.

Let’s now assume that X is 1st countable and each sequence in X has at most one limit, and we prove

that X is Hausdorff. Assume it is not. We find then x 6= y two elements of X such that V ∩W 6= /0 for all

V ∈N (x) and W ∈N (y). Choose {Vn : n≥ 1} and {Wn : n≥ 1} bases of neighborhoods of x and y, which

we may assume to be decreasing (cf. Exercise 2.8). For each n, we find an element xn ∈Vn∩Wn. As in the

previous proofs, this implies that xn converges both to x and to y- which contradicts the hypothesis. �

Besides Hausdorffness, there is another important axiom that one often imposes on the spaces one

deals with (especially on the spaces that arise in Geometry).

Definition 2.47 Let (X ,T ) be a topological space. A basis of the topological space (X ,T ) is a family

B of opens of X with the property that any open U ⊂ X can be written as a union of opens that belong to

B .
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We say that (X ,T ) satisfies the second countability axiom, or that it is second-countable (also written

2nd countable) if it admits a countable basis.

E Exercise 2.10 Given a topological space (X ,T ) and a family B of opens of X , show that B is a basis of

(X ,T ) if and only if, for each x ∈ X ,

Bx := {B ∈ B : x ∈ B}
is a basis of neighborhoods of x. Deduce that any 2nd countable space is also 1st countable.

Example 2.48 In a metric space (X ,d), the collection of all balls

Bd := {B(x,r) : x ∈ X ,r > 0}
is a basis for the topology Td (see the end of the proof of Proposition 2.4). Although metric spaces are

allways 1st countable (cf. Example 2.34), not all are 2nd countable. However:

Example 2.49 For Rn, one can restrict to balls centered at points with rational coordinates:

BQ
Eucl := {B(x,

1

k
) : x ∈Qn,k ∈Q+}.

This is a countable family since Q is countable and products of countable sets are countable.

E Exercise 2.11 Show that BQ
Eucl is a basis of Rn. Deduce that any A ⊂ Rn is 2nd countable.

Finally, we come at the notion of topological manifold.

Definition 2.50 An n-dimensional topological manifold is any Hausdorff, 2nd countable topological

space X which has the following property: any point x ∈ X admits an open neighborhood U which is

homeomorphic to Rn.

Remark 2.51 Of course, the most important condition is the one requiring X to be locally homeomor-

phic to Rn. A pair (U,χ) consisting of an open U ⊂ X and a homeomorphism

χ : U → Rn, x 7→ χ(x) = (χ1(x), . . . ,χn(x))

is called a (local) coordinate chart for X ; U is called the domain of the chart; χ1(x), . . . ,χn(x) are called

the coordinates of x in the chart (U,χ). Given another chart ψ : V → Rn,

c := ψ◦χ−1 : χ(U ∩V )→ ψ(U ∩V )

(a homeomorphism between two opens in Rn) is called the change of coordinates from χ to ψ (it satis-

fies ψi(x) = ci(χ1(x), . . . ,χn(x)) for all x ∈ X ). By definition, topological manifolds can be covered by

(domains of) coordinate charts; hence they can be thought of as obtained by “patching together” several

copies of Rn, glued according to the change of coordinates.

Remark 2.52 One may wonder why the “2nd countability” condition is imposed. Well, there are many

reasons. The simplest one: we do hope that a topological manifold can be embedded in some RN for N

large enough. However, as the previous exercise shows, this would imply that X must be 2nd countable

anyway. Also, the 2nd countability condition implies that X can be covered by a countable family of

coordinate charts (see Exercise 2.71).

Example 2.53 Of course, Rn is itself a topological manifold. Using the stereographic projection (see the

previous chapter), we see that the spheres Sn are topological n-manifolds. But note that, while the open

disks are topological manifolds, the closed disks are not.

E Exercise 2.12 Show that the torus is a 2-dimensional topological manifold. What about the Klein bottle?

What about the Moebius band? Try to define “manifolds with boundary”.
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6. More on separation

The Hausdorffness is just one of the possible “separation axioms” that one may impose (the most im-

portant one!). Such separation axioms are relevant to the metrizability problem, as they are automatically

satisfied by metric spaces. Here is the precise definition.

Definition 2.54 We say that two subspaces A and B of a topological space (X ,T ) can be separated

topologically (or simply separated) if there are open sets U and V such that

A ⊂U,B ⊂V, and U ∩V = /0.

We say that A and B can be separated by continuous functions if there exists a continuous function f :

X → [0,1] such that f |A = 0, f |B = 1 (and we say that f separates A and B).

Example 2.55 If A and B can be separated by continuous functions, then they can be separated topolog-

ically as well. Indeed, if f separates A and B, then

U = f−1((−∞,
1

2
)),V = f−1((

1

2
,∞))

are disjoint opens (as pre-images of opens by a continuous map) containing A and B.

The separation conditions are most natural when A and B are closed in X . For instance, inside R, [0,1)
and (1,2] cannot be separated by continuous functions, while [0,1) and [1,2] cannot be separated even

topologically (see also Exercise 2.72).

In any metric space (X ,d), any two disjoint closed subsets A and B can be separated: indeed,

U = {x ∈ X : d(x,A)< d(x,B)}, V = {x ∈ X : d(x,A)> d(x,B)}
are disjoint opens containing A and B. Here we use the continuity of the function dA : X →R, x 7→ d(x,A)
(see Exercise 2.33 ) and the similar function dB. Actually, one can separate A and B even by continuous

functions: take

f : X → [0,1], f (x) =
dA(x)

dA(x)+dB(x)
.

There are several classes of separation conditions one may impose on a topological space X . At

one extreme, when the separation is required for sets of one elements, we talk about the Hausdorffness

condition. At the other extreme, one has “normality”:

Definition 2.56 A topological space is called normal if it is Hausdorff and any two disjoint closed subsets

can be separated topologically.

From our previous discussion it follows that all metrizable spaces are normal. As we shall see, for nor-

mal spaces disjoint closed subsets can allways be separated by continuous functions (Urysohn lemma)

and 2nd countable normal spaces are metrizable (Urysohn metrization theorem). That is why normal

spaces are important. However, one should be aware that“normality” is a condition that is (so) important

mainly inside the field of Topology; as soon as one moves to neighbouring fields (Geometry, Analysis,

etc), although many of the topological spaces one meets there are normal, very little attention is paid to

this condition (and you will almost never hear about “normal spaces” in other courses). For instance, in

such fields, Urysohn lemma (so important for Topology), often follows by simple tricks (e.g., as many

such spaces are already metrizable, it follows from the previous remark). For that reason we decided not

to concentrate too much on normal spaces; also, although the proof of Urysohn’s results could be pre-

sented right away, we have decided not to do them until they are absolutely needed. Note that, in contrast

with “normality”, the other topological conditions that we will study, such as Hausdorffness, connect-

edness, compactness, local compactness and even paracompactness, show up all over in mathematics

whenever topological spaces are relevant, and they are indispensable.
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7. More exercises

7.1. On topologies

E Exercise 2.13 How many distinct topologies can there be defined on a set with two elements? But with

three?

E Exercise 2.14 Consider the set N := N∪{∞} (the set of strictly positive integers to which we add the

infinity) and, for each n ∈ N put

Un := {k ∈ N : k ≥ n}= {n,n+1, . . .}∪{∞}.
Show that the following is a topology on N:

Tseq := { /0,U1,U2,U3, . . .}.

E Exercise 2.15 Prove that, for any set X , Tc f and Tcc are indeed topologies.

E Exercise 2.16 On R consider the family T consisting of /0, R and all intervals of type (−∞,r) with r ∈R.

Show that T is a topology on R and compare it with the Euclidean topology.

E Exercise 2.17 On R consider the family B consisting of /0, R and all intervals of type (−∞,r] with r ∈R.

Show that B is not a topology on R and find the smallest topology containing B . Is it larger or smaller

than the topology from the previous exercise? But than the Euclidean topology?

E Exercise 2.18 Let T be a topology on R. Show that T is the discrete topology if and only if {r} ∈ T for

all r ∈R.

E Exercise 2.19 Let Tl be the smallest topology on R which contains all the intervals of type [a,b) with

a,b ∈R. Similarly, define Tr using intervals of type (a,b]. Show that:

(1) A subset D ⊂ R belongs to Tl if and only if the following condition holds: for any x ∈ D there

exists an interval [a,b) such that

x ∈ [a,b)⊂ D.

(2) Tl and Tr are finer than Teucl, but Tl and Tr are not comparable.

(3) Tdis is the only topology on R which contains both Tl and Tr.

E Exercise 2.20 Consider a set X , a set of indices I and, for each i ∈ I, a topology Ti on X . Show that

T := ∩iTi (i.e. the family consisting of subsets U ⊂ X with the property that U ∈ Ti for all i ∈ I) is a

topology on X .

E Exercise 2.21 Given a set X and a family S of subsets of X , prove that there exists a topology T (S) on X

which contains S and is the smallest with this property. (Hint: use the axioms to see what other subsets

of X , besides the ones from S , must T (S) contain.)

E Exercise 2.22 On R2 we define the topology Tl ×Tl as the smallest topology which contains all subsets

of type

[a,b)× [c,d)

with a,b,c,d ∈ R. Define similarly Tr × Tr, Tl × Tr and Tr × Tl . Show that any two of these four

topologies are not comparable.
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E Exercise 2.23 To remove ambiguities regarding the Convention 2.9 show that, inside any topological

space (X ,T ), for all A ⊂ Y ⊂ X one has

(T |Y )|A = T |A.
To remove ambiguities regarding Convention 2.7 and 2.9 show that, for A ⊂ Rn, the Euclidean topology

on A coincides with the restriction to A of the Euclidean topology of Rn.

E Exercise 2.24 Let (X ,d) be a metric space, A,B subspaces of X such that

d(A,B) = 0.

(where d(A,B) := inf{d(a,b) : a ∈ A,b ∈ B}).

Is it true that A and B must have a common point (i.e. A∩B 6= /0)? What if we assume that both A and

B are closed?

7.2. On induced topologies

E Exercise 2.25 Consider the real line R as a subset of the plane R2. Show that the induced topology on

R coincides with the Euclidean topology on the real line.

E Exercise 2.26 Find an example of a topological space X and A ⊂ B ⊂ X such that A is closed in B, B is

open in X , and A is neither open nor closed in X .

E Exercise 2.27 Which of the following subsets of the plane are open?

(1) A = {(x,y) : x ≥ 0}.

(2) B = {(x,y) : x = 0}.

(3) C = {(x,y) : x > 0,y < 5}.

(4) D = {(x,y) : xy < 1,x ≥ 0}.

(5) E = {(x,y) : 0 ≤ x < 5}.

Note that all these sets are contained in A. Which ones are open in A?

E Exercise 2.28 Let (X ,T ) be a topological space and B ⊂ A ⊂ X .

(1) If A is open in X , show that B is open in X if and only if it is open in A.

(2) If A is closed in X , show that B is closed in X if and only if it is closed in A.

E Exercise 2.29 Given a topological space (X ,T ) and A ⊂ X , show that the induced topology T |A is the

smallest topology on A with the property that the inclusion map i : A → X is continuous.

7.3. On continuity

E Exercise 2.30 Consider

D := {(x,y) : ex > sin(y)cos(x)},

A := {(x,y) : x7 − sin(y7)≥ 1

x2 + y2 +1
}.

Show that D is open in R2, while A is closed in R2.

E Exercise 2.31 Let R be endowed with the topology Tl from Exercise 2.19. Which one of the following

functions f : R→ R is continuous:

(i) f (x) = x+1

(ii) f (x) =−x.

(iii) f (x) = x2.
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E Exercise 2.32 (from a 2012 exam) Show that any continuous map

f : (R,TEucl)→ (R,Tl)

must be constant (recall that Tl is the lower limit topology- see Exercise 2.19). Hint: you may use that R

has no non-empty proper subset which is both open and closed with respect to the Euclidean topology.

This property, known as connectedness of (R,TEucl is known from the first analysis course.

E Exercise 2.33 If (X ,d) is a metric space and A is a subspace of X , then the function

dA : X → R, dA(x) = d(x,A)

is continuous.

Deduce that, for any closed subset A of a metric space X , there exists a continuous function f : X →
[0,1] such that A = f−1(0).

E Exercise 2.34 The space Mn(R), of n× n matrices with real coefficients can be identified with Rn2

and

in this way has a natural topology (coming from the Euclidean metric). Prove that:

(1) the subspace GLn(R) of invertible matrices is open in Mn(R).
(2) the subspace SLn(R) consisting of invertible matrices of determinant equal to 1 is closed in

GLn(R).
(3) the subspace

O(n) := {A ∈ GLn(R
n) : AA∗ = Id}

is also closed (where A∗ denotes the transpose of A and Id is the identity matrix).

E Exercise 2.35 Let X and Y be two topological spaces, f : X → Y . We say that f is continuous at a

point x ∈ X if, for any neighborhood V of f (x) in Y there exists a neighborhood U of x in X such that

f (U)⊂V . Show that f is continuous if and only if it is continuous at all points x ∈ X .

7.4. On homeomorphisms and embeddings

E Exercise 2.36 From the topologies that you found in Exercise 2.13, how many non homeomorphic ones

are there?

E Exercise 2.37 Show that R endowed with the Euclidean topology is not homeomorphic to R endowed

with the topology from Exercise 2.16.

E Exercise 2.38 Show that, for any n ≥ 1 integer,

S1 × . . .×S1

︸ ︷︷ ︸

n−times

⊂R2 × . . .×R2

︸ ︷︷ ︸

n−times

= R2n

can be embedded in Rn+1. First prove it without using explicit formulas, then by explicit formulas.

E Exercise 2.39 Exhibit an embedding f : M → M of the Moebius band into itself which is not surjective.

What is the boundary of f (M) in M?

E Exercise 2.40 Show that the following three spaces are homeomorphic (giving the explicit homeomor-

phisms):

X = {(x,y) ∈ R2 : 0 < x2 + y2 ≤ 1} ⊂ R2

Y = {(x,y) ∈ R2 :
1

2
< x2 + y2 ≤ 1} ⊂ R2
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Z = S1 × (0,1] = {(x,y,z) ∈ R3 : x2 + y2 = 1,0 < z ≤ 1} ⊂R3.

Then compute the interiors and the boundaries of X , Y (in R2) and Z (in R3). How comes that, although

X , Y and Z are homeomorphic, their interiors and boundaries are quite different?

E Exercise 2.41 Show that for any A ⊂ S2 nonempty, S2 \A can be embedded in R2.

E Exercise 2.42 (from a 2010 exam) Let N= {0,1,2, . . .} be the set of non-negative integers. We consider

the following two collections of subsets of N:

• T1 consisting of /0, N and all the sets of the form {0,1, . . . ,n} with n ∈ N.

• T2 consisting of /0 and all the sets of the form {n,n+1, . . .} with n ∈ N.

Questions:

(1) Show that T1 and T2 are two topologies on N.

(2) Show that the spaces (N,T1) and (N,T2) are not homeomorphic.

E Exercise 2.43 Let (X ,TX) and (Y,TY ) be two topological spaces and let

f : (X ,TX)→ (Y,TY )

be a continuous map. Define f ∗TY as the smallest topology on X with the property that

f : (X , f ∗TY )→ (Y,TY )

is continuous. Show that

f ∗TY = { f−1(V ) : V ∈ TY}
and then, assuming that (X ,TX) is Hausdorff, show that

( f ∗TY = TX)⇐⇒ ( f is an embedding).

7.5. The “removing a point trick” The first part of the following exercise is extremely useful for some

of the later exercises.

E Exercise 2.44 If X and Y are homeomorphic, prove that for any x ∈ X there exists y ∈Y such that X −{x}
is homeomorphic to Y −{y}.

Also explain that, “there exists y ∈ Y ” cannot be replaced with “for any y ∈Y ”.

7.6. On convergence

E Exercise 2.45 Let X = (0,1) endowed with the Euclidean topology. Is the sequence

xn =
1

n

convergent in the topological space X?

E Exercise 2.46 Let R be endowed with the topology Tl from Exercise 2.19. Study the convergence of the

sequences (xn)n≥1 and (yn)n≥1 where

xn =
1

n
, yn =−1

n
.

E Exercise 2.47 What about convergence in (X ,Tcf). But about (X ,Tcc)?
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E Exercise 2.48 We say that two topologies T1 and T2 on X have the same convergence of sequences if,

for a sequence (xn)n≥1 of elements of X , and x ∈ X , one has:

xn
T1−→ x ⇐⇒ xn

T2−→ x.

Show that

• If T1 and T2 satisfy the first countability axiom and have the same convergence of sequences,

then T1 = T2.

• This is no longer true if one gives up the first countability axiom.

(Hint for the second part: This is difficult. Try Tdiscr and Tcf. If it does not work, try to change one of

them).

7.7. On closure, interior, etc

E Exercise 2.49 Let X = (−∞,1)∪ (1,4)∪ [5,∞). Find the closure, the interior and the boundary (in X ) of

A = [0,1)∪ (1,2)∪ [3,4)∪ (5,6).

E Exercise 2.50 Find the interior and the closure of Q in R in each of the cases: when R is endowed with

• the Euclidean topology.

• the discrete topology.

• the cofinite topology.

• the co-countable topology.

E Exercise 2.51 Find the closure, the interior and the boundary of the following subsets of the plane:

(1) {(x,y) : x ≥ 0,y 6= 0}.

(2) {(x,y) : x ∈Q,y > 0}.

E Exercise 2.52 For each of the sets from Exercise 2.27, find the interior, closure and boundary in the

plane. Then in A (i.e. as subspaces of A).

E Exercise 2.53 Let Tl be the topology from Exercise 2.19. Find the closure and the interior in (R,Tl) of

each of the intervals

[0,1),(0,1],(0,1), [0,1].

E Exercise 2.54 Let Tl be the topology from Exercise 2.19.

(i) In the topological space (R,Tl), find the closure, the interior and the boundary of

A = (0,1)∪ [2,3].

(ii) Show that (R,Tl) and (R,Teucl) are not homeomorphic.

E Exercise 2.55 Compute the interior, the closure and the boundary of

A = (0,1]× [0,1)

in the topological space X = R2 endowed with the topology Tl ×Tl of Exercise 2.22.

E Exercise 2.56 (from a 2010 exam) Let X be the (interior of an) open triangle, as drawn in the picture

(the edges are not part of X !), viewed as a topological space with the topology induced from R2. Let

A ⊂ X be the open disk drawn in the picture (tangent to the edges of the closed triangle). Compute the

closure and the boundary of A in X .
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A= an open disk inside X  X= an open triangle

FIGURE 2.

E Exercise 2.57 Show that, in any topological space X , for any subspace A ⊂ X , one has

∂(A) = ∂(X −A).

E Exercise 2.58 Let A,B be two subsets of a topological space X . Recall that Int(A) =
◦
A denotes the interior

of A. Prove that

1. If A ⊂ B then Int(A)⊂ Int(B).
2. Int(A∩B) = Int(A)∩ Int(B).
3. Int(A∪B)⊃ Int(A)∪ Int(B), but the equality may fail.

E Exercise 2.59 Let A, B and {Ai : i ∈ I} denote subsets of a topological space X , where i runs in a set of

indexes I. Prove that

1. If A ⊂ B then A ⊂ B.

2. A∪B = A∪B.

3. If I is finite then ∪iAi = ∪iAi.

4. In general, when I is infinite, ∪iAi ⊃ ∪iAi, but the two may be different.

5. We say that {Ai : i ∈ I} is locally finite if any point x ∈ X admits a neighborhood V which

intersects all but a finite number of Ais (i.e. such that {i ∈ I : Ai ∩V 6= /0} is finite). Under this

assumption, show that ∪iAi = ∪iAi.

7.8. Density

E Exercise 2.60 Show that Q is dense in R.

E Exercise 2.61 Show that Q×Q is dense in R2.

E Exercise 2.62 Let T be the torus. Describe (on the picture) a continuous injection f : R → T whose

image is dense in T . Is f an embedding?

E Exercise 2.63 Show that GLn(R) is dense in Mn(R) (see Exercise 2.34).
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E Exercise 2.64 Show that any continuous function f : R→ R with the property that

f (x+ y) = f (x)+ f (y)

for all x,y ∈ R, then f must be linear, i.e. there exists a ∈ R such that

f (x) = ax ∀ x ∈R.

(Hint: a = f (1). For what x’s can you prove that f (x) = ax? Then use continuity and the fact Q is dense

in R.)

7.9. On Hausdorffness, 2nd countability, separation

E Exercise 2.65 How many from the topologies from Exercise 2.13 are Hausdorff?

E Exercise 2.66 Is the topology from Exerc. 2.14 Hausdorff? But from 2.16? But from 2.17?

E Exercise 2.67 Show that, in any Hausdorff space X , all the subspaces with one element (i.e. of type

A = {x} with x ∈ X ) are closed.

E Exercise 2.68 [from the 2015 exam] Prove that, for any Hausdorff space (X ,T ), any finite subset F ⊂ X

is closed in X .

E Exercise 2.69 Show that R endowed with the lower limit topology (of Exercise 2.19) is not second

countable.

E Exercise 2.70 Given a set X , show that any Hausdorff topology on X contains Tc f . When is Tc f

Hausdorff? When does it exist a smallest Hausdorff topology on X (i.e. a Hausdorff topology which is

contained in all other Hausdorff topologies on X )?

E Exercise 2.71 Let X be a 2nd countable space. Show that from any open cover U of X one can extract

a countable subcover. In other words, for any collection U = {Ui : i ∈ I} consisting of opens in X such

that X = ∪i∈IUi, one can find i1, i2, . . . ∈ I such that X = ∪kUik .

E Exercise 2.72 Consider R with the Euclidean topology. In each of the following cases, decide (and

explain!) when A and B can be separated topologically or by continuous functions:

(1) A = [0,1), B = (1,2].
(2) A = [0,1), B = [1,2].
(3) A = [0,1), B = (2,3].

E Exercise 2.73 Prove that the sphere Sn is an n-dimensional topological manifold. Show that it can be

covered by two coordinate charts. Compute the change of coordinates.
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1. Constructions of topologies: quotients

We now discuss another general construction of topologies. Let’s start with a surjective map π : X →Y .

Typically, (Y,π) is a quotient of X modulo an equivalence relation R on X (“gluing data”). Assume now

that X is endowed with a topology T . Then one defines

π∗(T ) := {V ⊂ Y : π−1(V ) ∈ T },
called the quotient topology on Y induced by π. A surjective map π : (X ,TX) → (Y,TY ) between two

topological spaces is called a topological quotient map if TY = π∗(TX).

Theorem 3.1 π∗(T ) is indeed a topology on Y . Moreover, it is the largest topology on Y with the

property that π : X →Y becomes continuous.

PROOF. Axiom (T1) is immediate. For (T2), let Ui ∈ π∗(T ) (with i ∈ {1,2}), i.e. subsets of Y

satisfying π−1(Ui) ∈ T . Then

π−1(U1 ∩U2) = π−1(U1)∩π−1(U2)

must be in T , i.e. U1 ∩U2 ∈ π∗(T ). The axiom (T3) follows similarly, using the fact that π−1(∪iUi) =
∪iπ

−1(Ui). The last part follows from the definition of continuity and of π∗(T ). �

The following is a very useful recognition criteria for continuity of maps defined on quotients.

Proposition 3.2 Let X be a topological space, π : X → Y a surjection, and let Y be endowed with the

quotient topology. Then, for any other topological space Z, a function f : Y → Z is continuous if and

only if f ◦π : X → Z is.

PROOF. f−1(U) is open in Y if and only if π−1( f−1(U)) = ( f ◦π)−1(U) is open in X . �

There are some variations on the previous discussion, mainly terminological, when we want to empha-

size that Y is the quotient modulo an equivalence relation (see Definition 3.3).

Definition 3.3 Let R be an equivalence relation defined on a topological space (X ,T ). A quotient of

(X ,T ) modulo R is a pair (Y,π) consisting of a topological space Y and a topological quotient map

π : X →Y with the property that π(x) = π(x′) holds if and only if (x,x′) ∈ R.

If Y = X/R is the abstract quotient, then the resulting topological space (X/R,π∗(T )) is called the

abstract quotient of (X ,T ) modulo R.

With this terminology, the last proposition translates into:

Corollary 3.4 Assume that (Y,π) is a quotient of the topological space X modulo R. Then, for any

topological space Z, there is a 1-1 correspondence between

(i) continuous maps f : Y → Z.

(ii) continuous maps f̃ : X → Z such that f̃ (x) = f̃ (x′) whenever (x,x′) ∈ R.

This correspondence is characterized by f̃ = f ◦π.

Finally, we would like to point out one of the notorious problems that arises when considering quo-

tients: Hausdorffness may be destroyed! (this problem does not appear when we consider subspace or

product topologies!). Hence extra-care is required when we deal with quotients.

E Exercise 3.1 Take two copies of the interval [0,2], say X = [0,2]×{0}∪ [0,2]×{1} (in the plane) and

glue the points (t,0) and (t,1) for each t ∈ [0,2], t 6= 1. Show that the resulting quotient space Y is not

Hausdorff.



2. EXAMPLES OF QUOTIENTS: THE ABSTRACT TORUS, MOEBIUS BAND, ETC 53

2. Examples of quotients: the abstract torus, Moebius band, etc

In the first chapter we discussed the torus, Moebius band, etc intuitively. We can now have a more

complete discussion about them, as topological spaces. Let us concentrate, for example, on the torus.

Here are some remarks on the discussions from the first chapter:

1. when constructing it by gluing the opposite sides of a square, although the “shape” of the result may

be predicted, the actual result (as a subset of R3) depends on all the movements we make while gluing.

But even the “shape” is not completely clear: we could have performed the same gluing in a “clumsier

way” (e.g., for the Moebius band, we could have twisted the piece of paper three times before the actual

gluing).

2. when saying “torus” , we would like to think about the intrinsic space itself. The information that

this space can be embedded in R3 is interesting and nice, but there may be many such embeddings. See

Figure 1 for several different looking embeddings. The “shape” reflects the way one embeds the torus

into R3, not only the intrinsic torus.

FIGURE 1.

The way to deal with all these in a more precise way is the following:

1. Consider the abstract torus, defined as the abstract quotient

Tabs := [0,1]× [0,1]/R,

where R is the equivalence relation encoding the gluing. This defines Tabs as a topological space.

2. Embed the abstract torus: realizing the torus more concretely in R3, i.e. finding explicit models

of it, translates now into the question of describing embeddings

f : Tabs → R3.

By Corollary 3.4, continuous f ’s correspond to continuous maps

f̃ : [0,1]× [0,1]→ R3

with the property that f̃ (t,s) = f̃ (t ′,s′) for all ((t,s),(t ′,s′)) ∈ R. The injectivity of f is equivalent to the

condition that the last equality holds if and only if ((t,s),(t ′,s′)) ∈ R.

Example 3.5 Such f̃ ’s arise in the explicit realizations of the torus (see Chapter 1):

f̃ (t,s) = (R+ rcos(2πt))cos(2πs),(R+ rcos(2πt))sin(2πs),rsin(2πt)).

The induced f is a continuous injection of Tabs into R3 whose image is the geometric model TR,r from

Section 6. But please note: while we now know that f : Tabs → TR,r is a continuous bijection, one still has

to show that the inverse is continuous. The best proof of this, which applies immediately to all examples

of this type, not only to the torus, and not only to our explicit f , follows from one of the basic properties

of compact spaces, which will be discussed in the next chapter.

E Exercise 3.2 Fill in the details; do the same for the Moebius band, Klein bottle, P2.
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3. Special classes of quotients I: quotients modulo group actions

In this section we discuss quotients by group actions. Let X be a topological space. We denote by

Homeo(X) the set of all homeomorphisms from X to X . Together with composition of maps, this is a

group. Let Γ be another group, whose operation is denoted multiplicatively.

Definition 3.6 An action of the group Γ on the topological space X is a group homomorphism

φ : Γ → Homeo(X), γ 7→ φγ.

Hence, for each γ ∈ Γ, one has a homeomorphism φγ of X (“the action of γ on X”), so that

φγγ′ = φγ ◦φγ′ ∀ γ,γ′ ∈ X .

Sometimes φγ(x) is also denoted γ(x), or simply γ · x, and one looks at the action as a map

Γ×X → X , (γ,x)→ γ · x.
The action induces an equivalence relation RΓ on X defined by:

(x,y) ∈ RΓ ⇐⇒ ∃ γ ∈ Γ s.t. y = γ · x.
The resulting topological quotient is called the quotient of X by the action of Γ, and is denoted by X/Γ.

Note that the RΓ-equivalence class of an element x ∈ X is precisely its Γ-orbit:

Γ · x := {γ · x : γ ∈ Γ}.
Hence X/Γ consists of all such orbits, and the quotient map sends x to Γx.

Example 3.7 The additive group Z acts on R by

Z×R→ R, (n,r) 7→ φn(r) = n · r := n+ r.

The resulting quotient is (homeomorphic to) S1. More precisely, one uses Corollary 3.4 again to see

that the map f̃ : R → S1, t 7→ (cos(2πt),sin(2πt)) induces a continuous bijection f : R/Z → S1; then

one proves directly (e.g. using sequences) that f is actually a homeomorphism, or one waits again until

compactness and its basic properties are discussed.

Here is a fortunate case in which Hausdorffness is preserved when passing to quotients.

Theorem 3.8 If X is a Hausdorff space and Γ is a finite group acting on X , then the quotient X/Γ is

Hausdorff.

PROOF. Let Γx,Γy∈X/Γ be two distinct points (x,y ∈X ). That they are distinct means that, for each

γ ∈ Γ, x 6= γy. Hence, for each γ ∈ Γ, we find disjoint opens Uγ,Vγ ⊂ X containing x, and γy, respectively.

Note that

Wγ = φ−1
γ (Vγ)

is an open containing y, and what we know is that

Uγ ∩φγ(Wγ) = /0.

Since Γ is finite, U := ∩γUγ, V := ∩γWγ will be open neighborhoods of x and y, respectively, with the

property that

U ∩φa(V ) = /0, ∀ a ∈ Γ.

Using the quotient map π : X → X/Γ, we consider π(U),π(V ), and we claim that they are disjoint opens

in X/Γ separating Γx and Γy. That they are disjoint follows from the previous property of U and V . To

see that π(U) is open, we have to check that π−1(π(U)) is open, but

π−1(π(U)) = ∪γ∈Γφγ(U)
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(check this!) is a union of opens, hence open. Similarly, π(V ) is open. Clearly, Γx = π(x) ∈ π(U) and

Γy = π(y) ∈ π(V ). �
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4. Another example of quotients: the projective space Pn

A very good illustration of the use of quotient topologies is the construction of the projective space, as

a topological space (a set theoretical version of which appeared already in Exercise 1.34).

Recall that, set theoretically, Pn is the set of all lines through the origin in Rn+1:

Pn = {l ⊂ Rn+1 : l−one dimensional vector subspace}.
To realize it as a topological space, we relate it to topological spaces that we already know. There are

several ways to handle it.

4.1. As a quotient of Rn+1 −{0}: For this, we use a simple idea: for each point in Rn+1 −{0} there is

(precisely) one line passing through the origin and that point. This translates into the fact that there is a

surjective map

π : Rn+1 → Pn,x 7→ lx,

where lx is the line through the origin and x:

lx = Rx = {λx : λ ∈R} ⊂ Rn+1.

The projective space Pn can now be defined as the set Pn endowed with the quotient topology. Note also

that the equivalence relation underlying π comes from a group action. This is based on the remark that

π(x) = π(y), i.e. lx = ly, happens if and only if x = λy for some λ ∈ R∗. Hence, taking Γ = R∗ (a group

with usual multiplication), it acts on Rn+1 −{0} by:

φλ(x) = λx for λ ∈ R∗,x ∈ Rn+1 −{0}
and the projective space becomes

Pn = (Rn+1 −{0})/R∗.

4.2. As a quotient of Sn: This is based on another simple remark: a line in Rn+1 through the origin

is uniquely determined by its intersection with the unit sphere Sn ⊂ Rn+1- which is a set consisting of

two antipodal points (the first picture in Figure 2). This indicates that Pn can be obtained from Sn by

identifying (gluing) its antipodal points. Again, this is a quotient that arises from a group action: the

group Z2 acting on Sn. Using the multiplicative description Z2 = {1,−1}, the action is: φ1 is the identity

map, while φ−1 is the map sending x ∈ Sn to its antipodal point −x. Hence the discussion indicates:

Proposition 3.9 Pn is homeomorphic to Sn/Z2.

PROOF. The conclusion of the previous discussion is that there is a set-theoretical bijection:

φ : Sn/Z2 → Pn,

which sends the Z2-orbit of x ∈ Sn to the line lx through x, with the inverse

ψ : Pn → Sn/Z2

which sends the line l to Sn ∩ l (a Z2-orbit!). We have to check that they are continuous. We use

Proposition 3.2 and its corollary. To see that φ is continuous, we have to check that the composition

with the quotient map Sn → Sn/Z2 is continuous. But this composition is precisely the restriction of the

quotient map Rn+1 −{0} → Pn to Sn, hence is continuous. In conclusion, φ is continuous.

To see that ψ is continuous, we have to check that its composition with the quotient map Rn+1−{0}→
Pn is continuous. But this composition- which is a map from Rn+1 −{0} to Sn/Z2 can be written as the

composition of two other maps which we know to be continuous:

• The map Rn+1 −{0} → Sn sending x to x/||x||.
• The quotient map Sn → Sn/Z2.

In conclusion ψ is continuous. �
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Corollary 3.10 The projective space Pn is Hausdorff.

4.3. As a quotient of Dn: Again, the starting remark is very simple: the orbits of the action of Z2 on

Sn always intersect the upper hemisphere Sn
+ (for notations, see Section 4 in the first chapter). Moreover,

such an orbit either lies entirely in the boundary of Sn
+, or intersects its interior in a unique point. See the

second picture in Figure 2. This indicates that Pn can be obtained from Sn
+ by gluing the antipodal points

that belong to its boundary. On the other hand, the orthogonal projection onto the horizontal hyperplane

defines a homeomorphism between Sn
+ and Dn (see Figure 2). Passing to Dn, we obtain an equivalence

relation R on Dn given by:

(x,y) ∈ R ⇐⇒ (x = y) or (x,y ∈ Sn−1 and x =−y),

and we have done a part of the following:

E Exercise 3.3 Show that Pn is homeomorphic to Dn/R. What happens when n = 1?

Corollary 3.11 Pn for n = 2 is homeomorphic to the projective plane as defined in Chapter 1 (Section

8), i.e. obtained from the square by gluing the opposite sides as indicated in Figure 3.
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5. Constructions of topologies: products

In this section we explain how the Cartesian product of two topological spaces is naturally a topological

space itself. Given two sets X and Y we consider their Cartesian product

X ×Y = {(x,y) : x ∈ X ,y ∈Y}.
Given a topology TX on X and a topology TY on Y , one defines a topology on X ×Y , the “product

topology” TX ×TY , as follows. We say that a subset D ⊂ X ×Y is open if and only if

(5.1) ∀ (x,y) ∈ D ∃ U ∈ TX ,V ∈ TY such that x ∈U,y ∈V,U ×V ⊂ D.

We denote by TX ×TY the collection of all such D’s and we call it the product topology.

Proposition 3.12 Given (X ,TX) and (Y,TY ), TX ×TY is indeed a topology on X ×Y . Moreover, it is the

smallest topology on X ×Y with the property that the two projections

prX : X ×Y → X ,prY : X ×Y →Y

(sending (x,y) to x, and y, respectively) are continuous.

PROOF. Axiom (T1) is clear. For (T2), let D1,D2 be in the product topology, and we show that

D := D1 ∩D2 is as well. To check (5.1), let (x,y) ∈ D. Since D1 and D2 satisfy (5.1), for each i ∈ {1,2},

we find Ui ∈ TX and Vi ∈ TY such that

(x,y) ∈Ui ×Vi ⊂ Di.

Then U := U1 ∩U2 ∈ TX (axiom (T2) for TX ), and similarly V := V1 ∩V2 ∈ TY , while clearly we have

x ∈U , y ∈V , U ×V ⊂ D. The proof of the axiom (T3) is similar.

For the second part, note that a topology T on X ×Y has the property that both projections are continu-

ous if and only if U ×Y ∈ T and X ×V ∈ T for all U ∈ TX and V ∈ TY . Clearly TX ×TY has the property,

hence the projections are continuous with respect to the product topology. For an arbitrary topology T
on X ×Y with the same property, since

U ×V = (U ×Y )∩ (X ×V ),

we deduce that U ×V ∈ T for all U ∈ TX , V ∈ TY . To show that TX ×TY ⊂ T , let D be an open in the

product topology and we show that it must belong to T . Since D satisfies (5.1), for each z = (x,y) ∈ D

we find Uz ∈ TX , Vz ∈ TY such that

{z} ⊂Uz ×Vz ⊂ D.

Taking the union over all z ∈ D, we deduce that

D = ∪z∈DUz ×Vz.

But, as we have already seen, all members Uz ×Vz must be in T hence, using axiom (T3) for T , we

deduce that D ∈ T . �

E Exercise 3.4 Show that, if (Z,TZ) is a third topological space, then a function

h = ( f ,g) : Z → X ×Y, h(z) = ( f (z),g(z))

is continuous if and only if its components f : Z → X and g : Z → Y are both continuous.

Example 3.13 In R3 we have the cylinder

C = {(x,y,z) ∈ R3 : x2 + y2 = 1,0 ≤ z ≤ 1},
which is pictured in Figure 4. According to our conventions, C is considered with the topology induced

from R3. On the other hand, since

C = S1 × [0,1],
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where S1 is the unit circle in R2, C carries yet another natural topology, namely the product topology.

These two topologies are the same. This can be proven in a much greater generality, as described in

Exercise 3.35.

E Exercise 3.5 A topological group is a group (G, ·) endowed with a topology on G such that all the group

operations, i.e.

(1) the inversion map τ : G → G,g 7→ g−1,

(2) the composition map m : G×G → G, (g,h) 7→ g ·h
are continuous (where G×G is endowed with the product topology).

Note that the sets of matrices GLn(R), SLn(R), O(n) that appear in Exercise 2.34, together with multi-

plication of matrices, are groups. The same exercise describe natural topologies on them (induced from

Mn(R)). Show that, with respect to these topologies, they are all topological groups.
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6. Special classes of quotients II: collapsing a subspace, cones, suspensions

Another class of quotient spaces are quotients obtained by collapsing a subspace to a point.

Definition 3.14 Let X be a topological space and let A ⊂ X . We define X/A as the topological space

obtained from X by collapsing A to a point (i.e. by identifying to each other all the points of A). Equiva-

lently,

X/A = X/RA,

where RA is the equivalence relation on X defined by

RA = {(x,y) : x = y or x,y ∈ A}.

Here are some more constructions of this type. Let X be a topological space.

The cylinder on X is defined as

Cyl(X) := X × [0,1],

endowed with the product topology (and the unit interval is endowed with the Euclidean topology). It

contains two interesting copies of X : X ×{1} and X ×{0}.

The cone on X is defined as the quotient obtained from Cyl(X) by collapsing X ×{1} to a point:

Cone(X) := X × [0,1]/(X ×{1})
(endowed with the quotient topology). Intuitively, it looks like a cone with basis X .The cone contains

the copy X ×{0} of X (the basis of the cone).

The suspension of X is defined as the quotient obtained from Cone(X) by collapsing the basis X ×{0}
to a point:

S(X) := Cone(X)/(X ×{0}).

1

0

2

1
Xx{ −}

The suspension of XThe cone of XThe cylinder of X

1

Xx{0}

Xx{1}

Xx{0}

FIGURE 5.

Example 3.15 The general constructions of quotients, such as the quotient by collapsing a subspace

to a point, the cone construction and the suspension construction, are nicely illustrated by the various

relations between the closed unit balls Dn ⊂ Rn and the unit spheres Sn ⊂ Rn+1. We mention here the

following:

(i) Dn is homeomorphic to Cone(Sn−1)- the cone of Sn−1.

(ii) Sn is homeomorphic to S(Sn−1)- the suspension of Sn−1.

(iii) Sn is homeomorphic to Dn/Sn−1- the space obtained from Dn by collapsing its boundary to a

point.
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PROOF. The first homeomorphism is indicated in Figure 6 (project the cone down to the disk). It is

not difficult to make this precise: we have a map

f̃ : Sn−1 × [0,1]→ Dn, f̃ (x, t) = (1− t)x.

This is clearly continuous and surjective, and it has the property that

f̃ (x, t) = f̃ (x′, t ′)⇐⇒ (x, t) = (x′, t ′) or t = 1,

which is precisely the equivalence relation corresponding to the quotient defining the cone. Hence we

obtain a continuous bijective map

f : Cone(Sn−1) = Sn−1 × [0,1]/(Sn−1 ×{1})→ Dn.

After we will discuss the notion of compactness, we will be able to conclude that also f−1 is continuous,

hence f is a homeomorphism. Note that this f sends Sn−1 ×{1} to the boundary of Dn, hence (ii) will

follow from (iii). In turn, (iii) is clear on the picture (see Figure 11 in the previous Chapter); the map

from Dn to Sn indicated on the picture can be written explicitly as

g̃ : Dn → Sn,x 7→ (
x1

||x|| sin(π||x||), . . . , xn

||x|| sin(π||x||),cos(π||x||))

(well defined for x 6= 0) and which sends 0 to the north pole (0, . . . ,0,1).
One can check directly that

g̃(x) = g̃(x′)⇐⇒ x = x′ or x,x′ ∈ Sn−1,

which is the equivalence relation corresponding to the quotient Dn/Sn−1. We deduce that we have a

bijective continuous map:

g : Dn/Sn−1 → Sn

but, again, we leave it to after the discussion of compactness the final conclusion that g is a homeomor-

phism. �
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7. Constructions of topologies: Bases for topologies

In the construction of metric topologies, the balls were the building pieces. Similarly for the product

topology, where the building pieces were the subsets of type U ×V with U ∈ TX , V ∈ TY . In both cases,

the collection of “building pieces” was not a topology, but “generated” a topology. The abstract notion

underlying these constructions is that of topology basis.

Definition 3.16 Let X be a set and let B be a collection of subsets of X . We say that B is a topology basis

if it satisfies the following two axioms:

(B1) for each x ∈ X there exists B ∈ B such that x ∈ B.

(B2) for each B1,B2 ∈ B , and x ∈ B1 ∩B2, there exists B ∈ B such that x ∈ B ⊂ B1 ∩B2.

In this case, we define the topology induced by B as the collection

T (B) := {U ⊂ X : ∀ x ∈U ∃ B ∈ B s.t. x ∈ B, B ⊂U}.

E Exercise 3.6 Show that, indeed, for any metric d on X , the collection Bd of all open balls is a topology

basis and topology T (Bd) = Td . Prove a similar statement for the product topology.

We still have to prove that T (B) is, indeed, a topology (the next proposition). Here we point out a

different description of T (B) (which we have already seen in the case of metric an product topologies-

and this is a hint for the next exercise!).

E Exercise 3.7 Let X be a set and let B be a collection of subsets of X . Then a subset U ⊂ X is in T (B) if

and only if there exist Bi ∈ B with i ∈ I (I-an index set) such that U = ∪i∈IBi.

Proposition 3.17 Given a collection B of subsets of a set X , the following are equivalent:

(1) B is a topology basis.

(2) T (B) is a topology on X .

In this case T (B) is the smallest topology on X which contains B ; moreover, B is a basis for the

topological space (X ,T (B)), in the sense of Definition 2.47.

PROOF. We prove that the axioms (T1), (T2) and (T3) of a topology (applied to T (B)) are equivalent

to axioms (B1) and (B2) of a topology basis (applied to B). First of all, the previous exercise shows that

(T3) is satisfied without any assumption on B. Next, due to the definition of T (B), (B1) is equivalent to

X ∈ T (B). Since clearly /0 ∈ T (B), (B1) is equivalent to (T1). Hence it suffices to prove that (T2) (for

T (B)) is equivalent to (B2) (for B). That (T2) implies (B2) is immediate: given B1,B2 ∈ B , since they

are in T (B) so is their intersection, i.e. for all x ∈ B1∩B2 there exists B ∈ B such that x ∈ B, B ⊂ B1∩B2.

For the converse, assume that (B2) holds. To prove (T 2) for T (B), we start with U,V ∈ T (B) and we

want to prove that U ∩V ∈ T (B). I.e., for an arbitrary x ∈ U ∩V , we have to find B ∈ B such that

x ∈ B ⊂U ∩V . Since x ∈ U ∈ T (B), we find B1 ∈ B such that x ∈ B1 ⊂ U . Similarly, we find B2 ∈ B
such that x ∈ B2 ⊂V . By (B2) we find B ∈ B such that x ∈ B ⊂ B1 ∩B2. We deduce that x ∈ B ⊂U ∩V ,

proving (T2). Finally, the last part of the proposition follows from the previous exercise, as any topology

which contains B must contain all unions of sets in B . �

Next, since many topologies are defined with the help of a basis, it is useful to know how to compare

topologies by only looking at basis elements (see Exercises 3.37 and 3.39).

Lemma 3.18 Let B1 and B2 be two topology bases on X . Then T1 is smaller than T2 if and if and only

if: for each B1 ∈ B1 and each x ∈ B1, there exists B2 ∈ B2 such that x ∈ B2 ⊂ B1.
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PROOF. What we have to show is that T1 ⊂ T2 is equivalent to B1 ⊂ T2. The direct implication is

clear since B1 ⊂ T1. For the converse, we use the fact that every element in T1 = T (B1) can be written as

a union of elements of B1; hence, if B1 ⊂ T2, every element of T1 can be written as a union of elements

of T2 hence is in itself in T2. �
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8. Constructions of topologies: Generating topologies

8.1. Generated Topologies There is a slightly more general recipe for generating topologies. What

it may happen is that we have a set X , and we are looking for a topology on X which contains certain

(specified) subsets of X . In other words,

• we start with a set X and a collection S of subsets of X

and we are looking for a (interesting) topology T on X which contains S . Of course, the discrete topology

Tdis on X is always a choice, but it is not a very interesting one (it does not even depend on S ). Is there a

“best” one? More precisely:

• is there a smallest possible topology on X which contains S?

Example 3.19 If S = B is a topology basis on the set X , Proposition 3.17 shows that the answer is

positive, and the resulting topology is precisely T (B).

The answer to the question is always “yes”, for any collection S . Indeed, Exercise 2.20 of the previous

chapter tells us that intersections of topologies is a topology. Hence one can just proceed abstractly and

define:

〈S〉 :=
⋂

T −topology on X containing S

T

This is called the topology generated by S . By Exercise 2.20, it is a topology. By construction, it is the

smallest one containing S . Of course, this abstract description is not the most satisfactory one. However,

using exactly the same type of arguments as in the proof of Proposition 3.17:

Proposition 3.20 Let X be a set, let S be a collection of subsets. Define B(S) as the collection of subsets

of X which can be written as finite intersections of subsets that belong to S . Then B(S) is a topology

basis and the associated topology is precisely 〈S〉. In conclusion, a subset U ⊂ X belongs to 〈S〉 if and

only if it is a union of finite intersections of members of S .

8.2. Initial topologies Here is a general principle for constructing topologies. Many topological con-

structions are what we call “natural”, or “canonical” (in any case, not arbitrary). Very often, when one

looks for a topology, one wants certain maps to be continuous. This happens e.g. with induced and

product topologies. A general setting is as follows.

• start with a set X and a collection of maps { fi : X → Xi}i∈I (I is an index set), where each Xi is

endowed with a topology Ti.

We are looking for (interesting) topologies TX on X such that all the maps fi become continuous. As

before, this has an obvious but unsatisfactory answer: TX = Tdis (which does not reflect the functions fi).

One should also remark that the smaller TX becomes, the smaller are the chances that fi are continuous.

With these, the really interesting question is to

• find the smallest topology on X such that all the functions fi become continuous.

Now, by the definition of continuity, a topology on X makes the functions fi continuous if and only if all

subsets of type f−1
i (Ui) with i ∈ I, Ui ∈ Ti, are open. Hence, denoting

S := {U ⊂ X : ∃ i ∈ I,∃ Ui ∈ Ti such that U = f−1
i (Ui)}

the answer to the previous question is: the topology 〈S〉 generated by S . This is called the initial

topology on X associated to the starting data (the topological spaces Xi and the functions fi).

Example 3.21 Given a subset A of a topological space (X ,T ), the natural map here is the inclusion

i : A → X . The associated initial topology on A is the induced topology T |A .

Given two topological spaces (X ,TX) and (Y,TY ), the Cartesian product X ×Y comes with two natural

maps: the projections prX : X ×Y → X , prY : X ×Y → Y . The associated initial topology is the product

topology on X ×Y .
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9. Example: some spaces of functions

Given two sets X and Y we denote by F (X ,Y ) the set of all functions from X to Y . In many parts of

mathematics, when interested in a certain problem, one deals with subsets of F (X ,Y ), endowed with a

topology which is relevant to the problem; the topology is dictated by the type of convergence one has

to deal with. The list of examples is huge; we will look at some topological examples, i.e. at the set

of continuous functions C (X ,Y ) ⊂ F (X ,Y ) between two spaces. The general setting will be discussed

later. Here we treat the particular case

X = I ⊂R an interval, Y =Rn endowed with the Euclidean metric d.

Here I could be any interval, open or not, closed or not, equal to R or not.

There are several notions of convergence on the set F (I,Rn) of functions from I to Rn.

Definition 3.22 Let { fn}n≥1 be a sequence in F (I,Rn), f ∈ F (I,Rn). We say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x)→ f (x) for all x ∈ I.

• fn converges uniformly to f , and we write fn ⇒ f , if for any ε > 0, there exists nε s.t.

d( fn(x), f (x)) < ε ∀ n ≥ nε, ∀ x ∈ I.

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any compact sub-interval

K ⊂ I, fn|K ⇒ f |K .

We show that these convergences correspond to certain topologies on F (I,Rn). First the pointwise

convergence. For x ∈ I, U ⊂ Rn open, we define

S(x,U) := { f ∈ F (I,Rn) : f (x) ∈U} ⊂ F (I,Rn).

These form a family S . The topology of pointwise convergence, denoted Tpt , is the topology on F (I,Rn)
generated by S . Hence S defines a topology basis, consisting of finite intersections of members of S , and

Tpt is the associated topology.

Proposition 3.23 The pointwise convergence coincides with the convergence in (F (I,Rn),Tpt).

PROOF. Rewrite the condition that fn → f with respect to Tpt . It means that, for any neighborhood

of f of type S(x,U) there exists an integer N such that fn ∈ S(x,U) for n ≥ N. I.e., for any x ∈ I and any

open U containing f (x), there exists an integer N such that fn(x) ∈ U for all n ≥ N. I.e., for any x ∈ I,

fn(x)→ f (x) in Rn. �

For uniform convergence, the situation is more fortunate: it is induced by a metric. Given two functions

f ,g ∈ F (I,Rn), we define the sup-distance between f and g by

dsup( f ,g) = sup{d( f (x),g(x)) : x ∈ I}.
Since this supremum may be infinite for some f and g (and only for that reason!), we define

d̂sup( f ,g) = min(dsup( f ,g),1).

Note that dsup and d̂sup are morally the same when it comes to convergence (dsup( f ,g) is“ small” if and

only if d̂sup( f ,g) is); they are actually the same on C (I,Rn) if I is compact (why?). The associated

topology is called the topology of uniform convergence.

E Exercise 3.8 Show that d̂sup is a metric on F (I,Rn).

Proposition 3.24 The uniform convergence coincides with the convergence in (F (I,Rn), d̂sup).
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PROOF. According to the definition of uniform convergence, fn ⇒ f if and only if for each ε > 0,

we find nε such that dsup( f ,g)≤ ε for all n ≥ nε. Of course, only ε’s small enough matter here, hence we

recover the convergence with respect to d̂sup. �

We now move to uniform convergence on compacts. Given K ⊂ I a compact subinterval, ε > 0,

f ∈ F (I,Rn), we define

BK( f ,ε) := {g ∈ F (I,Rn) : d( f (x),g(x)) < ε ∀ x ∈ K}.
The topology of compact convergence, denoted Tcp, is the topology on F (I,Rn) generated by the family

of all the subsets BK( f ,ε). As above, the definitions immediately imply:

Proposition 3.25 The uniform convergence on compacts coincides with the convergence in the topolog-

ical space (F (I,Rn),Tcp).

In topology, we are interested in continuous functions. The situation is as follows:

Theorem 3.26 For a sequence of continuous functions fn ∈ C (I,Rn), and f ∈ F (I,Rn):

(9.1) ( fn ⇒ f ) =⇒ ( fn
cp→ f ) =⇒ ( f ∈ C (I,Rn)).

More precisely, one has an inclusion of topologies

(pointwise)⊂ (uniform on compacts)⊂ (uniform)

and C (I,Rn) is closed in (F (I,Rn),Tcp) (hence also in (F (I,Rn), d̂sup)).

PROOF. The comparison between the three topologies is again a matter of checking the definitions.

Also, the first implication in (9.1) is trivial; the second one follows from the last part of the theorem, on

which we concentrate next. We first show that C (I,Rn) is closed in (F (I,Rn), d̂sup). Assume that f is in

the closure, i.e. f : I → Rn is the uniform limit of a sequence of continuous functions fn. We show that

f is continuous. Let x0 ∈ I and we show that f is continuous at x0. I.e., we fix ε > 0 and we look for

a neighborhood Vε of x0 such that d( f (x), f (x0)) < ε for all x ∈ Vε. Since fn ⇒ f , we find N such that

d( fn(x), f (x)) < ε/3 for all n ≥ N and all x ∈ I. Since fN is continuous at x0, we find a neighborhood Vε

such that d( fN(x), fN(x0))< ε/3 for all x ∈Vε. But then, for all x ∈Vε,

d( f (x), f (x0))≤ d( f (x), fN (x))+d( fN(x), fN (x0))+d( fN(x0), f (x0))< 3× ε/3 = ε.

Finally, we show that C (I,Rn) is closed in (F (I,Rn),Tcp). Assume that f is in the closure. Remark that,

for f to be continuous, it suffices that f |K is continuous for any compact sub-interval K ⊂ I. Fx such

a K. Considering neighborhoods of type BK( f ,1/n), we find fn ∈ C (I,Rn) lying in this neighborhood.

But then fn|K ⇒ f |K hence f |K is continuous. �

Here is the most important property of the uniform topology (Tcp will be discussed later).

Theorem 3.27 (F (I,Rn), d̂sup)) and (C (I,Rn), d̂sup)) are complete metric spaces.

PROOF. Using the previous theorem and the simple fact that closed subspaces of complete metric

spaces are complete, we are left with showing that (F (I,Rn), d̂sup) is complete. So, let ( fn)n≥1 be a

Cauchy sequence with respect to d̂sup (as mentioned above, for such arguments there is no difference

between using d or d̂). Since for all x ∈ I,

d( fn(x), fm(x))≤ dsup( fn, fm),

it follows that ( fn(x))n≥1 is a Cauchy sequence in (Rn,d), for all x ∈ X . Denoting by f (x) the limit,

we obtain f ∈ F (I,Rn) (to which fn converges pointwise). To show that fn ⇒ f , let ε > 0 and we

look for nε such that dsup( fn, f ) < ε for all n ≥ nε. For that, use that ( fn)n≥1 is Cauchy and choose nε

such that dsup( fn, fm)< ε/2 for all n,m ≥ nε. Combininig with the previous displayed inequality, we have
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d( fn(x), fm(x))< ε/2 for all such n,m and all x ∈ I. Taking m → ∞, we find that d( fn(x), f (x))≤ ε/2 < ε
for all n ≥ nε and x ∈ I, i.e. dsup( fn, f )< ε for all n ≥ nε. �
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10. More exercises

10.1. Quotients

E Exercise 3.9 Let T be a model for the torus, with quotient map π : [0,1]× [0,1] → T (choose your

favourite). Give an example of a function f : [0,1]→ [0,1]× [0,1] with the property that f is not contin-

uous, but π◦ f is.

E Exercise 3.10 Start with the interval [0,2] and glue the points 0, 1 and 2. Describe the equivalence

relation R encoding this gluing and let X = [0,2]/R. Describe an embedding of X in R2.

E Exercise 3.11 Show that the space obtained from R by collapsing [−1,1] to a point is homeomorphic to

R.

E Exercise 3.12 Show that the space obtained from R by collapsing (−1,1) to a point is not Hausdorff.

E Exercise 3.13 (part of an exercise from a 2010 exam) Let X be obtained by taking two disjoint copies of

the interval [0,2] (with the Euclidean topology) and gluing each t in the first copy with the corresponding

t in the second copy, for all t ∈ [0,2] different from the midle point. Explicitely, one may take the space

Y = [0,2]×{0}∪ [0,2]×{1} ⊂ R2

with the topology induced from the Euclidean topology, and X is the space obtained from Y by gluing

(t,0) to (t,1) for all t ∈ [0,2], t 6= 1. We endow X with the quotient topology.

(i) Is X Hausdorff?

(iii) Show that X can also be obtained as a quotient of the circle S1.

E Exercise 3.14 [from a 2011 exam] Let G = (0,∞) be the group of strictly positive reals, endowed with

the usual product. Find an action of G on R4 \{0} with the property that (R4 \{0})/G is homeomorphic

to S3.

E Exercise 3.15 [from the 2014 exam] Let Γ =R>0 be the group of strictly positive real numbers, endowed

with the usual multiplication. Let X = Rn \{0}. Show that

Γ×X → X , (r,x) 7→ rx

(the usual multiplication of vectors x by scalars r) defines an action of Γ on X and prove that X/Γ is

homeomorphic to Sn−1 (the n−1-dimensional sphere).

E Exercise 3.16 Let X = (0,∞). Show that

φn(r) := 2nr

defines an action of Z on X and X/Z is homeomorphic to S1.

(hint: see Example 3.7 and Exercise 1.2).

E Exercise 3.17 from a 2012 exam Let X be the space obtained from the sphere S2 by gluing the north and

the south pole (with the quotient topology). Show that X can be obtained from a square [0,1]× [0,1] by

glueing some of the points on the boundary (note: you are not allowed to glue a point in the interior of

the square to any other point). More precisely:

(1) Describe the equivalence relation R0 on S2 encoding the glueing that defines X . (0.25p)

(2) Make a picture of X in R3. (0.25p)

(3) Describe an equivalence relation R on [0,1]× [0,1] encoding a glueing with the required prop-

erties. (1p)
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(4) Show that, indeed, X is homeomorphic to [0,1]× [0,1]/R (provide as many arguments as you

can, but do not write down explicit maps- instead, indicate them on the picture). (0.5p)

E Exercise 3.18 Consider the unit circle in the complex plane

S1 = {z ∈ C : |z|= 1}.
Let n be a positive integer, consider the n-th root of unity

ξ = cos(
2π

n
)+ isin(

2π

n
) ∈ C

and let Zn be the (additive) group of integers modulo n. Show that

φk̂(z) := ξkz

defines an action of Zn on S1, explain its geometric meaning, and show that S1/Zn is homeomorphic to

S1. What do you obtain when n = 2?

E Exercise 3.19 (from a 2013 exam) Let X = (−1,∞).

(i) Find all the numbers a,b ∈ R with the property that

n · t = φn(t) = 2nt +an +b

defines an action of the group (Z,+) on X .

(ii) For the a and b that you found, show that the resulting quotient space X/Z is homeomorphic to

S1.

E Exercise 3.20 (from the 2014 exam) Let X = [−1,1]×R.

a. Find all the numbers λ,a,b ∈ R with the property that

n · (x,y) := (λnx,a+by+λn)

defines an action of the additive group (Z,+) on X .

b. For the values of λ,a,b that you found compute the resulting quotients X/Γ/

E Exercise 3.21 (from a 2011 exam) Consider the map

π : R2 → S1 ×R, (x,y) 7→
((

cos(x+ y),sin(x+ y)
)
, x− y

)

∈ S1 ×R.

• Describe an equivalence relation R on R2 such that (S1 ×R,π) is a quotient of R2 modulo R.

• Find a group Γ and an action of Γ on R2 such that R is the equivalence relation induced by this

action.

• Show that, indeed, R2/Γ is homeomorphic to S1 ×R.

E Exercise 3.22 Let R be the equivalence relation on R consisting of those pairs (r,s) of real numbers with

the property that there exist two integers m and n such that r − s = m+ n
√

2. Show that the resulting

quotient space is not Hausdorff.

E Exercise 3.23 Let Γ = Z×Z with the usual group operation

(m,n)+ (m′,n′) = (m+m′,n+n′).

Show that

φm,n(x,y) := (x+m,y+n)
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defines an action of Γ on R2 and R2/Γ is homeomorphic to the torus.

E Exercise 3.24 Do the same for the same group but the new action:

φm,n(x,y) := (x+my+n+
m(m−1)

2
,y+m).

E Exercise 3.25 Consider the following groups:

(1) Γ = 〈a,b;bab = a〉 (the group in two generators a and b, subject to the relation bab = a).

(2) Γ′ = Z×Z with the operation

(m,n)◦ (m′,n′) = (m+m′,n+(−1)mn′).

(3) Γ′′ is the subgroup of (Homeo(R2),◦) (the group of homeomorphisms of the plane endowed

with the composition of functions) generated by the transformations

φ(x,y) = (x+1,−y),ψ(x,y) = (x,y+1).

Show that:

(1) these three groups are isomorphic.

(2) one obtains an action of these groups on R2; write it down explicitly.

(3) the resulting quotient is homeomorphic to the Klein bottle.

E Exercise 3.26 Compose ad solve a similar exercise in which the resulting quotient is homeomorphic to

the Moebius band.

E Exercise 3.27

(i) Write the Moebius band as a union of two subspaces M and C where M is itself a Moebius

band, C is a cylinder (i.e. homeomorphic to S1 × [0,1]) and M∩C is a circle.

(ii) Similarly, decompose P2 as the union of a Moebius band M and another subspace Q, such that

Q is a quotient of the cylinder and M∩Q is a circle.

(iii) Deduce that P2 can be obtained from a Moebius band and a disk D2 by gluing them along their

boundary circles.

E Exercise 3.28 Show that

(1) Pn is an n-dimensional topological manifold.

(2) The map f : Pn → R
(n+1)(n+2)

2 which sends the line lx through x = (x0, . . . ,xn) to

f (lx) = (x0x0,x0x1, . . . ,x0xn,x1x1,x1x2, . . . ,x1xn, . . . ,xnxn)

is an embedding.

E Exercise 3.29 (from a 2013 exam) Consider the 3-sphere S3 viewed as a subspace of C2:

S3 = {(u,v) : u,v ∈ C, |u|2 + |v|2 = 1}.
Inside the sphere we consider

A := {(u,v) ∈ S3 : |v|=
√

2

2
}.
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(i) Show that S3 \A has two connected components.

(note: since connected components have not been discussed yet, just skip this part and take

X1 = {(u,v) : |u|< |v|} and X1 = {(u,v) : |u|> |v|}.
See Exercise 10.34)

(ii) Show that the two connected components, denoted X1 and X2, satisfy:

X1 ∩X2 = ∂(X1) = ∂(X2) = A.

(where the closures and boundaries are inside the space S3).

(iii) Consider the unit circle and the closed unit disk

S1 = {(α,β) ∈ R2 : α2 +β2 = 1}, D2 = {(x,y) ∈ R2 : x2 + y2 ≤ 1}.
By a solid torus we mean any space homeomorphic to S1 ×D2. Show that

f : S1 ×D2 → R3, f ((α,β),(x,y)) = ((2− x)α,(2− x)β,y)

is an embedding and indicate on a picture what the image of f is (... motivating the name ”solid

torus”).

(iv) Show that X i is a solid torus for i ∈ {1,2}.

(v) Deduce that the 3-sphere can be obtained from two disjoint copies of S1 ×D2 (i.e. two solid

tori) by gluing any point (z1,z2)∈ S1×S1 in the boundary of the first copy with the point (z2,z1)
in the boundary of the second.

10.2. Product topology

E Exercise 3.30 Show that

(Rn,Teucl)× (Rm,Teucl) = (Rn+m,Teucl).

E Exercise 3.31 Show that if X and Y are both Hausdorff, then so is X ×Y . Similarly for metrizability and

first countability.

E Exercise 3.32 Look at exercise 2.22 and show that there is no conflict in the notation; i.e. the topology

Tl ×Tl defined in that exercise does coincide with the product topology.

E Exercise 3.33 Show that if n is an odd number, then GLn(R) is homeomorphic to GL1(R)×SLn(R) (see

Exercise 2.34).

E Exercise 3.34 Show that a topological space X is Hausdorff if and only if

∆ := {(x,x) : x ∈ X}
is closed in X ×X .

E Exercise 3.35 Let X and Y be two topological spaces, A ⊂ X , B ⊂Y . Then the following two topologies

on A×B coincide:

(i) The product of the topology of A (induced from X ) and that of B (induced from Y ).

(ii) The topology induced on A×B from the product topology on X ×Y .

E Exercise 3.36 Let X be the cone of the interval (0,1). Construct an explicit continuous injection

f : X → R2

and let C be its image. Is f a homeomorphism?
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10.3. Topology bases

E Exercise 3.37 Using Lemma 3.18, prove again that the Euclidean and the square metrics induce the

same topology.

E Exercise 3.38 Go back to exercise 2.17 and show that B there is a topology basis. Then using Lemma

3.18, show again that the resulting topology is larger than the topology from Exercise 2.16.

E Exercise 3.39 Show that

Bl := {[a,b) : a,b ∈ R}
is a topology basis and T (Bl) is the topology Tl from Exercise 2.19. Then use Lemma 3.18 to prove

again that Tl is finer than TEucl.

E Exercise 3.40 Do again Exercise 2.22 using Lemma 3.18.

E Exercise 3.41 Consider the unit circle S1 and the functions

α,β : S1 → R,α(x,y) = x,β(x,y) = y.

Show that:

(1) S1, endowed with the smallest topology which makes α continuous, is not Hausdorff.

(2) the smallest topology on S1 which makes both α and β continuous is the Euclidean one.

E Exercise 3.42 [from the 2015 exam] Consider the family B of subsets of R2 consisting of all the subsets

of type (a,b)× (a,b) with a < b real numbers:

B = {(a,b)× (a,b) : a,b ∈ R,a < b}.
Let T be the smallest topology on R2 containing B . We also consider

A = [0,1]× [0,2] ⊂ R2.

a. Is (R2,T ) second countable?

b. Is (R2,T ) Hausdorff?

c. Is the identity map Id : R2 → R2 continuous as a map from (R2,T ) to (R2,TEucl)? But as a

map from (R2,TEucl) to (R2,T )?
e. Let x = (0,2) ∈ R2 (the point of coordinates 0 and 2). Compute the closure of {x} in (R2,T ).
f. Show that the sequence (xn)n≥1 given by

xn = (sin2(n),cos4(n+2015)) ∈ R2

is convergent in (R2,T ) and has more than one limit.

g. Compute the interior and the closure of A in (R2,T ).
h∗· Show that any continuous map f : (R2,T )→ R must be constant.

E Exercise 3.43 [from the 2015 retake] Let k be a natural number (k ∈ {0,1,2, . . .}). Let Bk be the family

of subsets of R consisting of R and all the open intervals (a,b) which contain at most k integers (when

k = 0, that means: intervals (a,b) that contain no integers). Show that:

a. Bk is a topology basis on R.

b. for k ≥ 1, the topology induced by Bk on R is the Euclidean topology.

Next, we assume that k = 0 and we look at the topology T0 := T (B0) induced by B0.

c. Is (R,T0) Hausdorff?

e. Compute the interior and the closure of A = [0,2) in (R,T0).
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f. Is the sequence (xn)n≥1 given by

xn =
n2015 + sin(n)

n2

convergent in (R,T0)?
g. Show that any continuous function f : (R,T0)→ (R,TEucl) is constant.

h. Compute the interior and the closure of

D := {(x,y) ∈R2 : x2 + y2 ≤ 1} ⊂ R2

in R2 endowed with the product topology T0 ×TEucl .

E Exercise 3.44 [from the 2014 exam] For R we consider the family S of subsets consisting of all the

intervals of type (m,M) with m < M < 0, all intervals of type (m,M) with 0 < m < M (m and M real

numbers) and the interval [−1,1). Denote by T the smallest topology on R containing S .

a. show that S is not a topology basis and describe a basis of (R,T ).
b. is (R,T ) Hausdorff? Is it second countable?

c. find an interval of type [a,b] whose closure inside (R,T ) is not an interval.

d. find an interval of type (a,b) whose interior inside (R,T ) is not an interval. % item[f.] find an

interval of type (a,b) with the property that, together with the topology induced from (R,T ),
is not connected.

g. (+) consider

f : (R,T )→ (R,TEucl), f (x) =

{
0 if x <−1

1 if x ≥−1

Is f continuous? Is f sequentially continuous?

E Exercise 3.45 [from the 2014 retake] Let T be the smallest topology on R with the property that

f : (R,T )→ (R,TEucl), f (x) = x2

is continuous.

a. Describe a basis of (R,T ) and show that any U ∈ T has the property that

−x ∈U ∀ x ∈U.

b. Find the closure and the interior of (−1,2) in (R,T ).
c. Is (R,T ) Hausdorff? Can you find a sequence with two (distinct) limits?

E Exercise 3.46 (from a 2013 exam) On X = Z we consider the family B of subsets of X consisting of the

empty set and the subsets of type

Na,b := a+bZ= {a+bn : n ∈ Z} ⊂ Z,

with a,b ∈ Z, b > 0.

(i) Show that, for a,a′,b,b1,b2 ∈ Z with b,b1,b2 > 0:

Na,1 = Na,−1 = Z,

Na,b1b2
⊂ Na,b1

∩Na,b2

and one has the following equivalences:

a′ ∈ Na,b ⇐⇒ a ∈ Na′,b ⇐⇒ Na,b = Na′,b.

(ii) Show that B is not a topology on X .

(iii) Show that B is a topology basis on X . Let T be the induced topology.

(v) Compute the interior and the closure of A := {−1,1} in (X ,T ).
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(iv) Show that (X ,T ) is Hausdorff.

(vi) Show that, for any b ∈ Z, b > 0, Z can be written as a union of b nonempty subsets that belong

to B , each two of them being disjoint.

(vii) Show that any subset of type Na,b is both open and closed in (X ,T ).
(viii) Show that

Z\{−1,1}=
⋃

p−prime number

N0,p

and then, using (vii) and (v), deduce that the set of prime numbers is infinite.

E Exercise 3.47 (from a 2012 exam) Let B be the familly of subsets of R consisting of R and the subsets

[n,a) := {r ∈R : n ≤ r < a} with n ∈ Z,a ∈ R.

(1) Show that B is not a topology on R, but it is a topology basis. Denote by T the associated

topology.

(2) Is (R,T ) second countable? But Hausdorff? But metrizable? Can it be embedded in R2012

(with the Euclidean topology)?

(3) compute the closure, the interior and the boundary of A = [− 1
2
, 1

2
] in (R,T ).

E Exercise 3.48 [from a 2011 exam] On X = R consider the family of subsets:

B := {(−p, p) : p ∈Q, p > 0}, T = {(−a,a) : 0 ≤ a ≤ ∞}.
• Show that B is a topology basis.

• Show that T is the topology associated to B .

• Is the sequence xn = (−1)n + 1
n

convergent in (X ,T )? To what?

• Find the interior and the closure of A = (−1,2) in (X ,T ).
• Show that any continuous function f : X → R is constant.

• For the topological space (X ,T ), decide whether it is:

1. Hausdorff.

2. 1st countable.

3. Metrizable.

(in the exam exercise there was one more question- and that will be Exercise 10.54).

10.4. Spaces of functions

E Exercise 3.49 Let fn : R→ R, fn(x) =
1
n
sin(nx). Show that ( fn) is uniformly convergent.

E Exercise 3.50 Let fn : R→ R, fn(x) = xn. Is ( fn) pointwise convergent? But uniformly on compacts?

But uniformly?

E Exercise 3.51 Let fn : R→ R, fn(x) =
x
n
. Is ( fn) pointwise convergent? But uniformly on compacts?

But uniformly?

E Exercise 3.52 (from a 2011 exam) Consider the space C ([0,1]) of all continuous maps f : [0,1] → R,

endowed with the sup-metric. Show that

A := { f ∈ C ([0,1]) : x2 ≤ e f (x)+ sin( f (x)) ≤ x ∀ x ∈ [0,1]}
is a closed and bounded subset of C ([0,1]).

E Exercise 3.53 (Dini’s theorem) Let fn : I →R be an increasing sequence of continuous functions defined

on an interval I, which converges pointiwse to a continuous function f . Show that fn ⇒ f . Is the same

true if we do not assume that f is continuous?
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E Exercise 3.54 Let pn ∈ C ([0,1],R) be the sequence of functions (even polynomials!) defined inductively

by

pn+1(t) = pn(t)+
1

2
(t − pn(t)

2), p1 = 0.

Show that (pn) converges uniformly to the function f (t) =
√

t.

(Hint: first show that pn(t)≤
√

t, then that pn(t) is increasing, then that it converges pointwise to
√

t,

then look above).

E Exercise 3.55 Now, did you know that there are continuous surjective functions f : [0,1] → [0,1]×
[0,1]??? (yes, continuous curves in the plane which fill up an entire square!). Actually, you now have all

the knowledge to show that (using Theorem 3.27); it is not obvious but, once you see the pictures, the

proof is not too difficult; have a look at Munkres’ book.
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1. Connectedness

1.1. Definitions and examples

Definition 4.1 We say that a topological space (X ,T ) is connected if X cannot be written as the union

of two disjoint non-empty opens U,V ⊂ X .

We say that a topological space (X ,T ) is path connected if for any x,y ∈ X , there exists a path γ

connecting x and y, i.e. a continuous map γ : [0,1]→ X such that γ(0) = x, γ(1) = y.

Given (X ,T ), we say that a subset A ⊂ X is connected (or path connected) if A, together with the

induced topology, is connected (path connected).

As we shall soon see, path connectedness implies connectedness. This is good news since, unlike

connectedness, path connectedness can be checked more directly (see the examples below).

Example 4.2

(1) X = {0,1} with the discrete topology is not connected. Indeed, U = {0}, V = {1} are disjoint

non-empty opens (in X ) whose union is X .

(2) Similarly, X = [0,1)∪ [2,3] is not connected (take U = [0,1), V = [2,3]). More generally, if

X ⊂ R is connected, then X must be an interval. Indeed, if not, we find r,s ∈ X and t ∈ (r,s)
such that t /∈ X . But then U = (−∞, t)∩X ,V = (t,∞)∩X are opens in X , nonempty (as r ∈U ,

s ∈V ), disjoint, with U ∪V = X (as t /∈ X ).

(3) However, although true, the fact that any interval I ⊂R is connected is not entirely obvious. In

contrast, the path connectedness of intervals is clear: for any x,y ∈ I,

γ : [0,1]→ R,γ(t) = (1− t)x+ ty

takes values in I (since I is an interval) and connects x and y.

(4) Similarly, any convex subset X ⊂ Rn is path connected (recall that X being convex means that

for any x,y ∈ X , the whole segment [x,y] is contained in X ).

(5) X = R2 −{0}, although not convex, is path connected: if x,y ∈ X and the segment [x,y] does

not contain the origin, we use the linear path from x to y. But even if [x,y] contains the origin,

we can join them by a path going around the origin (see Figure 1).

O

|R
2
−{0} is path connected

y

x

y’

FIGURE 1.

Lemma 4.3 The unit interval [0,1] is connected.

PROOF. We assume the contrary: ∃ disjoint non-empty U,V , opens in [0,1] such that U ∪V = [0,1].
Since U = [0,1]−V , U must be closed in [0,1]. Hence, as a limit of points in U , R := supU must belong

to U . We claim that R = 1. If not, we find an interval (R− ε,R+ ε) ⊂U and then R+ 1
2
ε is an element
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in U strictly greater than its supremum- which is impossible. In conclusion, 1 ∈U . But exactly the same

argument shows that 1 ∈V , and this contradicts the fact that U ∩V = /0. �

1.2. Basic properties

Proposition 4.4

(i) If f : X →Y is a continuous map and X is connected, then f (X) is connected.

(ii) Given (X ,T ), if for any two points x,y ∈ X , there exists Γ ⊂ X connected such that x,y ∈ Γ,

then X is connected.

PROOF. For (i), replacing Y by f (X), we may assume that f is surjective, and we want to prove

that Y is connected. If it is not, we find U,V ⊂ Y disjoint nonempty opens whose union is Y . But then

f−1(U), f−1(V )⊂ X are disjoint (since U and V are), nonempty (since U and V are and f is surjective)

opens (because f is continuous) whose union is X - and this contradicts the connectedness of X . For

(ii) we reason again by contradiction, and we assume that X is not connected, i.e. X = U ∪V for some

disjoint nonempty opens U and V . Since they are non-empty, we find x ∈U , y ∈V . By hypothesis, we

find Γ connected such that x,y ∈ Γ. But then

U ′ =U ∩Γ, V ′ =V ∩Γ

are disjoint non-empty opens in Γ whose union is Γ- and this contradicts the connectedness of Γ. �

Theorem 4.5 Any path connected space X is connected.

PROOF. We use (ii) of the proposition. Let x,y ∈ X . We know there exists γ : [0,1]→ X joining x and

y. But then Γ = γ([0,1]) is connected by using (i) of the proposition and the fact that [0,1] is connected;

also, x,y ∈ Γ. �

Since we have already remarked that a connected subset of R must be an interval, and that any interval

is path connected, the theorem implies:

Corollary 4.6 The only connected subsets of R are the intervals.

Combining with part (i) of Proposition 4.4 we deduce the following:

Corollary 4.7 If X is connected and f : X → R is continuous, then f (X) is an interval.

Corollary 4.8 If X is connected, then any quotient of X is connected.

Example 4.9 There are a few more consequences that one can derive by combining connectedness

properties with the “removing one point trick” (Exercise 2.44 in Chapter 2).

(1) R cannot be homeomorphic to S1. Indeed, if we remove a point from R the result is discon-

nected, while if we remove a point from S1, the result stays connected.

(2) R cannot be homeomorphic to R2. The argument is similar to the previous one (recall that

R2 −{0} is path connected, hence connected).

(3) The more general statement that Rn and Rm cannot be homeomorphic if n 6= m is much more

difficult to prove. One possible proof is a generalization of the argument given above (when

n = 1, m = 2)- but that is based on “higher versions of connectedness”, a notion which is at the

core of algebraic topology.

E Exercise 4.1 Show that [0,1) and (0,1) are not homeomorphic.
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1.3. Connected components

Definition 4.10 Let (X ,T ) be a topological space. A connected component of X is any maximal con-

nected subset of X , i.e. any connected C ⊂ X with the property that, if C′ ⊂ X is connected and contains

C, then C′ must coincide with C.

Proposition 4.11 Let (X ,T ) be a topological space. Then

(i) Any point x ∈ X belongs to a connected component of X .

(ii) If C1 and C2 are connected components of X then either C1 =C2 or C1 ∩C2 = /0.

(iii) Any connected component of X is closed in X .

PROOF. To prove the proposition we will use the following

E Exercise 4.2 If A,B ⊂ X are connected and A∩B 6= /0, then A∪B is connected.

For (i) of the proposition, let x∈X and define C(x) as the union of all connected subsets of X containing

x. We claim that C(x) is a connected component. The only thing that is not clear is the connectedness

of C(x). To prove that, we will use the criterion given by (ii) of Proposition 4.4. For y,z ∈C(x) we have

to find Γ ⊂ X connected such that y,z ∈ Γ. Due to the definition of C(x), we find Cy and Cz- connected

subsets of X , both containing x, such that y ∈Cy, z ∈Cz. The previous exercise implies that Γ :=Cy ∪Cz

is connected containing both y and z.

To prove (ii), we use again the previous exercise applied to A = C1 and B = C2, and the maximality

property of connected components.

To prove (iii), due to the maximality of connected components, it suffices to prove that if C ⊂ X is

connected, then C is connected. Assume that Y := C is not connected. We find D1,D2 nonempty opens

in Y , disjoint, such that Y = D1 ∪D2. Take Ui =C∩Di. Clearly, U1 and U2 are disjoint opens in C, with

C =U1 ∪U2. To reach a contradiction (with the fact that C is connected) it suffices to show that U1 and

U2 are nonempty. To show that Ui is non-empty (i ∈ {1,2}), we use the fact that Di is non-empty. We

find a point xi ∈ Di. Since xi is in the closure of C in Y , we have U ∩C 6= /0 for each neighborhood U of

xi in Y . Choosing U = Di, we have C∩Di 6= /0. �

Remark 4.12 From the previous proposition we deduce that, for any topological space (X ,T ), the

family {Ci}i∈I of connected components of (X ,T ) (where I is an index set) give a partition of X :

X = ∪i∈ICi, Ci ∩C j = /0 ∀ i 6= j,

called the partition of X into connected components.

E Exercise 4.3 Let X be a topological space and assume that {X1, . . . ,Xn} is a finite partition of X , i.e.

X = X1 ∪ . . .∪Xn, Xi ∩X j = /0 ∀ i 6= j.

Then the following are equivalent:

(i) All Xi’s are closed.

(ii) All Xi’s are open.

If moreover each Xi is connected, then {X1, . . . ,Xn} coincides with the partition of X into connected

components.
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1.4. Connected versus path connected, again

Theorem 4.5 shows that path connectedness implies connectedness. However, the converse does not

hold in general. The standard example is “the flea and comb”, drawn in Figure 2. Explicitely, X =
C∪{ f}, where

C = [0,1]∪{(1

n
,y) : y ∈ [0,1],n ∈ Z>0}, f = (0,1).

The flea and comb

FIGURE 2.

E Exercise 4.4 Show that, indeed, X from the picture is connected but not path connected.

However, there is a partial converse to Theorem 4.5.

Theorem 4.13 Let (X ,T ) be a topological space with the property that any point of X has a path

connected neighborhood. Then X is path connected if and only if it is connected.

PROOF. We still have to prove that, if X is connected, then it is also path connected. We define on

X the following relation ∼: x ∼ y if and only if x and y can be joined by a (continuous) path. This is an

equivalence relation. Indeed, for x,y,z ∈ X :

• x ∼ x: consider the constant path.

• if x ∼ y then y ∼ x: if γ is a path from x to y, then γ−(t) = γ(1− t) is a path from y to x.

• if x ∼ y and y ∼ z, then x ∼ z. Indeed, if γ1 is a path from x to y, while γ2 from y to z, then

γ(t) =

{

γ1(2t) if x ∈ [0, 1
2
]

γ2(2t −1) if x ∈ [1
2
,1]

is a path from x to z.

For x ∈ X , we denote by C(x) the equivalence class of x:

C(x) = {y ∈ X : y ∼ x}.
Note that each C(x) is path connected. We claim that C(x) = X for any x ∈ X . The fact that ∼ is an

equivalence relation implies that

{C(x) : x ∈ X}
is a partition of X : if C(x)∩C(x′) 6= /0, then C(x) = C(x′). What we want to prove is that this partition

consists of one set only. Since X is connected, it is enough to prove that C(x) is open for each x ∈ X .

Fixing x, we want to prove that for any y ∈C(x), there is an open U such that y ∈U ⊂C(x). To see this,

we use the hypothesis and we choose any path connected neighborhood V of y. Since y ∼ x and z ∼ y fro

any z ∈V , we deduce that z ∼ x fro any z ∈V , hence V ⊂C(x). Since V is a neighborhood of y, we find

U open such that y ∈U ⊂V , and this U clearly has the desired properties. �

E Exercise 4.5 Find a subspace X ⊂ R2 which is connected but not path connected.
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2. Compactness

2.1. Definition and first examples

Probably many of you have seen the notion of compact space in the context of subsets of Rn, as sets

which are closed and bounded. Although not obviously at all, this is a topological property (it can be

defined using open sets only).

Definition 4.14 Given a topological space (X ,T ) an open cover of X is a family U = {Ui : i ∈ I}
(I-some index set) consisting of open sets Ui ⊂ X such that

X = ∪i∈IUi.

A subcover is any cover V with the property that V ⊂ U.

We say that a topological space (X ,T ) is compact if from any open cover U = {Ui : i ∈ I} of X one

can extract a finite open subcover, i.e. there exist i1, . . . , ik ∈ I such that

X =Ui1 ∪ . . .∪Uik .

Remark 4.15 Given a topological space (X ,T ) and A ⊂ X , the compactness of A (viewed as a topologi-

cal space with the topology induced from X (cf. Example 2.8 in Chapter 2) can be expressed using “open

coverings of A in X”, i.e. families U = {Ui : i ∈ I} (I-some index set) consisting of open sets Ui ⊂ X

such that

A ⊂ ∪i∈IUi.

A subcover is any cover (of A in X ) V with the property that V ⊂ U. With these, A is compact if and

only if from any open cover of A in X one can extract a finite open subcover. This follows immediately

from the fact that the opens for the induced topology on A are of type A∩U with U ∈ T and from the

fact that, for a family {Ui : i ∈ I}, we have
⋃

i

(A∩Ui) = A ⇐⇒ A ⊂
⋃

i

Ui,

Example 4.16

(1) (X ,Tdiscr) is compact if and only if X is finite (use the cover of X by the open-point opens).

(2) R is not compact. Indeed,

R=
⋃

k∈Z
(−k,k)

is an open cover from which we cannot extract a finite open subcover. By the same argument,

any compact A ⊂ Rn must be bounded (e.g., when n = 1, write A ⊂∪k(−k,k)).
(3) [0,1) is not compact. Indeed,

[0,1)⊂
⋃

k

(−∞,1− 1

k
)

defines an open cover of [0,1) in R, from which we cannot extract a finite open subcover.

By a similar argument, any compact A ⊂ Rn must be closed in Rn. To show this, assume for

simplicity that n = 1. We proceed by contradiction and assume that there exists a ∈ A−A.

Since a /∈ A,

Uε := R− [a− ε,a+ ε]

form an open cover of A in R indexed by ε > 0. Extracting a finite subcover, we find

A ⊂Uε1
∩ . . .∩Uεk

=Uε where ε = min{ε1, . . . ,εk}.
But this implies that A∩ (a− ε,a+ ε) = /0 which contradicts a ∈ A.

(4) [0,1] is compact, see the lemma below.
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Lemma 4.17 The set [0,1], equipped with the topology induced by the Euclidean metric, is compact.

PROOF. Let U be an open cover for [0,1]. We consider the set A of a∈ [0,1] such that [0,a] is covered

by a finite collection of sets from U. The point 0 is contained in a set U∗ from U and by openness of U∗
in [0,1], there exists an element m ∈ (0,1] such that [0,m]⊂U∗. Hence, [0,m]⊂ A.

The set A contains [0,m], and is bounded from above, hence has a supremum s. Clearly, 0 < m ≤ s ≤ 1.
Since U covers [0,1], there exists a set U0 ∈ U such that s ∈U0. By openness of the latter set, there exists

a δ > 0 such that (s− δ,s]⊂ U0. Since s− δ < s, there exists an element a ∈ A such that s− δ < a < s.
Hence, there exists a finite number of sets U1, . . . ,Un from U such that [0,a] is contained in the union of

U1, . . . ,Un. Now [0,s] ⊂ [0,a]∪U0 and we see that

[0,s]⊂U0 ∪ ·· ·∪Un (∗)

so that s ∈ A. It now suffices to show that s = 1. Assume this were not the case. Then there would exist

s′ ∈ (s,1] such that [s,s′]⊂U0; hence (*) would hold with s′ in place of s, whence s′ ∈ A. This contradicts

that s is an upper bound of A. �

E Exercise 4.6 Show that the set

{0,1,
1

2
,

1

3
,
1

4
, . . .}

is compact in R.

2.2. Topological properties of compact spaces

In this section we point out some topological properties of compact spaces.

The first one says that “closed inside compact is compact”.

Proposition 4.18 If (X ,T ) is a compact space, then any closed subset A ⊂ X is compact.

The second one says that “compact inside Hausdorff is closed”.

Theorem 4.19 In a Hausdorff space (X ,T ), any compact set is closed.

The third one says that “disjoint compacts inside a Hausdorff can be separated”.

Proposition 4.20 In a Hausdorff space (X ,T ), any two disjoint compact sets A and B can be separated

topologically, i.e. there exist opens U,V ⊂ X such that

A ⊂U, B ⊂V, U ∩V = /0.

Corollary 4.21 Any compact Hausdorff space is normal.

PROOF. (of Proposition 4.18) If U is an open cover of A in X , then adding X −A to U (which is

open since A is closed), we get an open cover of X . Extracting a finite subcover (which may or may

not contain X −A), denoting by U1, . . . ,Un the elements of this finite subcover which are different from

X −A, this will define a finite subcover of the original cover of A in X . �

PROOF. (of Proposition 4.20): We introduce the following notation: given Y,Z ⊂ X we write Y |Z if

Y and Z can be separated, i.e. if there exist opens U and V (in X ) such that Y ⊂U , Z ⊂V and U ∩V = /0.

We claim that, if Z is compact and Y |{z} for all z ∈ Z, then Y |Z.
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PROOF. (of the claim) We know that for each z ∈ Z we find opens Uz and Vz such that Y ⊂Uz, z ∈Vz

and Uz ∩Vz = /0. Note that {Vz : z ∈ Z} is an open cover of Z in X : indeed, any z ∈ Z belongs at least

to one of the opens in the cover (namely Vz). By compactness of Z, we find a finite number of points

z1, . . . ,zn ∈ Z such that

Z ⊂Vz1
∪ . . .∪Vzn

.

Denoting by V the last union, and considering

U =Uz1
∩ . . .∩Uzn

,

V is an open containing Z, U is an open containing Y . Moreover, U ∩V = /0: indeed, if x is in the

intersection, since x ∈ V we find k such that x ∈ Vzk
; but x ∈U hence x ∈ Uz, which is impossible since

Uzk
∩Vzk

= /0. In conclusion, U and V show that Y and Z can be separated. �

Back to the proof of the proposition, let a ∈ A arbitrary. Now, since X is Hausdorff, we have {a}|{b}
for all b ∈ B. Since B is compact, the claim above implies that {a}|B, or, equivalently, B|{a}. This holds

for all a ∈ A, hence using again the claim (and the fact that A is compact) we deduce that A|B. �

PROOF. (of Theorem 4.19) For Theorem 4.19, assume that A ⊂ X is compact, and we prove that

A ⊂ A: if x ∈ A, then, for any neighborhood U of x, U ∩A 6= /0, and this shows that x cannot be separated

from A; using the proposition, we conclude that x ∈ A. �

E Exercise 4.7 Deduce that a subset A ⊂ R is compact if and only if it is closed and bounded. What is

missing to prove the same for subsets of Rn?

2.3. Compactness of products, and compactness in Rn

Next, we are interested in the compactness of the product of two compact spaces. We will use the

following:

Lemma 4.22 (Tube Lemma) Let X and Y be two topological spaces, x0 ∈ X , and let U ⊂ X ×Y be an

open (in the product topology) such that

{x0}×Y ⊂U.

If Y is compact, then there exists W ⊂ X open containing x0 such that

W ×Y ⊂U.

PROOF. Due to the definition of the product topology, for each y ∈ Y , since (x0,y) ∈U , there exist

opens Wy ⊂ X , Vy ⊂ Y such that

Wy ×Vy ⊂U.

Now, {Vy : y ∈ Y} will be an open cover of Y , hence we find y1, . . . ,yn ∈ Y such that

Y =Vy1
∪ . . .∪Vyn

.

Choose W = Wy1
∩ . . .∩Wyn

, which is an open containing x0, as a finite intersection of such. To check

W ×Y ⊂U , let (x,y) ∈W ×Y . Since the Vyi
’s cover Y , we find i s.t. y ∈Vyi

. But x ∈W implies x ∈Wyi
,

hence (x,y) ∈Wyi
×Vyi

. But Wz ×Vz ⊂U for all z ∈ Y , hence (x,y) ∈U . �

Theorem 4.23 If X and Y are compact spaces, then X ×Y is compact.
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PROOF. Let U be an open cover of X ×Y . For each x ∈ X ,

{x}×Y ⊂ X ×Y

is compact (why?), hence we find a Ux ⊂ U finite such that

(2.1) {x}×Y ⊂
⋃

U∈Ux

U.

Using the previous lemma, we find Wx open containing x such that

(2.2) Wx ×Y ⊂
⋃

U∈Ux

U.

Now, {Wx : x ∈ X} is an open cover of X , hence we find a finite subcover

X =Wx1
∪ . . .∪Wxp

.

Then

V = Ux1
∪ . . .∪Uxp

is finite union of finite collections, hence finite. Moreover, V still covers X ×Y : given (x,y) arbitrary,

using (2.2), we find i such that x ∈Wxi
. Hence (x,y) ∈Wxi

×Y , and using (2.1) we find U ∈ Uxi
such that

(x,y) ∈U . Hence we found U ∈ V such that (x,y) ∈U , �

Corollary 4.24 A subset A ⊂ Rn is compact if and only if it is closed and bounded.

PROOF. The direct implication was already mentioned in Example 4.16 (and that A is closed follows

also from Theorem 4.19). For the converse, since A is bounded, we find R,r ∈ R such that A ⊂ [r,R]n.

The intervals [r,R] are homeomorphic to [0,1], hence compact. The previous theorem implies that [r,R]n,

hence A must be compact as closed inside a compact. �

Example 4.25 In particular, spaces like the spheres Sn, the closed disks Dn, the Moebius band, the torus,

etc, are compact.

2.4. Compactness and continuous functions

Theorem 4.26 If f : X →Y is a continuous function and A ⊂ X is compact, then f (A)⊂ Y is compact.

PROOF. If U is an open cover of f (A) in Y , then f−1(U) := { f−1(U) : U ∈ U} is an open cover of

A in X , hence it has a finite subcover { f−1(Ui) : 1 ≤ i ≤ n} with Ui ∈ U. But then {Ui} will be a finite

subcover of U. �

Finally, we can state the property of compact spaces that we referred to several times when having to

prove that certain continuous injections are homeomorphisms.

Theorem 4.27 If f : X →Y is continuous and bijective, and if X is compact and Y is Hausdorff, then f

is a homeomorphism.

PROOF. We have to show that the inverse g of f is continuous. For this we show that if U is open

in X then the pre-image g−1(U) is open in Y . Since the open (or closed) sets are just the complements

of closed (respectively open) subsets, and g−1(Y −U) = X − g−1(U), we see that the continuity of g is

equivalent to: if A is closed in X then the pre-image g−1(A) is closed in Y . To prove this, let A be a closed

subset of X . Since g is the inverse of f , we have g−1(A) = f (A), hence we have to show that f (A) is

closed in Y . Since X is compact, Proposition 4.18 implies that A is compact. By the previous theorem,

f (A) must be compact. Since Y is Hausdorff, Theorem 4.19 implies that f (A) is closed in Y . �
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Corollary 4.28 If f : X → Y is a continuous injection of a compact space into a Hausdorff one, then f

is an embedding.

Example 4.29 Here is an example which shows the use of compactness. We will show that there is no

injective continuous map f : S1 → R.

PROOF. Assume there is such a map. Since S1 is connected and compact, its image is a closed

interval [m,M]; f becomes a continuous bijection f : S1 → [m,M], hence a homeomorphism (cf. the

previous theorem). Then use the “removing a point trick”. �

Example 4.30 (back to the torus, Moebius band, etc) In the previous chapter we produced several contin-

uous injective maps without being able to give a simple proof of the fact that they are embeddings: when

embedding the abstract torus into Rn (Example 3.5 in heading 2), when realizing S1 as R/Z (Example

3.7), or in our examples of cones and suspensions discussed in Example 3.15 (all the references are to

the previous chapter). In all these cases, the previous theorem and its corollary immediately complete

the proofs.

For clarity, let’s now give a final overview of our discussions on the torus. First, in Chapter 1, Section

6, we introduced the torus intuitively, by gluing the opposite sides of a square. The result was a subspace

of R3 (or rather a shape). After the definition of topological spaces, we learned that these subspaces of

R3 are topological spaces on their own- endowed with the induced topology. In the previous chapter,

in section 2, we gave a precise meaning to the process of gluing and introduced the abstract torus Tabs,

endowed with the quotient topology. In the same example we also produced one (of the many possible)

continuous injections

f : Tabs → R3

whose image was one of the explicit models TR,r ⊂R3 of the torus, described already in the first chapter.

Hence the previous corollary implies that f defines a homeomorphisms between the abstract Tabs and the

explicit model TR,r.

E Exercise 4.8 Have a similar discussion for the Moebius band, Klein bottle, etc.

E Exercise 4.9 Prove that the torus is homeomorphic to S1 ×S1.

2.5. Embeddings of compact manifolds

Theorem 4.31 Any n-dimensional compact topological manifold can be embedded in RN , for some

integer N.

PROOF. We use the Euclidean distance in Rn and we denote by Br and Br the resulting open and

closed balls of radius r centered at the origin. We choose a function

η : Rn → [0,1] such that η|B1
= 1, η|Rn−B2

= 0.

For instance, we could choose

η(x) =
d(x,Rn −B2)

d(x,B1)+d(x,Rn −B2)
.

For a coordinate chart

χ : U → Rn

and any radius r > 0, we consider:

U(r) := χ−1(Br), U [r] =U(r) = χ−1(Br).

Since X is compact, we find a finite number of coordinate charts

χi : Ui → Rn, 1 ≤ i ≤ k,
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such that {Ui(1) : 1 ≤ i ≤ k} cover X . For each i, consider η ◦ χi : Ui → [0,1]; since it vanishes on

Ui −Ui(2), extending it to be 0 outside Ui will give us a continuous map

ηi : X → [0,1].

Similarly, since the product ηi ·χi : Ui →Rn vanishes on Ui−Ui(2), extending it by 0 gives us continuous

maps

χ̃i : X → Rn.

Finally, we define

f = (η1, . . . ,ηk, χ̃1, . . . , χ̃k) : X → R(1+k)n.

It is continuous by construction hence, by Theorem 4.27, it suffices to show that f is injective. Assume

that f (x) = f (y) with x,y ∈ X . From the choice of the charts, we find i such that x ∈ Ui(1). Then

ηi(x) = 1. But f (x) = f (y) implies that ηi(y) = ηi(x) = 1. On one hand, this implies that ηi(y) 6= 0,

hence y must be inside Ui (even inside Ui(2)). But these imply

χ̃i(x) = ηi(x)χi(x) = χi(x)

and similarly for y. Finally, f (x) = f (y) also implies that χ̃i(x) = χ̃i(y). Hence x and y are in the domain

of χi and are send by χi into the same point. Hence x = y. �

Corollary 4.32 Any n-dimensional compact topological manifold is metrizable.
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2.6. Sequential compactness

When one deals with sequences, one often sees statements of type “we now consider a subsequence

with this property”. Compactness is related to the existence of convergent subsequences. In general,

given a topological space (X ,T ), one says that X is sequentially compact if any sequence (xn)n≥1 of

elements of X has a convergent subsequence. Recall that a subsequence of (xn)n≥1 is a sequence (yk)k≥1

of type

yk = xnk
, with n1 < n2 < n3 < .. . .

However, we have already mentioned (and seen in various other cases) that topological properties in-

volving sequences usually require the axiom of first countability.

Theorem 4.33 Any first countable compact space is sequentially compact.

PROOF. Let X be first countable and compact, and assume that (xn)n≥1 is an arbitrary sequence in

X . For each integer n ≥ 1 we put

Un = X −{xn,xn+1, . . .}.
Note that these define an increasing sequence of open subsets of X :

U1 ⊂U2 ⊂U3 ⊂ . . . .

We now claim that ∪nUn 6= X . If this is not the case, {Un : n ≥ 1} is an open cover of X hence we find

a finite set F such that {Ui : i ∈ F} covers X . Since our cover is increasing, we find that Up = X where

p = maxF , and this is clearly impossible. In conclusion, ∪nUn 6= X . Hence there exists x ∈ X such that,

for all n ≥ 1, x /∈Un. Choose a countable basis of neighborhoods of x

V1,V2,V3, . . . .

Since x /∈U1, we have V ∩{x1,x2, . . .} 6= /0 for all neighborhoods V of x. Choosing V = V1, we find n1

such that

xn1
∈V1.

Next, we use the fact that x /∈Un for n = n1 +1. This means that V ∩{xn,xn+1, . . .} 6= /0 for all neighbor-

hoods V of x. Choosing V =V2, we find n2 > n1 such that

xn2
∈V2.

We continue this process inductively (e.g. the next step uses x /∈ Un for n = n1 + n2 + 1) and we find

n1 < n2 < .. . such that

xnk
∈Vk

for all k ≥ 1. Then (xnk
)k≥1 is a subsequence of (xn)n≥1 converging to x. �

Corollary 4.34 Any compact metrizable space is sequentially compact.

Actually, as we shall see in the next heading, for metric spaces compactness is equivalent to sequential

compactness.
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3. Local compactness and the one-point compactification

3.1. Local compactness

Definition 4.35 A topological space X is called locally compact if any point of X admits a compact

neighborhood.

We will be mainly interested in locally compact spaces which are Hausdorff.

E Exercise 4.10 Prove that, in a locally compact Hausdorff space X , for each x ∈ X the collection of all

compact neighborhoods of x is a basis of neighborhoods of x (i.e. for any open neighborhood U of x,

there exists a compact neighborhood N of x such that N ⊂U ).

Example 4.36

(1) Any compact Hausdorff space (X ,T ) is locally compact Hausdorff.

(2) Rn is locally compact (use closed balls as compact neighborhoods).

(3) any open U ⊂ Rn is locally compact (use small enough closed balls). In general, any open

subset of a locally compact Hausdorff space is locally compact (use the previous exercise).

(4) any closed A ⊂ Rn is locally compact. Indeed, for any a ∈ A, B[a,1]∩A is a neighborhood of a

(in A) which is compact (use again that closed inside compact is compact). Similarly, a closed

subset of a locally compact Hausdorff space is locally compact.

(5) the interval (0,1] is locally compact (combine the arguments from (2) and (3)).

(6) Q is not locally compact. To show this, assume that 0 has a compact neighborhood N. Then

(−ε,ε)∩Q ⊂ N, for some ε > 0. Passing to closures in R we find [−ε,ε] ⊂ N = N, where we

used that N is compact (hence closed). This contradicts N ⊂Q.

Locally compact Hausdorff spaces which are 2nd countable deserve special attention: they include

topological manifolds and, as we shall see later on, they are easier to handle. The most basic property

(to be used several times) is that they can be “exhausted” by compact spaces.

Definition 4.37 Let (X ,T ) be a topological space. An exhaustion of X is a family {Kn : n ∈ Z+} of

compact subsets of X such that X = ∪nKn and Kn ⊂
◦
Kn+1 for all n.

Theorem 4.38 Any locally compact, Hausdorff, 2nd countable space admits an exhaustion.

PROOF. Let B be a countable basis and consider V = {B ∈ B : B−compact}. Then V is a basis: for

any open U and x ∈ X we choose a compact neighborhood N inside U ; since B is a basis, we find B ∈ B
s.t. x ∈ B ⊂ N; this implies B ⊂ N and then B must be compact; hence we found B ∈ V s.t. x ∈ B ⊂U .

In conclusion, we may assume that we have a basis V = {Vn : n ∈ Z+} where V n is compact for each n.

We define the exhaustion {Kn} inductively, as follows. We put K1 = V 1. Since V covers the compact

K1, we find i1 such that

K1 ⊂V1 ∪V2 ∪ . . .∪Vi1 .

Denoting by D1 the right hand side of the inclusion above, we put

K2 = D1 =V 1 ∪V 2 ∪ . . .∪V i1 .

This is compact because it is a finite union of compacts. Since D1 ⊂ K2 and D1 is open, we must have

D1 ⊂
◦
K2; since K1 ⊂ D1, we have K1 ⊂

◦
K2. Next, we choose i2 > i1 such that

K2 ⊂V1 ∪V2 ∪ . . .∪Vi2 ,

we denote by D2 the right hand side of this inclusion, and we put

K3 = D2 =V 1 ∪V 2 ∪ . . .∪V i2 .



90 4. TOPOLOGICAL PROPERTIES

As before, K3 is compact, its interior contains D2, hence also K2. Continuing this process, we construct

the family Kn, which clearly covers X . �

3.2. The one-point compactification Intuitively, the idea of the one-point compactification of a space

is to “add a point at infinity” to achieve compactness.

Definition 4.39 Let (X ,T ) be a topological space. A one-point compactification of X is a compact

Hausdorff space (X̃ , T̃ ) together with an embedding i : X → X̃ , with the property that X̃ −X consists of

one point only.

From the remarks above it follows that, if X admits a one-point compactification, then it must be

locally compact and Hausdorff. Conversely, we have:

Theorem 4.40 If X is a locally compact Hausdorff space, then

1. It admits a one-point compactification X+.

2. Any two one-point compactifications of X are homeomorphic.

Moreover, if X is 2nd countable, then so is X+.

Example 4.41

(1) If X = (0,1], then X+ is (homeomorphic to) [0,1]. Indeed, X̃ = [0,1] is compact, and the

inclusion i : (0,1]→ [0,1] satisfies the properties from the previous proposition.

(2) If X = (0,1), then X+ is (homeomorphic to) the circle S1. Indeed, i : (0,1)→ S1 as in Figure 3

(e.g. i(t) = (cos(2πt),sin(2πt)) has the properties from the previous proposition.

 

0 1

i(t)

t infinity

FIGURE 3.

(3) If X = [−1,0)∪ (1,2) ⊂ R, X+ is shown in Figure 4.

−1 1 2 −1 0 −1 0

infinity

0

the space X its compactification

FIGURE 4.
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(4) If X =
◦
D

n

the one-point compactification is Sn.

PROOF. (of Theorem 4.40) For the existence, choose a symbol ∞ /∈ X and consider

X+ = X ∪{∞}.
Since X ⊂ X+, any subset of X is a subset of X+. We consider the family of subsets of X+:

T + = T ∪T (∞), where T (∞) = {X+−K : K ⊂ X ,K − compact}.
We claim that T + is a topology on X+. First, we show that U ∩V ∈ T + whenever U,V ∈ T +. We

have three cases. If U,V ∈ T , we know that U ∩V ∈ T . If U and V are both in T (∞), then so is their

intersection because union of two compacts is compact (show this!). Finally, if U ∈ T and V = X+−K ∈
T (∞), then U ∩V =U ∩ (X −K) is open in X because V and X −K are. Next, we show that arbitrary

union of sets from T + is in T +. This property holds for T , and also for T (∞) since intersection of

compacts is compact (why?). Hence it suffices to show that U ∪V ∈ T + whenever U ∈ T , V ∈ T (∞).
Writing V = X+−K with K ⊂ X compact, we have

U ∪V = X+−K′,

where K′ = K ∩ (X −U). Since K−K′ = K ∩U , K−K′ is open in K, i.e. K′ is closed in the compact K,

hence K′ is compact (Proposition 4.18 again!). Hence U ∪V ∈ T +.

We show that (X+,T +) is compact. Let U be an open cover of X+. Choose U = X+ − K ∈ U
containing ∞ and let U′ = {V ∩X : V ∈ U,V 6=U}. Then U′ is an open cover of the compact K in X+.

Choosing V ⊂ U′ finite which covers K, V ∪{U} ⊂ U is finite and covers X+.

Next, we show that X+ is Hausdorff. So, let x,y ∈ X+ distinct, and we are looking for U,V ∈ T + such

that U ∩V = /0, x ∈ U,y ∈ V . When x,y ∈ X , just use the Hausdorffness of X . So, let’s assume y = ∞.

Then choose a compact neighborhood K of x and we consider U ⊂ X open such that x ∈ U ⊂ K. Then

x ∈U , ∞ ∈ X −K and U ∩ (X+−K) = /0.

Next, we show that the inclusion i : X → X+ is an embedding, i.e. that T +|X = T . Now,

T +|X = T ∪{U ∩X : U ∈ T (∞)}
(just apply the definition!), and just remark that, for U = X+−K ∈ T (∞), U ∩X = X −K ∈ T .

This concludes the proof of 1. For 2, let X̃ be another one-point compactification and we prove that it

is homeomorphic to X . Choose y∞ ∈ X̃ such that X̃ = i(X)∪{y∞} and define

f : X̃ → X+, f (y) =

{
x if y = i(x) ∈ i(X)
∞ if y = y∞

Since f is bijective, X̃ is compact and X+ is Hausdorff, it suffices to show that f is continuous (Theorem

4.27). Let U ∈ T +; we prove f−1(U) ∈ T̃ . If U ∈ T , then f−1(U)⊂ i(X) and then

f−1(U) = {y = i(x) : f (y) ∈U}= {i(x) : x ∈U}= i(U)

is open in i(X) since i is an embedding. But, since X̃ is Hausdorff, i(X) = X̃ −{y∞} is open in X̃ , hence

so is f−1(U). The other case is when U = X+−K with K ⊂ X compact. Then

f−1(U) = f−1(y∞)∪ f−1(X −K) = {∞}∪ (i(X)− i(K)) = X+− i(K)

is again open in X+ (i(K) is compact as the image of a compact by a continuous function).

Finally, we prove the last part of the theorem. Let {Kn : n ∈ Z+} be an exhaustion of X , B a countable

basis of X and we claim that the following is a basis of X+:

B+ := B ∪B(∞), where B(∞) = {X+−Kn : n ∈ Z+}.
To show: for any U ∈ T + and any x ∈ U , there exists B ∈ B+ such that x ∈ B ⊂ U . If U ∈ T , just use

that B is a basis. Similarly, if U = X+−K ∈ T (∞), the interesting case is when x = ∞. Then we look
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for B = X −Kn such that B ⊂U (i.e. K ⊂ Kn). But {
◦

Kn} is an open cover of X , hence also of K; since K

is compact and Kn ⊂ Kn+1, we find n such that K ⊂
◦

Kn. �
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4. More exercises

4.1. Connectedness

E Exercise 4.11 In Exercise 1.4 you showed that four of the spaces in the picture are homeomorphic to

each other, but they did not seem to be homeomorphic to the fifth one. You now have the tool to prove

the last assertion (so do it!).

E Exercise 4.12 Prove that the following spaces are not homeomorphic:

(1) S1 and [0,1).
(2) [0,1) and R.

(3) S1 and S2.

(4) S1 and a bouquet of two circles (the space from Figure 5).

E Exercise 4.13 Show that there exists a real number r ∈ (2,3) such that

r7 −2r4 − r2 −2r = 2011.

E Exercise 4.14 Show that any continuous fuction f : [0,1] → [0,1] admits at least one fixed point (i.e.

there exists t ∈ [0,1] such that f (t) = t).

(Hint: g(t) = f (t)− t positive or negative?)

E Exercise 4.15 Assuming that the temperature on the surface of the earth is a continuous function, prove

that, at any moment in time, on any great circle of the earth, there are two antipodal points with the same

temperature.

E Exercise 4.16 Assuming that you know that S1 × (0,1) is not homeomorphic to R2, show that the sphere

S2 is not homeomorphic to the space obtained from S2 by gluing two antipodal points.

E Exercise 4.17 Is (R,Tl) from Exercise 2.19 connected? But [0,1) with the induced topology? But (0,1]?

E Exercise 4.18 Is the space (X ,T ) from Exercise 3.48 connected?

E Exercise 4.19 Recall that by a circle we mean any topological space which is homeomorphic to S1, and

by a circle embedded in a topological space X we mean any subset A ⊂ X which, when endowed with

the induced topology, is a circle. Similarly, by a bouquet of two circles we mean any space which is

homeomorphic to the space drawn in Figure 5, and we talk about embedded bouquets of circles. Let T

be a a torus.

FIGURE 5.
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(1) Describe a circle C embedded in T such that the complement of T −C is connected.

(2) Describe a bouquet of two circle B embedded in T such that T −B is connected.

E Exercise 4.20 Show that the group GLn(R) of n × n invertible matrices with real coefficients (see

Exercise 2.34) is not connected.

E Exercise 4.21 Show that the cone of any space is connected.

E Exercise 4.22 Show that any two of the three spaces drawn in Figure 6 are not homeomorphic.

FIGURE 6.

E Exercise 4.23 Prove that if X ⊂ Rn is connected then its closure is also connected but its interior may

fail to be connected.

E Exercise 4.24 For a topological space (X ,T ), show that the following are equivalent:

(1) X is connected.

(2) /0 and X are the only subsets of X which are both open and closed.

(3) the only continuous functions f : X → {0,1} are the constant ones (where {0,1} is endowed

with the discrete topology).

E Exercise 4.25 [from the 2015 exam] Let X be a topological space.

a. If γ1,γ2 : [0,1]→ X are continuous and γ1(1) = γ2(0), show that

γ : [0,1]→ X , γ(t) =

{
γ1(2t) if t ∈ [0, 1

2
]

γ2(2t −1) if t ∈ (1
2
,1]

is continuous. (0.5 points)

b. If there exist A,B ⊂ X path connected such that X = A∪B and A∩B 6= /0, then X is connected.

(0.5 points)

E Exercise 4.26 Prove that if X and Y are homeomorphic, then they have the same number of connected

components.

4.2. Compactness

E Exercise 4.27 Assume that X is a topological space and (xn)n≥1 is a sequence in X , convergent to x ∈ X .

Show that

A = {x,x1,x2,x3, . . .}
is compact.

E Exercise 4.28 Let Tl be the topology from Exercise 2.19. With the topology induced from (R,Tl) is

[0,1) compact? But [0,1]?



4. MORE EXERCISES 95

E Exercise 4.29 For each of the spaces (N,T1) and (N,T2) from Exercise 2.42, decide whether the space

is Hausdorff, connected or compact.

E Exercise 4.30 Let (X ,T ) be a Hausdorff space, A,B ⊂ X . If A and B are compact, show that A∩B is

compact. Is the Hausdorffness assumption on X essential?

E Exercise 4.31 Let X be a topological space and A,B ⊂ X . If A and B are compact, show that A∪B is

compact.

E Exercise 4.32 Show that the boundary of any compact subspace X ⊂ Rn is compact.

E Exercise 4.33 Given a set X , when is (X ,Tcf) compact?

E Exercise 4.34 Show that the sequence xn = 2011sin(5n) (in R with the Euclidean topology) has a conver-

gent subsequence.

E Exercise 4.35 Recall that the graph of a function f : R→ R is

Gr( f ) = {(x, f (x)) : x ∈ R} ⊂ R2.

If f is bounded, show that f is continuous if and only if Gr( f ) is closed in R2. What if f is not bounded.

(hint: for the first part, use sequences; for the last part: 1/x).

E Exercise 4.36 Find a topological space (X ,T ) which is compact but is not Hausdorff. In the example

that you found, exhibit a compact set A ⊂ X such that A is not closed.

E Exercise 4.37 Find an example which shows that the Tube Lemma fails if Y is not compact.

E Exercise 4.38 Let (X ,T ) be a second countable topological space. Show that X is compact if and only

if for any decreasing sequence of nonempty closed subsets

. . .⊂ F3 ⊂ F2 ⊂ F1 ⊂ X ,

one has ∩∞
n=1Fn 6= /0.

(Hint: restate the property in terms of opens; then try to use Exercise 2.71).

E Exercise 4.39 If X is a Hausdorff space, and A ⊂ X is compact, show that the quotient X/A (obtained

from X by collapsing A to a point) is Hausdorff.

E Exercise 4.40 Show that P2 can be embedded in R4 (see Exercise 1.26 in the first chapter). Then do

again Exercise 3.3 from Chapter 3.

E Exercise 4.41 Show that the cone and the suspension of any compact topological space are compact.

E Exercise 4.42 Go back to exercise 3.29 and provide all the arguments (making use of compactness) and

solve part (i) as well.

E Exercise 4.43 [from the 2015 retake] Let Γ=R>0 be the group of strictly positive real numbers, endowed

with the usual multiplication. Let X = Rn \{0}. Show that

Γ×X → X , (r,x) 7→ rx

(the usual multiplication of vectors x by scalars r) defines an action of Γ on X and prove that X/Γ is

homeomorphic to Sn−1 (the n−1-dimensional sphere).
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E Exercise 4.44 [from the 2015 exam] Consider the group of integers modulo 2, Z2 = {0̂, 1̂}. Define the

following action of Z2 on the closed unit disk D2 = {z ∈ C : |z| ≤ 1}:

0̂ · z = z, 1̂ · z =−z (for all z ∈ D2).

Prove that the resulting quotient D2/Z2 is homeomorphic to D2 (provide a complete argument; a ”proof”

based only on pictures is not enough to get the entire 1 point for this exercise).

E Exercise 4.45 If X is connected and compact and f : X → R is continuous, show that f (X) = [m,M] for

some m,M ∈ R.

E Exercise 4.46

(i) Is it true that any continuous surjective map f : S1 → S1 is a homeomorphism?

(ii) Show that S1 cannot be embedded in R.

(iii) Show that any continuous injective map f : S1 → S1 is a homeomorphism.

E Exercise 4.47 [from a 2011 exam] Prove that there is no continuous injective map f : S1∨S1 → S1, where

S1 ∨S1 is a bouquet of two circles (two copies of S1, tangent to each other).

E Exercise 4.48 [from a 2012 exam] Prove that there is no continuous map g : C → C with the property

that g(z)2 = z for all z ∈ C.

E Exercise 4.49 [from a 2012 exam] Let X be a topological space and let γ : [0,1] → X be a continuous

function. Assume that γ is locally injective, i.e. that, for any t ∈ [0,1], there exists a neighborhodd V of t

in [0,1] such that

γ|V : V → X

is injective. Show that, for any x ∈ X , the set

γ−1(x) := {t ∈ [0,1] : γ(t) = x}
is finite.

E Exercise 4.50 Go back to Exercise 3.44 and show also that:

e. find an interval of type [a,b] with the property that, together with the topology induced from

(R,T ), is not compact.

f. find an interval of type (a,b) with the property that, together with the topology induced from

(R,T ), is not connected.

E Exercise 4.51 Go back to Exercise 3.45 and answer also:

d. Is [−1,1] (with the topology induced from T ) compact? But connected?

e. Is [−1,1) (with the topology induced from T ) compact?

f. Is [−3,1)∪ (1,3] (with the topology induced from T ) connected?

g. Does there exist a metric space X and a finite group Γ acting on X such that X/Γ is homeomor-

phic to (R,T )?

E Exercise 4.52 Go back to Exercise 3.42 and answer also:

d. Is A, with the topology induced from T , connected? Is it compact?

E Exercise 4.53 Go back to Exercise 3.43 and answer also:

d. Is (R,T0) compact?
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E Exercise 4.54 [from a 2010 exam- and the full version of Exercise 3.13] Let X be obtained by taking two

disjoint copies of the interval [0,2] (with the Euclidean topology) and gluing each t in the first copy with

the corresponding t in the second copy, for all t ∈ [0,2] different from the midle point. Explicitely, one

may take the space

Y = [0,2]×{0}∪ [0,2]×{1} ⊂ R2

with the topology induced from the Euclidean topology, and X is the space obtained from Y by gluing

(t,0) to (t,1) for all t ∈ [0,2], t 6= 1. We endow X with the quotient topology.

(i) Is X Hausdorff? But connected? But compact?

(ii) Can you find A,B ⊂ X which, with the topology induced from X , are compact, but such that

A∩B is not compact?

(iii) Show that X can also be obtained as a quotient of the circle S1.

E Exercise 4.55 Show that for any sequence (xn)n≥1 in R, there exists a subsequence (xnk
)k≥1 and a

sequence of integers (ak)k≥1 such that (xnk
+ak)k≥1 is convergent.

E Exercise 4.56 [from a 2011 exam] Let X be the space of continuous maps f : [0,1] → [0,1] with the

property that f (0) = f (1). We endow it with the sup-metric dsup and the induced topology (recall that

dsup( f ,g) = sup{| f (t)−g(t)| : t ∈ [0,1]}). Prove that:

(i) X is bounded and complete.

(ii) X is not compact.

4.3. Local compactness and the one-point compactification

E Exercise 4.57 What is the one-point compactification of X = (0,1)∪ (2,3)?

E Exercise 4.58 What is the one-point compactification of R2?

E Exercise 4.59 Show that the following subspace of R2 is locally compact and find its one-point com-

pactification:

X = S1 ∪ ((0,2)×{0}) ⊂R2.

E Exercise 4.60 Show that, for any circle C embedded in the Klein bottle K, K −C is locally compact.

Then describe such a circle C such that (K −C)+ is homeomorphic to P2.

E Exercise 4.61 Show that there exists a Hausdorff space X and an embedded circle C in X , such that the

one-point compactification of X −C is homeomorphic to X .

E Exercise 4.62 Consider

X = [0,1]× [0,1)

with the topology induced from R2. Prove that X is a locally compact Hausdorff space and describe its

one-point compactification (use a picture). What happens if we replace X by Y = X ∪{(1,1)}?

E Exercise 4.63 [from a 2011 exam] Consider

X1 = {(x,y,z) ∈ R3 : (z = 0) or (x = y = 0,z ≥ 0)},
X2 = {(x,y,z) ∈R3 : (z = 0) or (x = 0,y2 + z2 = 1,z ≥ 0)}.

X3 = {(x,y,z) ∈ R3 : (x2 + y2 + z2 = 1) or (y = 0,z = 0,
1

2
< |x|< 1)},
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(i) Show that X1, X2, X3 are locally compact (hint: try to use the basic properties of locally compact

spaces; alternatively, you can try to find direct arguments on the pictures).

(ii) Show that the one-point compactifications of X1, X2 and X3 are homeomorphic to each other.

E Exercise 4.64 [from a 2012 exam] Let X be a bouquet of two circles:

X = {(x,y) ∈ R2 : ((x−1)2 + y2 −1)((x+1)2 + y2 −1) = 0}.
We say that a space T is an exam space if there exist three distinct point p,q,r ∈ X such that Y is

homeomorphis to the one one point compactification of X −{p,q,r}.

Find the largets number l with the property that there exist exam-aces Y1, . . . ,Yl with the property that

any two of them are not homeomorphic (prove all the statements that you make!).

E Exercise 4.65 For any continuous map f : S1 → T 2 we define

X f := T 2 − f (S1).

(i) Is it true that, for any continuous function f , X f is compact? But locally compact? But metriz-

able? But connected?

(ii) Describe two embeddings f1, f2 : S1 → T 2 such that X f1
and X f2

are not homeomorphic.

(iii) Describe the one-point compactifications X+
f1

and X+
f2

.

(iv) Describe f : S1 → T 2 continuous such that X+
f is homeomorphic to S2.

E Exercise 4.66 [from a 2010 exam] Let M be the Moebius band. For any continuous function f : S1 → M

we denote by M f the complement of its image:

M f := M− f (S1)

and we denote by M+
f the one-point compactification of M f .

(i) Show that for any f , M f is open in M, it is locally compact but not compact.

(ii) Find an example of f such that M+
f is homeomorphic to D2. Then one for which it is homeo-

morphic to S2. And then one for P2.

E Exercise 4.67 Describe an embedding of the cylinder S1 × [0,1] into the space X , show that its com-

plement is locally compact, and find the one-point compactification of the complement, in each of the

cases:

(i) X is a torus.

(ii) X is the plane R2.

E Exercise 4.68 [from a 2013 exam] Consider

X = {(u,v,w) ∈ R3 : u2 + v2 +w2 = 1}\{(0,0,1),(0,0,−1)},
Y = {(x,y,z ∈R3 : x2 + y2 + z2 = 2

√

x2 + y2}\{(0,0,0)}.
π : X → R3, π(u,v,w) = (2u

√

u2 + v2,2v
√

u2 + v2,2w
√

u2 + v2).

(i) Compute the closure Y of Y in R3 and prove that it is compact. )

(ii) Prove that the one-point compactification of X is homeomorphic to Y .

(iii) Draw a picture of Y and explain the map π on the picture.

E Exercise 4.69 [from a 2010 exam] Let X , Y and Z be the spaces drawn in Figure 7.

(i) Show that any two of them are not homeomorphic.

(ii) Compute their one-point compactifications X+, Y+ and Z+.
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(iii) Which two of the spaces X+, Y+ and Z+ are homeomorphic and which are not?

X Y Z

FIGURE 7.

E Exercise 4.70 Let X be a connected, locally compact, Hausdorff space. Show that X is compact if and

only if X+ is not connected.

E Exercise 4.71 [from the 2014 retake exam] Assume that (X ,TX) is a compact Hausdorff space and A is

a closed subset of X . We consider the complement of A in X ,

Y := X −A = {x ∈ X : x /∈ A},
we denote by X/A the space obtained from X by collapsing A to a point and we consider the canonical

projection:

π : X → X/A

(recall that X/A is endowed with the topology π∗TX ). Show that:

a. Y is locally compact and Hausdorff.

b. For any open U in X with the property that U ∩A = /0 or A ⊂ U , one has that π(U) is open in

X/A.

c. X/A is a compact Hausdorff space.

d. The one point compactification of Y is homeomorphic to X/A.

E Exercise 4.72 [from the 2014 exam] Note that this exercise shows, in paticular, that the open Moebius

band and the open cylinder are not homemorphic.

Let X be the open cylinder (−1,1)× S1 and let Y be the open Moebius band (i.e. the Moebius band

discussed in the lectures, from which the boundary circle was removed).

a. Describe the 1-point compactification X+ as a subspace of R3.

b. (+) Describe X+ ⊂ R3 by explicit formulas and write down an explicit embedding

f : X → R3

so that X+ is the image of f together with the extra-point (0,0,0).
c. Show that the 1-point compactification of Y is homeomorphic to the projective plane P2.

d. Show that X and Y are not homeomorphic.

E Exercise 4.73 [from the 2014 retake exam] Assume that X is a sphere S2 minus n points and Y is a sphere

minus m points, where m,n ≥ 0 are integers. Show that if X is homeomorphic to Y , then n = m.

E Exercise 4.74 Find two locally compact Hausdorff spaces X and Y which are not homeomorphic but

which have homeomorphic one-point compactifications.
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E Exercise 4.75 For each natural number n we consider a space Xn that is obtained by removing n distinct

points from R2. We consider the 1-point compactification X+
n and we denote by ∞n ∈ X+

n the point at

infinity (so that X+
n = Xn ∪{∞n}). Show that

a. X+
n can be embedded in R3 (here you do not have to write down explicit formulas for the

embedding, but please explain your reasoning using pictures and mention what result(s) you

use in order to reach the final conclusion). (0.5 points)

b∗· If Xn and Xm are homeomorphic, then n = m. (1 point)
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1. Some axioms for sets of functions

The theory of “partitions of unity” is the most important tool that allows one to pass “from local to

global”. As such, it is widely used in many fields of mathematics, most notably in many branches of

Geometry and Analysis. The word “unity” stands for the constant function equal to 1, on some given

space X . A “partition of unity” is a decomposition

∑
i

ηi = 1

of the constant function into a sum of continuous functions ηi. One is interested in such partitions of

unity with the extra-requirement that each ηi is “concentrated in a given (usually very small) open Ui”.

The Ui’s form a (given) open cover of X and one is interested in the existence of partitions of unity

“subordinated” to the cover.

Let us also mention that, when it comes to applications to Geometry and Analysis, one deals with

topological spaces that have extra-structure and the “partitions of unity” are required to be more than

continuous (in most cases one can talk about differentiable functions, and the partitions are required

to be so). Ironically, the existence of such “special” partitions of unity is easier to establish than the

existence of the continuous partitions for general topological spaces. To include such applications, we

will include in our discussion a given set A of continuous functions. To specify the axioms for A , we

consider the space of continuous functions on X :

C (X) = C (X ,R) = { f : X → R : f is continuous}.
We use some of the structure present on C (X). First, we can take sums of continuous functions:

( f +g)(x) = f (x)+g(x).

Secondly, we can take quotients f/g, whenever g is nowhere vanishing:

f

g
(x) :=

f (x)

g(x)
,

Definition 5.1 Given a topological space X , we say that a subset A ⊂ C (X):

• is closed under finite sums if f +g ∈ A whenever f ,g ∈ A .

• is closed under quotients if f/g ∈ A whenever f ,g ∈ A and g is nowhere vanishing.

There are more operations that we can perform on C (X)- multiplication by real numbers, or multipli-

cation of continuous functions; in examples, A is usually closed under all these operations. However, the

most important condition on A is the following topological one:

Definition 5.2 Given a topological space X and A ⊂ C (X), we say that A is normal if for any two closed

disjoint subsets A,B ⊂ X , there exists f : X → [0,1] which belongs to A and such that f |A = 0, f |B = 1.

As we remarked in Section 6 of Chapter 2, the existence of such continuous functions implies that X

must be normal: any two closed disjoint subsets A,B⊂ X can be separated topologically. In what follows

we will repeatedly make use of the following:

Lemma 5.3 In a normal space X , if A ⊂ U ⊂ X with A-closed and U -open in X , then there exists an

open V in X such that A ⊂V ⊂V ⊂U .

PROOF. Since A ⊂ U , A and X −U are disjoint. They are both closed, hence we know that we

can find disjoint opens W and V such that A ⊂ V , X −U ⊂ W . The condition V ∩W = /0 is equivalent

to V ⊂ X −W . Since X −W is a closed containing V , this implies V ⊂ X −W . On the other hand,

X −U ⊂W can be re-written as X −W ⊂U . Hence V ⊂ X −W ⊂U . �
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2. Finite partitions of unity

In this section we give a precise meaning to the statement that a continuous function η : X → R is

“concentrated” in an open U ⊂ X . We will use the notation:

{ f 6= 0} := {x ∈ X : f (x) 6= 0}.

Definition 5.4 Given a topological space X and η : X → R, define the support of η as

supp(η) := { f 6= 0} ⊂ X .

We say that η is supported in an open U if supp(η)⊂U .

It is important that the support is defined as the closure of { f 6= 0}. This condition allows us to perform

“globalization”, as the following exercise indicates.

E Exercise 5.1 Let (X ,T ) be a topological space, U ⊂ X open and η ∈ C (X) supported in U . Then, for

any continuous map g : U → R,

(η ·g) : X → R, (η ·g)(x) =
{

η(x)g(x) if x ∈U

0 if x /∈U
.

is continuous. Show that this statement fails if we only assume that { f 6= 0} ⊂U .

Next we discuss finite partitions of unity.

Definition 5.5 Let X be a topological space, U = {U1, . . . ,Un} a finite open cover of X . A partition of

unity subordinated to U is a family of functions ηi : X → [0,1] satisfying:

η1 + . . .+ηn = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A-partition of unity if ηi ∈ A for all i.

E Exercise 5.2 Show that, given A ⊂ C (X), the following are equivalent:

1. any 2-open cover U = {U1,U2} admits an A-partition of unity subordinated to it.

2. A separates the closed subsets of X .

Theorem 5.6 Let X be a topological space and assume that A ⊂ C (X) is normal and closed under finite

sums and quotients.

Then, for any finite open cover U, there exists an A-partition of unity subordinated to U.

PROOF. The main topological ingredient in the proof is the following “shrinking lemma’.’

Lemma 5.7 (the finite shrinking lemma) For any finite open covering U = {Ui : 1 ≤ i ≤ n} of a normal

space X , there exists a covering V = {Vi : 1 ≤ i ≤ n} such that

V i ⊂Ui, ∀ i = 1, . . . ,n.

PROOF. Let

A = X − (U2 ∪ . . .∪Un),D =U1.

Then A is closed, D is open, and A ⊂ D. By Lemma 5.3 from the end of Chapter 2, we find V1 open such

that

A ⊂V1 ⊂V 1 ⊂ D(=U1).

This means that

{V1,U2, . . . ,Un}
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is a new open cover of X with V 1 ⊂U1. In other words, we have managed to “refine U1”. Applying the

same argument to this new cover (to refine U2), we find a new open cover

{V1,V2,U3, . . . ,Un}
with V 1 ⊂U1, V 2 ⊂U2. Continuing this argument, we obtain the desired open cover V . �

We now prove the theorem. Let U = {Ui} be the given finite open cover. Apply the previous lemma

twice and choose open covers V = {Vi}, W = {Wi}, with V i ⊂ Ui, W i ⊂ Vi. For each i, we use the

separation property of A for the disjoint closed sets (W i,X −Vi). We find fi : X → [0,1] that belongs to

A , with fi = 1 on W i and fi = 0 outside Vi. Note that

f := f1 + . . .+ fn

is nowhere zero. Indeed, if f (x) = 0, we must have fi(x) = 0 for all i, hence, for all i, x /∈Wi. But this

contradicts the fact that W is a cover of X . From the properties of A , each

ηi :=
fi

f1 + . . .+ fn

: X → [0,1]

is continuous. Clearly, their sum is 1. Finally, supp(ηi)⊂Ui because V i ⊂Ui and{x : ηi(x) 6= 0} = {x :

fi(x) 6= 0} ⊂Vi. �

3. Arbitrary partitions of unity

For arbitrary partitions of unity one has to deal with infinite sums ∑i fi of continuous functions on X

(indexed by some infinite set I). In such cases it is natural to require that, for each x ∈ X , the sum ∑i fi(x)
is finite (i.e. fi(x) = 0 for all but a finite number of i’s). Although the sum is then well defined as a

function on X , to retain continuity, a slightly stronger notion is needed.

Definition 5.8 Let (X ,T ) be a topological space and let S = {Si} be a family of subsets of X . We say

that S is locally finite (in the space X ) if for any x ∈ X , there exists a neighborhood Vx of x such that Vx

intersects only finitely many subsets that belong to S .

Example 5.9 The collection S = {(0,1/n) : n ∈ Z} is locally finite in (0,1), but not in R.

Definition 5.10 Given a topological space X , a family {g̃i : i ∈ I} of continuous functions g̃i : X → R is

called a locally finite family of continuous functions if {suppX(g̃i) : i ∈ I} is locally finite.

E Exercise 5.3 Show that if {g̃i : i ∈ I} is a locally finite family of continuous functions, then

X ∋ x 7→ ∑
i

g̃i(x)

gives a well-defined continuous function ∑i gi : X → R.

Definition 5.11 Given a topological space X and A ⊂ C (X), we say that A is closed under locally finite

sums if for any locally finite family {g̃i : i ∈ I} of functions from A , ∑ fi ∈ A .

Definition 5.12 Let X be a topological space, U = {Ui : i ∈ I} an open cover of X . A partition of unity

subordinated to U is a locally finite family of functions ηi : X → [0,1] satisfying:

∑
i

ηi = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A-partition of unity if ηi ∈ A for all i.

The existence of partitions of unity (for arbitrary covers) forces X to have a special topological prop-

erty, called “paracompactness”, which we discuss next. As in the case of compactness, paracompactness

is best characterized in terms of open covers.
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Definition 5.13 Let X be a topological space and let A be a cover of X . A refinement of A is any other

cover B with the property that any B ∈ B is contained in some A ∈ A .

Example 5.14 For X = R and A = {(0,ε) : ε ∈ (0,1)}, B = {(0,1/n) : n ∈ Z+}, B is subcover (hence

also a refinement) of A but, at the same time, A is a refinement of B .

As a motivation for the next definition, note that if {ηi} is a partition of unity subordinated to U, then

{ηi 6= 0} is an open refinement of U (which still covers X !), which is locally finite.

Definition 5.15 A topological space X is called paracompact if any open cover admits a locally finite

refinement.

Example 5.16 Compact spaces are paracompact (use again that any subcover is a refinement). As

we will prove in the next section, any locally compact, Hausdorff, 2nd countable space (hence also any

topological manifold) is paracompact. One can also show that all metric spaces are paracompact. Hence

paracompactness is shared by the most important classes of spaces.

As in the previous subsection, for partitions of unity, we will need a “shrinking lemma”.

Lemma 5.17 (shrinking lemma) If X is a paracompact Hausdorff space then X is normal and, for any

open cover U = {Ui : i ∈ I} there exists a locally finite open cover V = {Vi : i ∈ I} with the property that

V i ⊂Ui for all i ∈ I.

PROOF. We first show that X is normal. The proof is very similar to the compact case, i.e. the proof

of Proposition 4.20. We use the same idea and the same notations. We see that it suffices to show that, for

Y,Z ⊂ X , if Z is closed and Y |{z} for all z ∈ Z, then Y |Z. To prove this, we first make a general remark:

the condition Y |Z is implies (and it is actually equivalent to) the existence of an open neighborhood V

of Z such that Y ∩V = /0. Indeed, if U ∩V = /0 for some open neighborhoods U of Y and V of Z, then

V ⊂ X −U where the last set is closed, hence V ⊂ X −U , hence V ∩U 6= /0; since Y ⊂U , we must have

V ∩Y = /0 (for the converse, just take U = X −V ).

Hence we assume now that Y |{z} for all z ∈ Z and we prove Y |Z. For each z ∈ Z choose an open

neighborhood Vz such that Y ∩V z = /0. Then {Vz : z ∈ Z}∪{X −Z} is an open cover of X . Let U be a

locally finite refinement and let W = {Wi : i ∈ I} consisting of those members of U which intersect Z.

Define V = ∪iWi. This is an open neighborhood of Z. Note that Y ∩W i = /0 for all i (since each Wi is

inside some Vz and Y ∩V z = /0 by construction). Also, due to local finiteness (and Exercise 2.59),

V = ∪iW i.

Hence V ∩Y = /0, proving that Y |Z. In conclusion X must be normal.

We now prove the second part. Consider A := {V ⊂ X open : V ⊂ Ui for some i ∈ I}. Since X

is normal, Lemma 5.3 implies that A is an open cover of X . Let B = {B j : j ∈ J} be a locally finite

refinement of A which is an open cover of X . Then, for each j ∈ I, we find an element f ( j) ∈ I such that

B j ⊂U f ( j) (and this defines a function f : J → I). We define

Vi := ∪ j∈ f−1(i)B j

(by convention, this is empty if f−1(i) is empty). Using Exercise 2.59, we have V i ⊂Ui for all i. Finally,

remark that {Vi} is locally finite: if a neighborhood of a point intersects Vi then it intersects B j for some

j ∈ f−1(i), hence it intersects an infinite number of Vi’s, then it would also intersect an infinite number

of B j’s. �

Theorem 5.18 Let X be a paracompact Hausdorff space and assume that A ⊂ C (X) is normal, closed

under locally finite sums and closed under quotients.

Then, for any open cover U of X , there exists an A-partition of unity subordinated to U.
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PROOF. The proof is completely similar to the proof from the finite case. Apply the shrinking lemma

twice to find coverings {Vi} and {Wi} with V i ⊂Ui, W i ⊂Vi. Then choose φi : X → [0,1] such that φi = 1

on W i and 0 on X −Vi, with φi ∈ A . Finally, since our families are locally finite, ηi = φi/∑ j φ j makes

sense and is our desired partition of unity (fill in the details!). �

4. The locally compact case

The locally compact Hausdorff case is nicer. First of all the condition on A ⊂ C (X) to separate the

closed subsets of X (which may be difficult to prove!) can be reduced to a local condition.

Theorem 5.19 Let X be a Hausdorff paracompact space and A ⊂ C (X) closed under locally finite sums

and under quotients. If X is also locally compact, then the following are equivalent:

1. A is normal.

2. ∀ (x ∈U ⊂ X with U open), ∃ ( f ∈ A positive, supported in U , with f (x) > 0 ).

Secondly, 2nd countability and local compactness imply paracompactness:

Theorem 5.20 Any Hausdorff, locally compact and 2nd countable space is paracompact.

PROOF. (of Theorem 5.20) We use an exhaustion {Kn} of X (Theorem 4.38). Let U be an open

cover of X . For each n ∈ Z+ there is a finite family Vn which covers Kn− Int(Kn−1), consisting of opens

V with the properties: V ⊂ Int(Kn+1)−Kn−1, V ⊂U for some U ∈ U. Indeed, for any x ∈ Kn− Int(Kn−1)
let Vx be the intersection of Int(Kn+1)−Kn−1 with any member of U containing x; since Kn − Int(Kn−1)
is compact, just take a finite subcollection Vn of {Vx}, covering Kn− Int(Kn−1). Set V = ∪nVn; it covers

X since each Kn−Kn−1 ⊂ Kn− Int(Kn−1) is covered by Vn. Finally, it is locally finite: if x ∈ X , choosing

n and V such that V ∈ Vn, x ∈V , we have V ⊂ Int(Kn+1)−Kn−1, hence V can only intersect members of

Vm with m ≤ n+1 (a finite number of them!). �

PROOF. (of Theorem 5.19) That 1 implies 2 is clear: apply the separation property to {x} and X −V .

Assume 2. We claim that for any C ⊂ X compact and any open U such that C ⊂ U , there exists f ∈ A
supported in U , such that f |C > 0. Indeed, by hypothesis, for any c∈C we can find an open neighborhood

Vc of c and fc ∈ A positive such that fc(c) > 0; then { fc 6= 0}c∈C is an open cover of C in X , hence we

can find a finite subcollection (corresponding to some points c1, . . . ,ck ∈C) which still covers C; finally,

set f = fc1
+ . . .+ fck

.

To prove 1, let A,B ⊂ X be two closed disjoint subsets. As terminology, D ⊂ X is called relatively

compact if D is compact. Since X is locally compact, any point has arbitrarily small relatively compact

open neighborhoods (why?). For each y ∈ X −A, we choose such a neighborhood Dy ⊂ X −A. For each

a ∈ A, since a ∈ X −B, by Lemma 5.17 and Lemma 5.3, we find an open Da such that a ∈ Da ⊂ X −B.

Again, we may assume that Da is relatively compact. Then {Dx : x ∈ X} is an open cover of X ; let

U = {Ui : i ∈ I} be a locally finite refinement. We split the set of indices as I = I1 ∪ I2, where I1 contains

those i for which Ui ∩A 6= /0, while I2 those for which Ui ⊂ X −A. Using Lemma 5.17 we also choose an

open cover of X , V = {Vi : i ∈ I}, with V i ⊂Ui. Note that, by construction, each Ui (hence also each Vi)

is relatively compact. Hence, by the claim above, we can find ηi ∈ A such that

ηi|V i
> 0, supp(ηi)⊂Ui.

Finally, we define

f (x) =
∑i∈I1

ηi(x)

∑i∈I ηi(x)

From the properties of A , f ∈ A . Also, f |A = 1. Indeed, for a ∈ A, a cannot belong to the Ui’s with i ∈ I2

(i.e. those ⊂ X −A); hence ηi(a) = 0 for all i ∈ I2, hence f (a) = 1. Finally, f |B = 0. To see this, we show

that ηi(b) = 0 for all i ∈ I1, b ∈ B. Assume the contrary. We find i ∈ I1 and b ∈ B∩Ui. Now, from the

construction of U, Ui ⊂ Dx for some x ∈ X . There are two cases. If x = a ∈ A, then the defining property
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for Da, namely Da∩B= /0, is in contradiction with our assumption (b∈ B∩Ui). If x = y∈ X −A, then the

defining property for Dy, i.e. Dy ⊂ X −A, is in contradiction with the fact that i ∈ I1 (i.e. Ui∩A 6= /0). �

5. Urysohn’s lemma

This section is devoted to the proof of what is known as “the Urysohn lemma”:

Theorem 5.21 If X is a normal space then for any two closed disjoint subsets A,B ⊂ X , there exists a

continuous function f : X → [0,1] such that f |A = 0, f |B = 1.

In other words, if X is normal, then C (X) is normal. Hence one can construct continuous partitions of

unity.

Corollary 5.22 If X is Hausdorff and paracompact then, for any open cover U of X , there exists a

continuous partition of unity subordinated to U.

We start with the proof. Fix A and B disjoint closed subsets. From now on, when saying that “A is

closed” or “D is open”, we mean that they are closed (open) in the given topological space (X ,T ). We

will repeatedly use Lemma 5.3 from this chapter.

Claim 1: Then there is a family of opens sets {Uq : q ∈Q} such that

(C1) Uq = /0 for q < 0, U0 contains A, U1 = X −B, Uq = X for q > 1.

(C2) Uq ⊂Uq′ for all q < q′.

PROOF. The condition (C1) force the definition of Uq for q < 0 and for q ≥ 1. For q = 0, we choose

U0 to be any open set such that

A ⊂U0 ⊂U0 ⊂U1.

This is possible since A∩B = /0 means that A ⊂ X −B =U1 hence we can apply Lemma 5.3.

We are left with the construction of Uq for q ∈Q∩ (0,1). Writing

Q∩ [0,1] = {q0,q1,q2, . . .},
with q0 = 0, q1 = 1, we will define Uqn

by induction on n such that (C2) holds for all q = qi, q′ = q j

with 0 ≤ i, j ≤ n. Assume that Uq is constructed for q ∈ {q0, . . . ,qn} and we construct it for q = qn+1.

Looking at all intervals of type (qi,q j) with 0 ≤ i, j ≤ n, there is a smallest one containing qn+1. Call it

(qa,qb). Since qa < qb, by the induction hypothesis we have

Ua ⊂Ub

hence, by Lemma 5.3, we find an open U such that

Ua ⊂U ⊂U ⊂Ub.

Define Uqn+1
= U . We have to check that (C2) holds for q,q′ ∈ {q0, . . . ,qn+1}. Fix q,q′. If q 6= qn+1

and q′ 6= qn+1, Uq ⊂ Uq′ holds by the induction hypothesis. Hence we may assume that q = qn+1 or

q′ = qn+1. We treat the case q = qn+1, the other one being similar. Write q′ = q j with j ∈ {0,1, . . . ,n}.

The assumption is that qn+1 < q j and we want to show that

Uqn+1
⊂Uq j

.

But, since qn+1 < q j and (qa,qb) is the smallest interval of this type containing qn+1, we must have

q j ≥ qb. But then

Uqn+1
=U ⊂Uqb

⊂Uq j
.

�

Claim 2: The function f : X → [0,1], f (x) = inf{q ∈Q : x ∈Uq} satisfies:

(1) f (x)> q =⇒ x /∈Uq.

(2) f (x)< q =⇒ x ∈Uq.

(in particular, f (x) = q for x ∈ ∂Uq).
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PROOF. For (1), we prove its negation, i.e. that x ∈Uq implies f (x)≤ q. Hence assume that x ∈Uq.

From (C2) we deduce that x ∈Uq′ for all q′ > q. Hence f (x) ≤ q′ for all q′ > q. This implies f (x) ≤ q.

For (2), we assume that f (x)< q. By the definition of f (x) (as an infimum), there exists q′ < q such that

x ∈Uq′ . But q′ < q implies Uq′ ⊂Uq, hence x ∈Uq. �

Claim 3: f |A = 0, f |B = 1, and f is continuous.

PROOF. The first two conditions are immediate from the definition of f and properties (C1) of the

first claim. We now prove that f is continuous. We have to prove that for any open interval (a,b) in R,

and any x ∈ f−1((a,b)), there exists an open U containing x such that f (U) ⊂ (a,b). Fix (a,b) and x

such that f (x) ∈ (a,b) and look for U satisfying the desired condition. Choosing p,q ∈Q such that

a < p < f (x) < q < b,

then U :=Uq −U p will do the job. Indeed:

(1) using Claim 2, f (x) > p implies x /∈U p, while f (x)< q implies x ∈Uq. Hence x ∈U .

(2) for y ∈U arbitrary, we have f (y) ∈ (a,b) because:

• y ∈Uq ⊂Uq which, by the previous claim, implies f (y)≤ q < b.

• y /∈U p, hence y /∈Up which, by the previous claim, implies f (y)≥ p > a.

�
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6. More exercises

E Exercise 5.4 Let A be the following collection of subsets of R:

A = {(n,n+2) : n ∈ Z}.
Which of the following collections refine A?

B = {(x,x+1) : x ∈R},

C = {(n,n+ 3

2
) : n ∈ Z},

C = {(x,x+ 3

2
) : x ∈ R}.

E Exercise 5.5 Which of the collections from the previous exercise is locally finite?

E Exercise 5.6 (from a 2012 exam) Consider the following open cover of R:

U := {(r,s) : r,s ∈R, |r− s|< 1

3
}.

Describe a locally finite subcover of U.

E Exercise 5.7 (from a 2011 exam) Show that the family of open intervals

U := {(q,q+1) : q ∈ R}
forms an open cover of R which admits no finite sub-cover, but which admits a locally finite sub-cover.

E Exercise 5.8 (from a 2013 exam) Let X = (0,∞) and consider the open cover of X

U = {U1,U2,U3, . . .} with Un = (0,n).

(i) Show that U does not admit a subcover which is locally finite.

(ii) Describe a locally finite refinement of U.

E Exercise 5.9 Show that if a family {pi : i ∈ I} of non-zero polynomial functions pi : R→ R is locally

finite, then it must be finite.

E Exercise 5.10 Let P ⊂ C (R) be the space of all polynomial functions on R. Is P normal?

E Exercise 5.11 Show that the space C 1(R) ⊂ C (R) of functions of class C1 is normal. What do you

conclude from this?

E Exercise 5.12 Do the same for the space C ∞(R) of smooth (i.e. infinitely differentiable) functions on R.

E Exercise 5.13 Now do the same for C ∞(Rn).

It is very tempting now to talk about smooth manifolds. These are manifolds on which we can talk

about smoothness. More precisely, a smooth manifold is a topological manifold X together with a spec-

ified family of coordinate charts {χi : Ui → Rn}, such that {Ui} is an open cover of X , ci, j := χi ◦χ−1
j is

a smooth function. Here, ci, j plays the role of the “change of coordinates” since

χi(x) = ci, j(χ j(x)).

Also, ci, j is a function defined on an open in Rn (namely χ j(Ui ∩U j)) with values in Rn; hence it makes

sense to talk about its smoothness. Given such a smooth manifold, a function f : X →R is called smooth

if its representation in each chart, i.e. each f ◦ χ−1
i : Rn → R is smooth. Denote by C ∞(X) the space
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of smooth functions on X ; of course, C ∞(X) ⊂ C (X). Once you get used to all these definitions, the

following should not be too difficult now:

E Exercise 5.14 Show that, for any smooth manifold X , C ∞(X) is normal. Deduce that any open cover

admits a smooth partition of unity subordinated to it.

In this context, a map f : X → RN is called smooth if all its components are smooth. Adapting the

proof of Theorem 4.31 and using Exercise 5.13 above, one can now try a more difficult exercise:

E Exercise 5.15 Show that, for any smooth compact manifold X , there exists a smooth embedding f : X →
RN , for N large enough.

E Exercise 5.16 Let X and Y be two topological spaces and assume that Y is normal. Show that a function

f : X →Y

is continous if and only if, for each continuous function φ : Y → R, the function φ◦ f : X → R is contin-

uous.

E Exercise 5.17 Let (X ,T ) be a topological space. Denote by C(X) the space of all continuous functions

f : X → R. For f ∈C(X) we define

V ( f ) := {x ∈ X : f (x) 6= 0}.
Show that:

(1) The collection B := {V ( f ) : f ∈C(X)} is a topology basis on X .

(2) If X is normal, then T = T (B).

E Exercise 5.18 (from a 2013 exam) Let X be a Hausdorff, locally compact, 2nd countable topological

space and assume that U is an open in X ×R containing X ×{0}:

X ×{0} ⊂U ⊂ X ×R.

The aim of this exercise is to prove that there exists a continuous function f : X → (0,∞) such that U

contains

U f := {(x, t) ∈ X ×R : |t|< f (x)}.
Consider

r : X → R, r(x) = sup{r ∈ (0,1] : {x}× (−r,r) ⊂U}.
(i) Show that one can find an open cover {Vi : i∈ I} of X and a family {ri : i ∈ I} of strictly positive

real numbers (for some indexing set I) such that

r(y)> ri ∀ y ∈Vi, ∀ i ∈ I.

(note: depending on the argument that you find, I that you construct may be countable, but it

may also be “very large”- e.g. “as large as X”).

(ii) For {Vi : i ∈ I}, {ri : i ∈ I} as above, use a partition of unity argument to build a continuous

function f : X → (0,∞) such that U f ⊂U .

(iii) Deduce that if X is actually compact, then f may be choosen to be constant.
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1. Completeness and the Baire property

Probably the most important metric property is that of completeness which we now recall.

Definition 6.1 Given a metric space (X ,d) and a sequence (xn)n≥1 in X , we say that (xn)n≥1 is a

Cauchy sequence if

lim
n,m→∞

d(xn,xm) = 0,

i.e., for each ε > 0, there exists an integer nε such that

d(xn,xm)< ε

for all n,m ≥ nε. One says that (X ,d) is complete if any Cauchy sequence is convergent.

Very simple examples (see e.g Exercise 1.38 from the first chapter) show that completeness is not

a topological property. However, it does have topological consequences. The first one is a relative

topological property for complete spaces.

Proposition 6.2 If (X ,d) is a complete metric space then A ⊂ X is complete (with respect to the restric-

tion of d to A) if and only if A is closed in X .

PROOF. Assume first that A is complete and show that A = A. Let x ∈ A. Then we find a sequence

(an) in A converging (in (X ,d)) to x. In particular, (an) is Cauchy. But the completeness of A implies

that the sequence is convergent (in A!) to some a ∈ A. Hence x = a ∈ A. This proves that A is closed.

For the converse, assume A is closed and let (an) be a Cauchy sequence in A. Of course, the sequence is

Cauchy also in X . Since X is complete, it will be convergent to some x ∈ X . Since A is closed, x ∈ A, i.e.

(an) is convergent in A. �

The next topological property that complete metric spaces automatically have is:

Proposition 6.3 Any complete metric space (X ,d) has the Baire property, i.e. for any countable family

{Un}n≥1 consisting of open sets Un ⊂ X , if Un is dense in X for all n, then ∩nUn is dense in X .

PROOF. Assume now that {Un}n≥1 consists of open dense subsets of X . We show that any x ∈X is in

the closure of ∩nUn. Let U be an open containing x; we have to show that U intersects ∩nUn. First, since

U1 is dense in X , U ∩U1 6= /0; choosing x1 in this intersection, we find r1 > 0 such that B[x1,r1]⊂U ∩U1.

We may assume r1 < 1. Next, since U2 is dense in X , B(x1,r1)∩U2 6= /0; choosing x2 in this intersection,

we find r2 > 0 such that B[x2,r2] ⊂ B(x1,r1)∩U2. We may assume r2 < 1/2. Similarly, we find x3 and

r3 < 1/3 such that B[x3,r3] ⊂ B(x2,r2)∩U3 and we continue inductively. Then the resulting sequence

(xn) is Cauchy because d(xn,xm)< rn for n ≤ m. This implies that (xn) is convergent to some y ∈ X and

d(xn,y) ≤ rn for all n. Hence y ∈ B[xn,rn] ⊂Un, i.e. y ∈ ∩nUn. Also, since B[x1,r1] ⊂U , y ∈U . Hence

U ∩ (∩nUn) 6= /0, as we wanted. �
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2. Boundedness and totally boundedness

Another notion that strongly depends on a metric is the notion of boundedness.

Definition 6.4 Given a metric space (X ,d), we say that A ⊂ X is

(1) bounded in (X ,d) (or with respect to d) if there exists x ∈ X and R > 0 such that A ⊂ B(x,R).
(2) totally bounded in (X ,d) if, for any ε > 0, there exist a finite number of balls in X of radius ε

covering A.

When A = X , we say that (X ,d) is bounded, or totally bounded, respectively.

You should convince yourself that, when X =Rn and d is the Euclidean metric, total boundedness with

respect to d is equivalent to the usual notion of boundedness.

A few remarks are in order here. First of all, these properties are not really relative properties (i.e. they

did not depend on the way that A sits inside X ), but properties of the metric space (A,dA) itself, where

dA is the induced metric on A.

E Exercise 6.1 Given a metric space (X ,d) and A ⊂ X , A is bounded in (X ,d) if and only if (A,dA) is

bounded. Similarly for totally bounded.

Another remark is that the property of “totally bounded” is an improvement of that of “bounded”.

The following exercise shows that, by a simple trick, a metric d can always be made into a bounded

metric d̂ without changing the induced topology; although the notion of boundedness is changed, totally

boundedness with respect to d and d̂ is the same.

E Exercise 6.2 As in Exercise 1.39, for a metric space (X ,d) we define d̂ : X ×X → R by

d̂(x,y) = min{d(x,y),1}.
We already know that d̂ is a metric inducing the same topology on X as d, and that (X , d̂) is complete

if and only if (X ,d) is. Also, it is clear that (X , d̂) is always bounded. Show now that (X , d̂) is totally

bounded if and only if (X ,d) is.

Finally, here is a lemma that we will use later on:

Lemma 6.5 Given a metric space (X ,d) and A ⊂ X , then A is totally bounded if and only if A is.

PROOF. Let ε > 0. Choose x1, . . . ,xk such that A is covered by the balls B(xi,ε/2). Then A will be

covered by the balls B(xi,ε). Indeed, if y ∈ A, we find x ∈ A such that d(x,y)< ε/2; also, we find xi such

that x ∈ B(xi,ε/2); from the triangle inequality, y ∈ B(xi,ε). �
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3. Compactness

The main criteria to recognize when a subspace A ⊂Rn is compact is by checking whether it is closed

and bounded in Rn. For general metric spaces:

Theorem 6.6 A subset A of a complete metric space (X ,d) is compact if and only if it is closed (in X )

and totally bounded (with respect to d).

This theorem will actually be an immediate consequence of another theorem, which also clarifies the

relationship between compactness and sequential compactness for metric spaces.

Theorem 6.7 For a metric space (X ,d), the following are equivalent:

1. X is compact.

2. X is sequentially compact.

3. X is complete and totally bounded.

PROOF. We first prove Theorem 6.7. The implication 1=⇒ 2 is Corollary 4.34. For 2=⇒ 3, assume

that X is sequentially compact. We first prove that X is complete. Let (xn)n≥1 be a Cauchy sequence.

By hypothesis, we find a convergent subsequence (xnk
)k≥1. Let x be its limit. We prove that the entire

sequence (xn) converges to x. Let ε > 0. We look for an integer Nε such that d(xn,x) < ε for all n > Nε.

Since (xn) is Cauchy we find N ′
ε such that

d(xn,xm)< ε/2

for all n,m ≥ N ′
ε. Since (xnk

)k≥1 converges to x, we find kε such that

d(xnk
,x)< ε/2

for all k ≥ kε. Choose Nε = max{N ′
ε,nkε}. Then, for n > Nε, choosing k such that nk > n (such a k exists

since n1 < n2 < .. . is a sequence that tends to ∞), we must have k > kε and nk > N ′
ε, hence

d(xn,xnk
)< ε/2, d(xnk

,x) < ε/2.

Using the triangle inequality, we obtain d(xn,x) < ε, and this holds for all n ≥ Nε. This proves that (xn)
converges to x. We now prove that X is totally bounded. Assume it is not. Then we find r > 0 such that

X cannot be covered by a finite number of balls of radius r. Construct a sequence (xn)n≥1 as follows.

Start with any x1 ∈ X . Since X 6= B(x1,r), we find x2 ∈ X −B(x1,r). Since X 6= B(x1,r)∪B(x2,r), we

find x3 ∈ X −B(x1,r)∪B(x2,r). Continuing like this we find a sequence with xn /∈ B(xm,r) for n > m.

Hence d(xn,xm) > r for all n 6= m. But by hypothesis, (xn) has a subsequence (xnk
)k≥1 which converges

to some x ∈ X . But then we find N such that d(xnk
,x)< r/2 for all k ≥ N, hence

d(xnk
,xnl

)≤ d(xnk
,x)+d(x,xnl

)< r

for all k, l ≥ N, and this contradicts the condition “d(xn,xm)> r for all n 6= m”.

3=⇒ 1: Assume that (X ,d) is complete and totally bounded. The last condition ensures that for each

integer n ≥ 0, there is a finite set Fn ⊂ X such that

X =
⋃

x∈Fn

B(x,
1

2n
).

Let U = {Ui : i ∈ I} be an open cover of X , and we want to prove that we can extract a finite subcover

of U. Assume this is not possible. We construct a sequence (xn)n≥1 inductively as follows. Since

∪x∈F1
B(x, 1

2
) = ∪iUi, and the first union is a finite union (F1 is finite), we find x1 ∈ F1 such that B(x1,

1
2
)

cannot be covered by a finite number of opens from U. Now, since

B(x1,
1

2
) =

⋃

x∈F2

(B(x1,
1

2
)∩B(x,

1

4
))
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we find x2 ∈ F2 such that

B(x1,
1

2
)∩B(x2,

1

4
) 6= /0

and B(x2,
1
4
) cannot be covered by a finite numbers of opens from U. Continuing this, at step n we find

xn ∈ Fn such that

B(xn−1,
1

2n−1
)∩B(xn,

1

2n
) 6= /0

and B(xn,
1
2n ) cannot be covered by a finite number of opens from U. Note that, choosing an element y

in the (non-empty) intersection above, the triangle inequality implies that

d(xn−1,xn)<
1

2n−1
+

1

2n
=

3

2n
,

from which we deduce that (xn)n≥1 is a Cauchy sequence (why?). By hypothesis, it will converge to en

element x ∈ X . Choose U ∈ U such that x ∈ U . Since U is open, we find ε > 0 such that B(x,ε) ⊂ U .

Since xn → x, we find nε such that d(xn,x)< ε/2 for all n > nε. Using the triangle inequality, we deduce

that B(xn,ε/2) ⊂U for all n ≥ nε. Choosing n so that also 1/2n < ε/2, we deduce that B(xn,1/2n)⊂U ,

which contradicts the fact that B(xn,
1
2n ) cannot be covered by of finite number of opens from U.

This ends the proof of Theorem 6.7. For Theorem 6.6, one uses the equivalence between 1 and 3

above, applied to the metric space (A,dA), and Proposition 6.2. �

We now derive some more properties of compactness in the metric case. In what follows, given F ⊂ X ,

we say that F is relatively compact in X if the closure F in X is compact.

Corollary 6.8 For a subset F of a complete metric space (X ,d), the following are equivalent

1. F is relatively compact in X .

2. any sequence in F admits a convergent subsequence (with some limit in X ).

3. F is totally bounded.

PROOF. We apply Theorem 6.7 to F . We know that 3 is equivalent to the same condition for F

(Lemma 6.5). We prove the same for 2; the non-obvious part is to show that F satisfies 2 if F does. So,

let (yn) be a sequence in F . For each n we find xn ∈ F such that d(xn,yn)< 1/n. After eventually passing

to a subsequence, we may assume that (xn) is convergent to some x ∈ X and d(xn,yn)→ 0 as n → ∞. But

this implies that (yn) itself must converge to x. �

Corollary 6.9 Any compact metric space (X ,d) is separable, i.e. there exists A ⊂ X which is at most

countable and which is dense in X .

PROOF. For each n choose a finite set An such that X is covered by B(a, 1
n
) with a ∈ An. Then

A := ∪An is dense in X : for x ∈ X and ε we have to show that B(x,ε)∩A 6= /0; but we find n with 1
n
< ε

and a ∈ An such that x ∈ B(a, 1
n
); then a ∈ B(x,ε)∩A. �

Proposition 6.10 (the Lebesgue lemma) If (X ,d) is a compact metric space then, for any open cover U
of X , there exists δ > 0 such that

A ⊂ X , diam(A)< δ =⇒ ∃ U ∈ U such that A ⊂U.

(δ is called a Lebesgue number for the cover U).
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PROOF. It suffices to show that there exists δ such that each ball B(x,δ) is contained in some U ∈ U.

If no such δ exists, we find δn → 0 such that B(xn,δn) is not inside any U ∈ U. Using (sequential)

compactness we may assume that (xn) is convergent, with some limit x ∈ X (if not, pass to a convergent

subsequence). Let U ∈ U with x ∈ U and let r > 0 with B(x,r) ⊂U . Since δn → 0, xn → x, we find n

s.t. δn < r/2, d(xn,x) < r/2. From the triangle inequality, B(xn,δn) ⊂ B(x,r) (⊂ U ) which contradicts

the choice of xn and δn. �
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4. Paracompactness

Finally, we show that:

Theorem 6.11 Any metric space is paracompact.

PROOF. Start with an arbitrary open cover U = {Ui : i ∈ I} of X . We consider an order relation “≤”

on I, which makes I into a well-ordered set (i.e. so that any subset of I has a smallest element). We will

construct a locally finite refinement of type V = ∪n∈NVn where, for each n, the family V (n) will have

one member for each i ∈ I; i.e. it is of type:

V (n) = {Vi(n) : i ∈ I}.
We set X(n) = ∪iVi(n). The definition of V (n) is by induction on n. For n = 1:

Vi(1) :=
⋃

a∈Ui−(∪ j<iU j) with B(a, 3
2
)⊂Ui

B(a,
1

2
).

Assuming that V (1), . . . , V (n−1) have been constructed, we define, for each i ∈ I:

Vi(n) =
⋃

a∈Ui−(∪ j<iU j) with B(a, 3
2n )⊂Ui, a/∈X(1)∪...∪X(n−1)

B(a,
1

2n
).

It is clear that V is a refinement of U. Next, we claim that X = ∪nX(n) (i.e. V is a cover): for

x ∈ X , choose the smallest i such that x ∈ Ui and choose n such that B(x,3/2n) ⊂ Ui; then either x ∈
X(1)∪ . . .∪ X(n− 1) and we are done, or x can serve as an index in the definition of Vi(n), hence

x ∈ X(n). Before showing local finiteness, we remark that, for each n:

(4.1) d(Vi(n),Vj(n))≥
1

2n
∀ i 6= j.

To see this, assume that i < j and let x ∈ Vi(n), y ∈ Vj(n). Then x ∈ B(a, 1
2n ) for some a ∈ X with

B(a, 3
2n )⊂Ui and y∈ B(b, 1

2n ) for some b∈X with b /∈Ui. These imply that b /∈B(a, 3
2n ), i.e. d(a,b)≥ 3

2n .

From the triangle inequality:

d(x,y) ≥ d(a,b)−d(a,x)−d(b,y) >
3

2n
− 1

2n
− 1

2n
=

1

2n
.

We now show local finiteness. Let x ∈ X . Fix n0 ≥ 1 integer, i0 ∈ I with x ∈ Vi0(n0). Also, choose

n1 ≥ 1 integer with

(4.2) B(x,
1

2n1
)⊂Vi0(n0).

We claim that

V := B(x,r) where r =
1

2n0+n1

intersects only a finite number of members of V . This follows from the following two remarks

1. For n < n0 +n1, V intersects at most one member of the family V (n).
2. For n ≥ n0 +n1, V intersects no member of the family V (n).

Part 1 follows from (4.1): if V intersects both Vi(n) and Vj(n) with i 6= j, we would find a,b ∈ V with

d(a,b) ≥ 1
2n but d(a,b) ≤ d(a,x)+d(x,b) < 2r ≤ 1

2n for all a,b ∈V .

For part 2, assume that n ≥ n0 +n1. Assume that V ∩Vi(n) = /0 for some i ∈ I. From the definition of

Vi(n), we then find B(a, 1
2n )∩V 6= /0 for some a∈Ui−(∪ j<iU j), with B(a, 3

2n )⊂Ui, a /∈X(1)∪ . . .∪X(n−
1). Since n > n0, we have a /∈ X(n0), hence a /∈ Vi0(n0). From the choice of n1 (see (4.2) above), a /∈
B(x, 1

2n1
), hence d(a,x)≥ 1

2n1
. But, by the triangle inequality again, this implies that B(a, 1

2n )∩B(x,r) = /0.
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I.e., for any a which contributes to the definition of Vi(n), its contribution B(a, 1
2n ) does not intersect V .

Hence V ∩Vi(n) = /0. �

5. More exercises

E Exercise 6.3 Let (X ,d) be a metric space. Show that any sequence (xn)n≥1 in X with the property that

d(xn+1,xn)≤
d(xn,xn−1)

2

for all n, is Cauchy.

E Exercise 6.4 Let (x,d) be a complete metric space and let f : X → X be a map with the property that

there exists λ ∈ (0,1) such that

d( f (x), f (y)) ≤ λd(x,y)

for all x,y ∈ X . Show that f has a unique fixed point (i.e. a ∈ X with f (a) = a).

(Hint: the difficult part is the existence. Start with any x0 and consider xn+1 = f (xn)).

E Exercise 6.5 We say that a topological space X is separable if there exists A ⊂ X countable and dense in

X .

(1) Show that if X is 2nd countable, then it is separable.

(2) Show that a metric space is 2nd countable if and only if it is separable.

(3) Deduce that (R,Tl) is not metrizable (see exercise 2.19).
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1. The Urysohn metrization theorem

In following is known as the Urysohn metrization theorem.

Theorem 7.1 Any topological space which is normal and second countable is metrizable.

The rest of this section is devoted to the proof of this theorem.

Claim 1: ∃ a countable family ( fn)n≥0 of continuous functions fn : X → [0,1] satisfying:

(1.1) (∀ U −open, x ∈U), (∃ N ∈ Z) such that: ( fN(x) = 1, fN = 0 outside U).

PROOF. Let B = {B1,B2, . . .} be a countable basis for the topology T . Consider

I = {(n,m) : Bn ⊂ Bm} ⊂ N×N.

This is countable (subset of countable is countable), hence we can enumerate it as (n0,m0), (n1,m1), . . ..
For each i, using Urysohn’s lemma, we find a continuous function fi : X → [0,1] such that fi|Bni

= 1,

fi|X−Bmi
= 0. Then ( fi)i≥0 has the desired properties: for U ∈ T and x ∈U , we can choose m such that

x ∈ Bm ⊂U . By Lemma 5.3, we find V -open containing x such that x ∈V ⊂V ⊂ Bm. Since B is a basis,

we find n such that x ∈ Bn ⊂ V . Then Bn ⊂ V ⊂ Bm, hence (n,m) ∈ I. Writing (n,m) = (nN ,mN) with

N ∈N, since x ∈ Bn we have fN(x) = 1, and since Bm ⊂U , we have fN = 0 outside Bm hence also outside

U . �

Claim 2: The following is a metric on X inducing the topology of X :

d : X ×X → R, d(x,y) = sup{| fn(x)− fn(y)|
n

: n ≥ 1 integer}.

PROOF. Note that d(x,y) is finite since 0 ≤ fn ≤ 1. For the triangle inequality, we use:

| fn(x)− fn(y)|
n

≤ | fn(x)− fn(z)|
n

+
| fn(z)− fn(y)|

n
≤ d(x,z)+d(z,y)

for all n. To see that d(x,y) 6= 0 whenever x 6= y, choose U ∈ T containing x and not containing y, choose

N as in (1.1) and remark that | fN(x)− fN(y)|= 1 hence d(x,y) ≥ 1/N > 0.

Next, we show that T ⊂ Td . Let U ∈ T and we have to show that:

∀ x ∈U, ∃ ε > 0 : Bd(x,ε) ⊂U.

Let x ∈U and choose N as in (1.1). Then ε := 1
N

does the job. Indeed, if y ∈ Bd(x,ε), then

|1− fN(y)|
N

=
| fN(x)− fN(y)|

N
≤ d(x,y) <

1

N
,

hence fN(y) 6= 0 and this can only happen if y ∈U .

Finally, we show that Td ⊂ T . It suffices to prove that, for each ball B(x,ε), there exists U =Ux,ε ∈ T
such that x ∈ U ⊂ B(x,ε). This will imply that B(x,ε) is open in X : indeed, for any y ∈ B(x,ε) we can

choose r > 0 such that B(y,r) ⊂ B(x,ε) (e.g. take r = ε− d(x,y) and use the triangle inequality), and

then Uy,r will be an open in X contained in B(x,ε).
So, let us fix x ∈ X , ε > 0 and look for U ∈ T with x ∈U ⊂ B(x,ε). Choose n > 2/ε and set

U :=
n0⋂

n=1

{y ∈ X :
| fn(y)− fn(x)|

n
< ε}.

Since this is a finite intersection and each fn is continuous, we have U ∈ T . Clearly, x ∈ U . Note also

that, from the choice of n0 and the fact that 0 ≤ | fn| ≤ 1,

| fn(x)− fn(y)|
n

≤ 2

n0

< ε ∀ n ≥ n0.
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We deduce that d(x,y) < ε for all y ∈U , i.e. U ⊂ B(x,ε). �

2. The Smirnov Metrization Theorem

In following is known as the Smirnov Metrization Theorem.

Theorem 7.2 A space X is metrizable iff it is Hausdorff, paracompact and locally metrizable.

Theorem 6.11 takes care of the direct implication. Here we prove the converse. The proof is very

similar to the proof of the Urysohn metrization theorem.

Claim 1: There exists a basis B for the topology of X , of type B = ∪n∈N∗Bn, where each Bn is a

locally finite family. Moreover, for each B ∈ B , there is a continuous function

fB : X → [0,1] such that B = {x ∈ X : fB(x) 6= 0.}.

PROOF. From the hypothesis it follows that there is a cover U = {Ui : i ∈ I} of X by opens in X , on

which the topology is induced by a metric di; we may assume that di ≤ 1 (cf. e.g. Exercise 1.39). For

each i ∈ I, we denote by Bi(x,r) the balls induced by di. They are open subsets of Ui, hence also open

in X . By the shrinking lemma (Lemma 5.17), we can find another locally finite cover {Vi : i ∈ I} with

V i ⊂Ui. For each integer n, we consider the open cover of X

{Bi(x,
1

n
)∩Vi : i ∈ I, x ∈Ui}.

Let Bn be a locally finite refinement of it and B = ∪nBn. For each B ∈ B , we find i such that B ⊂ Vi

and then fB(x) := di(x,Ui −B) is a well-defined continuous function on Ui with which is zero outside

B; since B ⊂V i ⊂Ui (where all the closures are in X ), extending fB by zero outside Ui, it will give us a

function with the desired properties.

Finally, we show that B is a basis. Consider U ⊂ X open, x ∈ U ; we show that x ∈ B ⊂ U for some

B ∈ B . Since U is locally finite, there is only a finite set of indices i with x ∈ Ui; call it Fx. For each

i ∈ Fx, U ∩Ui is open in (Ui,di) hence we find εi such that Bi(x,εi)⊂U ∩Ui. Choose m with 2/m < εi for

all i ∈ Fx. Choose B ∈ Bm such that x ∈ B; due to the definition of Bm, we have B ⊂ Bi(y,1/m) for some

i ∈ I, y ∈ Ui. In particular, x ∈ Ui, hence i ∈ Fx. From the choice of m, we have Bi(y,1/m) ⊂ Bi(x,εi);
from the choice of εi, these are inside U . �

Claim 2: The following is a metric on X inducing the topology T of X .

d : X ×X → R, d(x,y) = sup{1

n
| fB(x)− fB(y)| : n ≥ 1 integer,B ∈ Bn}.

PROOF. By the same argument as in the Urysohn metrization theorem, d is a metric. Next, we show

that T ⊂ Td . Let U ⊂ X open, x ∈U . We have to find r > 0 such that Bd(x,r)⊂U . Since B is a basis, we

find B ∈ Bn for some n, with x ∈ B ⊂U . We claim that r = 1
n
| fB(x)| does the job. Indeed, if y ∈ Bd(x,r),

we have 1
n
| fB(y)− fB(x)| < 1

n
| fB(x)|, hence fB(y) 6= 0, hence y ∈ B, hence y ∈U .

Finally, we show that Td ⊂ T . It suffices to show that, for any x ∈ X , r > 0, there exists U ∈ T such

that x ∈U ⊂ B(x,r). Let n0 > 2/r be an integer. Since each Bn is locally finite, we find a neighborhood

V of x which intersects only a finite number of Bs with B ∈ Bn, n ≤ n0. Call these members B1, . . . ,Bk.

Choose U ⊂V such that

(2.1) | fBi
(y)− fBi

(x)|< r ∀ y ∈U, ∀ i ∈ {1, . . . ,k}.
We claim that U ⊂ B(x,r). That means that, for any y ∈ U , we have 1

n
| fB(y)− fB(x)| < r for all n ≥ 1

and B ∈ Bn. If n ≥ n0 this is automatically satisfied since | fB| ≤ 1 and 2/n ≤ 2/n0 < r. Assume now

that n ≤ n0. If B is not one of the B1, . . . ,Bk, then U ∩B = /0 hence fB(y) = fB(x) = 0 and we are done.

Finally, if B = Bi for some i, then the desired inequality follows from (2.1). �
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3. Consequences: the compact case, the locally compact case, manifolds

Here are some consequences of the metrization theorems from the previous sections. First of all, since

topological manifolds are paracompact (see e.g. 5.20), the Smirnov metrization theorem immediately

implies

Theorem 7.3 Any topological manifold is metrizable.

This theorem follows also from the Urysohn metrization theorem (but note that the proof base on

Smirnov’s result is somehow more satisfactory: it uses paracompactness to pass from the local informa-

tion to the global one; in particular, the Urysohn lemma is not used!). The Urysohn metrization theorem

has however two more interesting consequences. First, for the compact case, we obtain:

Theorem 7.4 If X is a compact Hausdorff space, then the following are equivalent

1. X is metrizable.

2. X is second countable.

Using the one-point compactification, for locally compact spaces we will obtain the following (which

provides another proof to Theorem 7.3).

Theorem 7.5 Any locally compact Hausdorff and 2nd countable space is metrizable.

In what follows, we will provide the missing proofs.

PROOF. (of Theorem 7.4) The reverse implication follows from the Urysohn metrization theorem

since compact spaces are normal (Corollary 4.21). We now prove 1=⇒ 2. Let d be a metric inducing the

topology of X . Since X is totally bounded (cf. Theorem 6.7), for each n we find a finite set Fn such that

X =
⋃

x∈Fn

B(x,
1

n
).

The set A = ∪nFn is a countable union of finite sets, hence it is countable. We deduce that

B = {B(a,
1

n
) : a ∈ A,n ≥ 1 integer}

is a countable family of open sets of X . We claim it is a basis for the topology of X . Let U be an arbitrary

open and x ∈U . We have to prove that there exists B ∈ B such that x ∈ B ⊂U . Since x ∈U , we find an

integer n such that B(x, 1
n
) ⊂U . Using the defining property for F2n, we see that there exists a ∈ A such

that x ∈ B(a, 1
2n
). Using the triangle inequality, we deduce that for each y ∈ B(a, 1

2n
),

d(x,y) ≤ d(x,a)+d(a,y) <
1

2n
+

1

2n
=

1

n
,

hence y ∈ B(x, 1
n
)⊂U . In conclusion, B = B(a, 1

2n
) ∈ B satisfies x ∈ B ⊂U . �

PROOF. (of Theorem 7.5) We apply the Theorem 7.4 to the one-point compactification (see Theorem

4.40) to deduce that X+ is metrizable. Since X is a subspace of X+, it is itself metrizable. �
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1. The algebra C (X) of continuous functions

We start this chapter with a discussion of continuous functions from a Hausdorff compact space to

the real or complex numbers. It makes no difference whether we work over R or C, so let’s just use

the notation K for one of these base fields and we call it the field of scalars. For each z ∈ K, we can

talk about |z| ∈ R- the absolute value of z in the real case, or the norm of the complex number z in the

complex case.

For a compact Hausdorff space X , we consider the set of scalar-valued functions on X :

C (X) := { f : X →K : f is continuous}.
When we want to make a distinction between the real and complex case, we will use the more precise

notations C (X ,R) and C (X ,C).
In this section we look closer at the “structure” that is present on C (X). First, there is a topological

one. When X was an interval in R, this was discussed in Section 9, Chapter 3 (there n = 1 in the real

case, n = 2 in the complex one). As there, there is a metric on C (X):

dsup( f ,g) := sup{| f (x)−g(x)| : x ∈ X}.
Since f ,g are continuous and X is compact, dsup( f ,g) < ∞. As in Ch. 3, Sect. 9, dsup is a metric and the

induced topology is called the uniform topology on C (X). And, still as in the mentioned section:

Theorem 8.1 For any compact Hausdorff space X , (C (X),dsup) is a complete metric space.

PROOF. Let ( fn) be a Cauchy sequence in C (X). The proof of Theorem 3.27 applies word by word

to our X instead of the interval I, to obtain a function f : X → R such that dsup( fn, f )→ 0 when n → ∞.

Then similarly, the proof of Theorem 3.26 (namely that C (I,Rn) is closed in (F (I,Rn), d̂sup)) applies

word by word with I replaced by X to conclude that f ∈ C (X). �

The metric on C (X) is of a special type: it comes from a norm. Namely, defining

|| f ||sup := sup{| f (x)| : x ∈ X} ∈ [0,∞)

for f ∈ C (X), we have

dsup( f ,g) = || f −g||sup.

Definition 8.2 Let V be a vector space (over our K=R or C). A norm on V is a function

|| · || : V → [0,∞), v 7→ ||v||
such that

||v|| = 0 ⇐⇒ v = 0

and is compatible with the vector space structure in the sense that:

||λv|| = |λ| · ||v|| ∀ λ ∈K,v ∈V,

||v+w|| ≤ ||v||+ ||w|| ∀ v,w ∈V.

The metric associated to || · || is the metric d||·|| given by

d||·||(v,w) := ||v−w||.
A Banach space is a vector space V endowed with a norm || · || such that d||·|| is complete. When K= R

we talk about real Banach spaces, when K= C about complex ones.

With these, we can now reformulate our discussion as follows:

Corollary 8.3 For any compact Hausdorff space X , (C (X), || · ||sup) is a Banach space.
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Of course, this already makes reference to some of the algebraic structure on C (X)- that of vector

space. But, of course, there is one more natural operation on continuous functions: the multiplication,

defined pointwise:

( f g)(x) = f (x)g(x).

Definition 8.4 A K-algebra is a vector space A over K together with an operation

A×A → A, (a,b) 7→ a ·b
which is unital in the sense that there exists an element 1 ∈ A such that

1 ·a = a ·1 = a ∀ a ∈ A,

and which is K-bilinear and associative, i.e., for all a,a′,b,b′,c ∈ A, λ ∈K,

(a+a′) ·b = a ·b+a′ ·b, a · (b+b′) = a ·b+a ·b′,
(λa) ·b = λ(a ·b) = a · (λb), ,

a · (b · c) = (a ·b) · c .

We say that A is commutative if a ·b = b ·a for all a,b ∈ A .

Example 8.5 The space of polynomials K[X1, . . . ,Xn] in n variables (with coefficients in K) is a com-

mutative algebra.

Hence the algebraic structure of C (X) is that of an algebra. Of course, the algebraic and the topological

structures are compatible. Here is the precise abstract definition.

Definition 8.6 A Banach algebra (over K) is an algebra A equipped with a norm || · || which makes

(A, || · ||) into a Banach space, such that the algebra structure and the norm are compatible, in the sense

that,

||a ·b|| ≤ ||a|| · ||b|| ∀ a,b ∈ A.

Hence, with all these terminology, the full structure of C (X) is summarized in the following:

Corollary 8.7 For any compact Hausdorff space, C (X) is a Banach algebra.

There is a bit more one can say in the case when K = C: there is also the operation of conjugation,

defined again pointwise:

f (x) := f (x).

As before, this comes with an abstract definition:

Definition 8.8 A *-algebra is an algebra A over C together with an operation

(−)∗ : A → A, a 7→ a∗,

which is an involution, i.e.

(a∗)∗ = a ∀ a ∈ A,

and which satisfies the following compatibility relations with the rest of the structure:

(λa)∗ = λa∗ ∀ a ∈ A,λ ∈ C,

1∗ = 1,(a+b)∗ = a∗+b∗, (ab)∗ = b∗a∗ ∀ a,b ∈ A.

Finally, a C∗-algebra is a Banach algebra (A, || · ||) endowed with a *-algebra structure, s.t.

||a∗||= ||a||, ||a∗a||= ||a||2 ∀ a ∈ A.

Of course, C with its norm is the simplest example of C∗-algebra. To summarize our discussion in the

complex case:
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Corollary 8.9 For any compact Hausdorff space, C (X ,C) is a C∗-algebra.
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2. Approximations in C (X): the Stone-Weierstrass theorem

The Stone-Weierstrass theorem is concerned with density in the space C (X) (endowed with the uni-

form topology); the simplest example is Weierstrass’s approximation theorem which says that, when X

is a compact interval, the set of polynomial functions is dense in the space of all continuous functions.

The general criterion makes use of the algebraic structure on C (X).

Definition 8.10 Given an algebra A (over the base field R or C), a subalgebra is any vector subspace

B ⊂ A, containing the unit 1 and such that

b ·b′ ∈ B ∀ b,b′ ∈ B.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

Example 8.11 When X = [0,1], the set of polynomial functions on [0,1] is a unital subalgebra of

C ([0,1]). Here the base field can be either R or C.

Definition 8.12 Given a topological space X and a subset A ⊂ C (X), we say that A is point-separating

if for any x,y ∈ X , x 6= y there exists f ∈ A such that f (x) 6= f (y).

Example 8.13 When X = [0,1], the subalgebra of polynomial functions is point-separating.

Here is the Stone-Weierstrass theorem in the real case (K= R).

Theorem 8.14 (Stone-Weierstrass) Let X be a compact Hausdorff space. Then any point-separating real

subalgebra A ⊂ C (X ,R) is dense in (C (X ,R),dsup).

PROOF. We first show that there exists a sequence (pn)n≥1 of real polynomials which, on the interval

[0,1], converges uniformly to the function
√

t. We construct pn inductively by

pn+1(t) = pn(t)+
1

2
(t − pn(t)

2), p1 = 0.

We first claim that pn(t)≤
√

t for all t ∈ [0,1]. This follows by induction on n since

√
t − pn+1(t) = (

√
t − pn(t))(1−

√
t + pn(t)

2
).

and pn(t)≤
√

t implies that
√

t + pn(t)≤ 2
√

t ≤ 2 for all t ∈ [0,1] (hence the right hand side is positive).

Next, the recurrence relation implies that pn+1(t)≥ pn(t) for all t. Then, for each t ∈ [0,1], (pn(t))n≥1 is

increasing and bounded above by 1, hence convergent; let p(t) be its limit. By passing to the limit in the

recurrence relation we find that p(t) =
√

t.

We still have to show that pn converges uniformly to p on [0,1]. Let ε > 0 and we look for N such that

p(t)− pn(t) < ε for all n ≥ N (note that p− pn is positive). Let t ∈ [0,1]. Since pn(t) → p(t), we find

N(t) such that p(t)− pn(t) < ε/3 for all n ≥ N(t). Since p and pN(t) are continuous, we find an open

neighborhood V (t) of t such that |p(s)− p(t)| < ε/3 and similarly for pN(t), for all s ∈V (t). Note that,

for each s ∈V (t) we have the desired inequality:

p(s)− pN(t)(s) = (p(s)− p(t))+ (p(t)− pN(t)(t))+ (pN(t)(t)− pN(t)(s))< 3
ε

3
= ε.

Varying t, {V (t) : t ∈ [0,1]} will be an open cover of [0,1] hence we can extract an open sub-cover

{V (t1), . . . ,V (tk)}. Then N(t) := max{N(t1), . . . ,N(tk)} does the job: for n ≥ N(t) and t ∈ [0,1], t

belongs to some V (ti) and then

p(s)− pn(s)≤ p(s)− pN(ti)(s)< ε.

We now return to the theorem and we denote by A the closure of A . We claim that:

f ,g ∈ A =⇒ sup( f ,g), inf( f ,g) ∈ A ,
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where sup( f ,g) is the function x 7→ max{ f (x),g(x)}, and similarly inf( f ,g). Since any f ∈ A is the

limit of a sequence in A , we may assume that f ,g ∈ A . Since sup( f ,g) = ( f +g+ | f −g|)/2, inf( f ,g) =
( f + g−| f − g|)/2 and A is a vector space, it suffices to show that, for any f ∈ A , | f | ∈ A . Since any

continuous f is bounded (X is compact!), by dividing by a constant, we may assume that f ∈ A takes

values in [−1,1]. Using the polynomials pn, since A is a subalgera, fn := pn( f 2) ∈ A , and it converges

uniformly to p( f 2) = | f |. Hence | f | ∈ A .

We need one more remark: for any x,y ∈ X with x 6= y and any a,b ∈ R, there exists f ∈ A such that

f (x) = a, f (y) = b. Indeed, by hypothesis, we find g ∈ A such that g(x) 6= g(y); since A contains the

unit (hence all the constants),

f := a+
b−a

g(y)−g(x)
(g−g(x))

will be in A and it clearly satisfies f (x) = a, f (y) = b.

Let now h ∈ C (X ,R). Let ε > 0 and we look for f ∈ A such that dsup(h, f )≤ ε.

We first show that, for any x ∈ X , there exists fx ∈ A such that fx(x) = h(x) and fx(y) < h(y)+ ε for

all y ∈ X . For this, for any y ∈ X we choose a function fx,y ∈ A such that fx,y(x) = h(x) and fx,y(y) ≤
h(y)+ ε/2 (possible due to the previous step). Using continuity, we find a neighborhood V (y) of y such

that fx,y(y
′) < h(y′)+ ε for all y′ ∈ V (y). From the cover {V (y) : y ∈ X} we extract a finite subcover

{V (y1), . . . ,V (yk)} and put

fx := inf{ fx,y1
, . . . , fx,yk

}.
From the previous steps, fx ∈ A ; by construction, fx(y)< h(y)+ ε for all y ∈ X and fx(x) = h(x). Due to

the last equality, we find an open neighborhood W (x) of x such that fx(x
′) > h(x′)− ε for all x′ ∈W (x).

We now let x vary and choose x1, . . . ,xl such that {W (x1), . . . ,W (xl)} cover X . Finally, we put

f := sup{ fx1
, . . . , fxl

}.
By the discussion above, it belongs to A while, by construction, dsup(h, f ) ≤ ε. �

The previous theorem does not hold (word by word) over C instead of the reals. The appropriate

complex-version of the Stone-Weierstrass theorem requires an extra-condition which refers precisely to

the extra-structure present in the complex case: conjugation (hence the *-algebra structure on C (X ,C)).

Definition 8.15 Given a unital *-algebra A, a subalgebra B ⊂ A is called a *- subalgebra if

b∗ ∈ B ∀ b ∈ B.

With this, we have:

Corollary 8.16 Let X be a compact Hausdorff space. Then any point-separating *-subalgebra A ⊂
C (X ,C) is dense in (C (X ,C),dsup).

PROOF. Let AR := A ∩C (X ,R). Since for any f ∈ F ,

Re( f ) =
f + f

2
, Im( f ) =

f − f

2i

belong to AR, it follows that AR separates points and is a unital subalgebra of C (X ,R). From the previous

theorem, AR is dense in C (X ,R). Hence A = AR+ iAR is dense in C (X ,C). �
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3. Recovering X from C (X): the Gelfand Naimark theorem

The Gelfand-Naimark theorem says that a compact Hausdorff space can be recovered from its algebra

C (X) of continuous functions (using only the algebra structure!!!) . Again, it makes no difference

whether we work over R or C; so let’s just fix K to be one of them and that we work over K. The key

ingredient in recovering X from C (X) is the notion of maximal ideal.

Definition 8.17 Let A be an algebra. An ideal of A is any vector subspace I ⊂ A satisfying

a · x, x ·a ∈ I ∀ a ∈ A, x ∈ I.

The ideal I is called maximal if there is no other ideal J strictly containing I and different from A. We

denote by MA the set of all maximal ideals of A.

For instance, for A = C (X) (X a topological space), any subspace A ⊂ X defines an ideal:

IA := { f ∈ C (X) : f |A = 0}.
When A = {x} is a point, we denote this ideal simply by Ix. Note that IA ⊂ Ix for all x ∈ A.

Proposition 8.18 If X is a compact Hausdorff space, then Ix is a maximal ideal of C (X) for all x ∈ X ,

and any maximal ideal is of this type. In other words, one has a bijection

φ : X
∼→ MC (X), x 7→ Ix.

PROOF. Fix x ∈ X and we show that Ix is maximal. Let I be another ideal strictly containing Ix; we

prove I = C (X). Since I 6= Ix, we find f ∈ I such that f (x) 6= 0. Since f is continuous, we find an open

U such that x ∈ U , f 6= 0 on U . Now, {x} and X −U are two disjoint closed subsets of X hence, by

Urysohn lemma, there exists η ∈ C (X) such that η(x) = 0, η = 1 outside U . Clearly, η ∈ Ix ⊂ I. Since

I is and ideal containing f and η, g := | f |2 +η2 ∈ I. Note that g > 0: for x ∈ U , f (x) 6= 0, while for

x ∈ X −U , η(x) = 1. But then any h ∈ C (X) is in I since it can be written as gh
g

with g ∈ I, h
g
∈ C (X).

Hence I = C (X).
We still have to show that, if I is a maximal ideal, then I = Ix for some x. It suffices to show that I ⊂ Ix

for some x ∈ X . Assume the contrary. Then, for any x ∈ X , we find fx ∈ I s.t. fx(x) 6= 0. Since fx is

continuous, we find an open Ux s.t. x ∈Ux, fx 6= 0 on Ux. Now, {Ux : x ∈ X} is an open cover of X . By

compactness, we can select a finite subcover {Ux1
, . . . ,Uxk

}. But then

g := | fx1
|2 + . . .+ | fxk

|2 ∈ I

and g > 0 on X . By the same argument as above, we get I = C (X)- contradiction! �

The proposition shows how to recover X from C (X) as a set. To recover the topology, it is useful to

slightly change the point of view and look at characters instead of maximal ideals.

Definition 8.19 Given an algebra A, a character of A is any K-linear function χ : A → K which is not

identically zero and satisfies

χ(a ·b) = χ(a)χ(b) ∀ a,b ∈ A.

The set of characters of A is denoted by XA and is called the spectrum of A. When we want to be more

precise about K, we talk about the real or the complex spectrum of A.

The previous proposition can be reformulated into:

Corollary 8.20 If X is a compact Hausdorff space then, for any x ∈ X ,

χx : C (X)→K, χx( f ) = f (x)

is a character of C (X), and any character is of this type. In other words, one has a bijection

φ : X
∼→ XC (X), x 7→ χx.
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PROOF. The main observation is that characters correspond to maximal ideals. It should be clear

that any χx is a character. Let now χ be an arbitrary character. Let I := { f ∈ C (X) : χ( f ) = 0} (an ideal-

check that!). We will make use of the remark that

(3.1) f −χ( f ) ·1 ∈ I

for all f ∈ C (X) (indeed, all these elements are killed by χ). We show that I is maximal. Let J be another

ideal strictly containing I. Choosing f ∈ J not belonging to I (i.e. χ( f ) 6= 0) and using (3.1) and I ⊂ J,

we find that 1 ∈ J hence, as above, J = C (X). This proves that I is maximal. We deduce that it is of

type Ix for some x ∈ X . But then, using (3.1) again we deduce that ( f − χ( f ) · 1)(x) = 0 for all f , i.e.

χ = χx. �

The advantage of characters is that there is a natural topology on XA for any algebra A.

Definition 8.21 Let A be an algebra A and let XA be its spectrum. For any a ∈ A, define

fa : XA →K, fa(χ) := χ(a).

We define T as the smallest topology on XA with the property that all the functions { fa : a ∈ A} are

continuous. The resulting topological space (XA,T ) is called the topological spectrum of A.

Theorem 8.22 Any compact Hausdorff space X is homeomorphic to the topological spectrum of its

algebra C (X) of continuous functions.

PROOF. Let TX be the topology of X . We still have to show that the bijection ψ is a homeomorphism.

Equivalently: ψ induces a topology T ′ on X which is the smallest topology with the property that all

f ∈ C (X) are continuous as functions with respect to this new topology T ′. We have to show that

T ′ coincides with the original topology TX . From the defining property of T ′, the inclusion T ′ ⊂ TX is

tautological. For the other inclusion, we have to use the more explicit description of T ′: it is the topology

generated by the subsets of X of type f−1(V ) with f ∈ C (X) and V ⊂K open. We have to show that any

U ∈ TX is in T ′. Fixing U , it suffices to show that for any x ∈U we find f and V such that

x ∈ f−1(V )⊂U.

But this follows again by the Urysohn lemma: we find f : X → [0,1] continuous such that f (x) = 0 and

f = 1 outside U . Taking V = (−1,1), we have the desired property. �

Remark 8.23 (for the curious reader) In this remark we work over K= C. An interesting question that

we did not answer is: which algebras A are of type C (X) for some compact Hausdorff X? What we did

show is that the space must be XA. Note also that the map ψ makes sense for any algebra A:

ψA : A → C (XA), a 7→ ( fa : XA → C given by fa(χ) = χ(a)).

Hence a possible answer is: algebras with the property that XA is compact and Hausdorff, and ψA is an

isomorphism (bijection). But this is clearly far from satisfactory.

The best answer is given by the full version of the Gelfand-Naimark theorem: it is the commutative

C∗-algebras! This answer may seem a bit unfair since the notion of C∗-algebras seem to depend on data

which is not algebraic (the norm!). However, a very special feature of C∗-algebras is that their norm can

be recovered from the algebraic structure by the formula:

||a||2 = sup{|λ| : λ ∈ C such that λ1−a∗a is not invertible}.
One remark about the proof: one first shows that XA is compact and Hausdorff; then that ||ψA(a)||= ||a||
for all a ∈ A; this implies that ψA is injective and the image is closed in C (XA); finally, the Stone-

Weierstrass implies that the image is dense in C (XA); hence ψA is bijective.
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4. General function spaces C (X ,Y )

For any two topological spaces X and Y we denote by C (X ,Y ) the set of continuous functions from X

to Y - a subset of the set F (X ,Y ) of all functions from X to Y . In general, there are several interesting

topologies on C (X ,Y ). So far, in this chapter we were concerned with the uniform topology on C (X ,Y )
when X is compact and Hausdorff and Y = R or C. In Section 9 , Chapter 3, in the case when X ⊂ R

was an interval and Y = Rn, we looked at the three topologies: of pointwise convergence, of uniform

convergence, and of uniform convergence on compacts.

In this section we look at generalizations of these topologies to the case when X and Y are more general

topological spaces. We assume throughout this entire section that

X − is a locally compact topological space, Y − is a metric space with a fixed metric d.

These assumptions are not needed everywhere (e.g. for the pointwise topology on C (X ,Y ), the topology

of X is completely irrelevant, etc etc). They are made in order to simplify the presentation.

4.1. Pointwise convergence, uniform convergence, compact convergence Almost the entire Section

9, Chapter 3 goes through in this generality without any trouble (“word by word” most of the times). For

instance, given a sequence { fn}n≥1 in F (X ,Y ), f ∈ F (X ,Y ), we will say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x)→ f (x) for all x ∈ X .

• fn converges uniformly to f , and we write fn ⇒ f , if for any ε > 0, there exists nε s.t.

d( fn(x), f (x)) < ε ∀ n ≥ nε, ∀ x ∈ X .

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any K ⊂ X compact,

fn|K ⇒ f |K .

And, as in loc.cit (with exactly the same proof), these convergences correspond to convergences with

respect to the following topologies on F (X ,Y ):

• the pointwise topology, denoted Tpt , is the topology generated by the family of subsets

S(x,U) := { f ∈ F (X ,Y ) : f (x) ∈U} ⊂ F (X ,Y ),

with x ∈ X , U ⊂ Y open.

• the uniform topology is induced by a sup-metric. For f ,g ∈ F (X ,Y ), we define

dsup( f ,g) = sup{d( f (x),g(x)) : x ∈ X}.
Again, to overcome the problem that this supremum may be infinite (for some f and g) and to

obtain a true metric, once considers

d̂sup( f ,g) = min(dsup( f ,g),1).

The uniform topology is the topology associated to d̂sup; it is denoted by Tunif.

• the topology of compact convergence, denoted Tcp, is the topology generated by the family of

subsets

BK( f ,ε) := {g ∈ F (X ,Y ) : d( f (x),g(x)) < ε ∀ x ∈ K},
with K ⊂ X compact, ε > 0.

We will be mainly concerned with the restrictions of these topologies to the set C (X ,Y ) of continuous

functions from X to Y . So, the part of Theorem 3.27 concerning continuous functions, with exactly the

same proof, gives us the following:

Theorem 8.24 If (Y,d) is complete, then (C (X ,Y ), d̂sup) is complete.
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4.2. Equicontinuity

A useful concept regarding function spaces is equicontinuity. Recall that X is a locally compact space

and (Y,d) is a metric space. Then a function f : X →Y is continuous if it is continuous at each point, i.e.

if for each x0 ∈ X and any ε > 0 there exists a neighborhood V of x0 such that

(4.1) d( f (x), f (x0))< ε ∀ x ∈U.

Definition 8.25 A subset F ⊂ C (X ,Y ) is called equicontinuous if for any x0 ∈ X and any ε > 0 there

exists a neighborhood V of x0 such that (4.1) holds for all f ∈ F .

When X is itself a metric space, then there is a “uniform” version of continuity and equicontinuity.

Definition 8.26 Assume that both (X ,d) and (Y,d) are metric spaces. Then

(1) A map f : X → Y is called uniformly continuous if for all ε > 0 there exists δ > 0 s.t.

(4.2) d( f (x), f (y)) < ε ∀ x,y ∈ X with d(x,y) < δ.

(2) A subset F ⊂ C (X ,Y ) is called uniformly equicontinuous if for all ε > 0 there exists δ > 0 s.t.

(4.2) holds for all f ∈ F .

From the definitions we immediately see that, in general, the following implications hold:

F − is uniformly equicontinuous //

��

each f ∈ F is uniformly continuous

��

F − is equicontinuous // each f ∈ F is continuous

As terminology, we say that a sequence ( fn)n≥1 is equicontinuous if the set { fn : n ≥ 1} is.

Proposition 8.27 A sequence { fn}n≥1 is convergent in (C (X ,Y ),Tcp) if and only if it is convergent in

(C (X ,Y ),Tpt) and it is equicontinuous.

PROOF. For the direct implication, we still have to show that, if fn
cp→ f , then { fn} is equicontinuous.

Let x0 ∈ X . Since f is continuous, we find a neighborhood V of x0 such that d( f (x), f (x0))< ε/3 for all

x ∈V . Since X is locally compact, we may assume V to be compact. Then fn|V ⇒ f |V hence we find nε

such that d( fn(x), f (x)) < ε/3 for all n ≥ nε, x ∈V . Then

d( fn(x), fn(x0))≤ d( fn(x), f (x))+d( f (x), f (x0))+d( f (x0), fn(x0))< ε.

for all x ∈V and n ≥ nε. By making V smaller if necessary, the previous inequality will also hold for all

n < nε (since there are a finite number of such n’s, and each fn is continuous).

We now prove the converse. Assume equicontinuity and assume that fn → f pointwise. Let K ⊂ X be

compact; we prove that fn|K ⇒ f |K . Let ε > 0. For each x ∈ K, there is an open Vx containing x, such

that

d( fn(y), fn(x)) < ε/3 ∀ y ∈Vx, ∀ n.

Since {Vx} covers the compact K, we find a finite number of points xi ∈ K (with 1 ≤ i ≤ k) such that the

opens Vi =Vxi
cover K. Since fn(xi)→ f (xi), we find nε such that

d( fn(xi), f (xi))< ε/3 ∀ n ≥ nε ∀ i ∈ {1, . . . ,k}.
Now, for all n ≥ nε and x ∈ K, choosing i such that x ∈Vi, we have

d( fn(x), f (x)) ≤ d( fn(x), fn(xi))+d( fn(xi), f (xi))+d( f (xi), f (x)) < 3
ε

3
= ε.

(here we used that d( f (xi), f (x)) = limn d( fn(xi), fn(x)) ≤ ε/3). �
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4.3. Boundedness

Let’s also briefly discuss boundedness. For F ⊂ C (X ,Y ) and x ∈ X we use the notation

F (x) := { f (x) : f ∈ F }.
As we have already discussed, in a metric space, there is also the notion of “totally bounded”, which

is an improvement of the notion of “bounded”. Also, in our case we can talk about boundedness (and

totally boundedness) with respect to d̂sup, or we can have pointwise versions (with respect to the metric

d of Y ). In total, four possibilities:

Definition 8.28 We say that F ⊂ C (X ,Y ) is:

• Bounded if it is bounded in (C (X ,Y ), d̂sup).

• Totally bounded if it is totally bounded in (C (X ,Y ), d̂sup).

• Pointwise bounded if F (x) is bounded in (Y,d) for all x ∈ X .

• Pointwise totally bounded if F (x) is totally bounded in (Y,d) for all x ∈ X .

From the definitions we immediately see that, in general, the following implications hold:

totally bounded //

��

bounded

��

pointwise totally bounded // pointwise bounded

Example 8.29 For Y = Rn with the Euclidean metric d, since totally boundedness and boundedness in

(Rn,d) are equivalent, we see that a subset F ⊂ C (X ,Rn) is pointwise totally bounded if and only if it

is pointwise bounded. However, it is not true that F is totally bounded if and only if it is bounded. In

general, totally boundedness implies equicontinuity:

Proposition 8.30 If F ⊂ C (X ,Y ) is totally bounded then it must be equicontinuous. Moreover, if each

f ∈ F is uniformly continuous, then F is even uniformly equicontinuous.

PROOF. Fix ε > 0 and x0 ∈ X . By assumption, we find f1, . . . , fk ∈ F such that

F ⊂ B( f1,ε/3)∪ . . .∪B( fk,ε/3),

where the balls are the ones corresponding to d̂sup. Since each fi is continuous, we find a neighborhood

Ui of fi such that

d( fi(x), fi(x0))< ε/3, ∀ x ∈Ui.

Then U = ∩iUi is a neighborhood of x0. For x ∈U , f ∈ F , choosing i s.t. f ∈ B( fi,ε/3):

d( f (x), f (x0))≤ d( f (x), fi(x0))+d( fi(x), fi(x0))+d( fi(x0), f (x0)),

which is < ε (for all x ∈ U , f ∈ F ). This proves equicontinuity. For the second part the argument

is completely similar (even simpler as all Ui will become X ), where we use that each fi is uniformly

continuous. �

Let us also recall that the notion of totally boundedness was introduced in order to characterize com-

pactness. Since d̂sup is complete whenever (Y,d) is (Theorem 8.24) we deduce:

Proposition 8.31 A subset F ⊂ C (X ,Y ) is totally bounded if and only if it is relatively compact in

(C (X ,Y ), d̂sup).
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4.4. The case when X is a compact metric space

When X is a compact metric space the situation simplifies quite a bit. In some sense, the pointwise con-

ditions imply the uniform ones (in the vertical implications from the previous two diagrams). To be more

precise, let us combine the two diagrams and Proposition 8.30 together into a diagram of implications:

totally bounded //

��

bounded and uniformly equic. //

��

uniformly equic.

��

pt. totally bounded and equic. // pt. bounded and equic. // equic.

where “pt.” stands for pointwise and “equic.” for equicontinuous. Of course, we could have continued

to the right with “each f ∈ F is (uniformly) continuous”. We are looking at the converses of the vertical

implications. The first one is of the next heading. For the rest:

Theorem 8.32 If (X ,d) is a compact metric space, f : X →Y , F ⊂ C (X ,Y ), then

1. ( f is continuous) ⇐⇒ ( f is uniformly continuous).
2. (F is equicontinuous) ⇐⇒ (F is uniformly equicontinuous). In this case, moreover,

a. (F is pointwise bounded) ⇐⇒ (F is bounded).
b. Tunif and Tpt induce the same topology on F .

In particular, if a sequence ( fn)n≥1 is equicontinuous, then it is uniformly convergent (or bounded) iff it

is pointwise convergent (or pointwise bounded, respectively).

PROOF. For 1, 2 and (a) the nontrivial implications are the direct ones. For 1, assume that f is

continuous. Let ε > 0. For each x ∈ X choose Vx such that

d( f (y), f (x)) < ε/2 ∀ y ∈Vx.

Apply now the Lebesgue lemma (Proposition 6.10) and let δ > 0 be a resulting Lebesgue number. Then,

for each y,z ∈ X with d(y,z) < δ we find x ∈ X such that y,z ∈Vx, hence

d( f (y), f (z)) ≤ d( f (y), f (x))+d( f (z), f (x)) < ε.

This proves that f is uniformly continuous. Exactly the same proof applies to 2 (just add “for all f ∈ F ”

everywhere). For (a), assume that F is equicontinuous and pointwise bounded. From the first condition

we find an open cover {Vx}x∈X with x ∈Vx and d( f (y), f (x)) < 1 for all y ∈Vx. Choose a finite subcover

corresponding to x1, . . . ,xk ∈ X . Using that F (xi) is bounded for each i, we find M > 0 such that

d( f (xi),g(xi))< M ∀ f ,g ∈ F , ∀ 1 ≤ i ≤ k.

Then, for arbitrary x ∈ X , choosing i such that x ∈Vxi
, we have

d( f (x),g(x)) ≤ d( f (x), f (xi))+d( f (xi),g(xi))+d(g(xi),g(x)) < M+2,

for all f ,g∈ F , showing that F is bounded. For (b), the non-obvious part is to show that Tunif|F ⊂ Tpt |F .

Due to the definitions of these topologies, we start with f ∈ F and a ball

BF ( f ,ε) = {g ∈ F : dsup(g, f )< ε},
and we are looking for x1, . . . ,xk ∈ X and ε1, . . . ,εk > 0 such that

∩i{g ∈ F : d(g(xi), f (xi))< εi} ⊂ BF ( f ,ε).

For that, choose as before a finite open cover {Vxi
} of X such that

d( f (x), f (xi))< ε/6 ∀ f ∈ F , x ∈Vxi

and, by the same inequalities as above, we find that the xi and εi = ε/3 have the desired properties. �
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4.5. The Arzela-Ascoli theorem

The Arzela-Ascoli theorem has quite a few different looking versions. They all give compactness

criteria for subspaces of C (X ,Y ) in terms of equicontinuity; sometimes the statement is a sequential

one (giving criteria for an equicontinuous sequence to admit a convergent subsequence). The difference

between the several versions comes either from the starting hypothesis on X and Y , or from the topologies

one considers on C (X ,Y ). As in the last headings, we restrict ourselves to the case that X and Y are metric

and X is compact; the interesting topology on the space of functions will then be the uniform one.

Theorem 8.33 (Arzela-Ascoli) Assume that (X ,d) is a compact metric space, (Y,d) is complete. Then,

for a subset F ⊂ C (X ,Y ), the following are equivalent:

(1) F is relatively compact in (C (X ,Y ),dsup).
(2) F is equicontinuous and pointwise totally bounded.

(note: when Y = Rn with the Euclidean metric, “pointwise totally bounded”=“pointwise bounded”).

Corollary 8.34 Let X and Y be as above. Then any sequence ( fn)n≥1 which is equicontinuous and

pointwise totally bounded admits a subsequence which is uniformly convergent.

PROOF. The direct implication is clear now: if F is compact, it must be totally bounded (cf. Theo-

rem 6.7); this implies that F (hence also F ) is equicontinuous and pointwise bounded. We now prove

the converse. Let us assume for simplicity that F is also closed with respect to the uniform topology

(otherwise replace it by its closure and, by the same arguments as before, show that equicontinuity and

pointwise totally boundedness hold for the closure as well). We show that F is compact. Using Theorem

6.7, it suffices to show that F is sequentially compact. So, let ( fn)n≥1 be a sequence in F and we will

show that it contains a convergent subsequence. Use Corollary 6.9 and consider

A = {a1,a2, . . .} ⊂ X

which is dense in X . Since ( fn(a1))n≥1 is totally bounded, using Corollary 6.8, it follows that it has a

convergent subsequence ( fn(a1))n∈I1
, where I1 ⊂ Z+. Let n1 be the smallest element of I1. Similarly,

since ( fn(a2))n∈I1
is totally bounded, we find a convergent subsequence ( fn(a2)n∈I2

where I2 ⊂ I1. Let

n2 be the smallest element of I2. Continue inductively to construct I j and its smallest element n j for

all j. Choosing gk = fnk
, this will be a subsequence of ( fn) which has the property that (gk(ai))k≥1

is convergent for all i. We will show that (gk) is Cauchy (hence convergent). Let ε > 0. Since F is

uniformly equicontinuous, we find δ such that

d(gk(x),gk(y))< ε/3 ∀ k and whenever d(x,y) < δ.

Since A is dense in X , the balls B(ai,δ) cover X ; since X is compact, we find some integer N such that

X is covered by B(ai,δ) with 1 ≤ i ≤ N. Since each of the sequences (gk(ai))k≥1 is convergent for all

1 ≤ i ≤ N, we find nε such that

d(g j(ai),gk(ai))< ε/3 ∀ j,k ≥ nε ∀ 1 ≤ i ≤ N.

Then, for all x ∈ X , j,k ≥ nε, choosing i ≤ N such that x ∈ B(ai,δ), we have

d(g j(x),gk(x)) ≤ d(g j(x),g j(ai))+d(g j(ai),gk(ai))+d(gk(ai),gk(x)) < ε.

�

Finally, let us also mention the following more general version of the Arzela-Ascoli (see Munkres’

book).

Theorem 8.35 (Arzela-Ascoli) Assume that X is a locally compact Hausdorff space, (Y,d) is a com-

plete metric space, F ⊂ C (X ,Y ). Then F is relatively compact in (C (X ,Y ),Tcp) if and only if F is

equicontinuous and pointwise totally bounded.
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In particular, any sequence ( fn)n≥1 in C (X ,RN) which is equicontinuous and pointwise totally bounded

admits a subsequence which is uniformly convergent on compacts.
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5. More exercises

5.1. On Stone-Weierstrass

E Exercise 8.1 Show that C ∞([0,1]) (the space of real-valued functions on [0,1] which are infinitely many

times differentiable) is dense in C ([0,1]).

E Exercise 8.2 On the sphere S2 we consider the real-valued functions

f (x,y,z) = x+ y+ z,g(x,y,z) = xy+ yz+ zx.

Does { f ,g} separate points? What if we add the function h(x,y,z) = xyz?

E Exercise 8.3 Let X be a compact topological space. Show that if a finite set of continuous functions

A = { f1, . . . , fk} ⊂ C (X)

separates points, then X can be embedded in Rk.

E Exercise 8.4 [from the 2015 retake] Let X be a compact Hausdorff space,

F = (F1, . . . ,Fn) : X → Rn

a continuous function and consider

AF = { f ∈C(X) : f = P◦F for some polynomial function P : Rn → R}.
Show that F is an embedding if and only if AF is dense in C(X).

E Exercise 8.5 Consider the 3-dimensional sphere interpreted as:

S3 = {(z1,z2) ∈ C2 : |z1|2 + |z2|2 = 1}.
Consider the circle S1 = {z∈C : |z|= 1}, viewed as a group with respect to the multiplication of complex

numbers, and we consider the action of S1 on S3 given by

z · (z1,z2) := (zz1,zz2).

Let X := S3/S1. Consider f̃ , g̃, h̃ : S3 → R given by

f̃ (z1,z2) = z1z2 + z1z2, g̃(z1,z2) = i(z1z2 − z1z2), h̃(z1,z2) = |z1|2 −|z2|2.
Show that

(1) f̃ , g̃, h̃ induce functions f ,g,h : X → R.

(2) { f ,g,h} separates points.

(3) The image of the resulting embedding ( f ,g,h) : X → R3 is S2.

E Exercise 8.6 If K is a compact subspace of Rn, show that the space Pol(K) of polynomial functions on

K is dense in C (K) in the uniform topology.

(recall that a function f : K → Rn is polynomial if there exists a polynomial P ∈ R[X1, . . . ,Xn] such

that f (x) = P(x) for all x ∈ K).

E Exercise 8.7 Show that, if f : R→ R is continuous and periodic of period 2π, then f can be realized as

the limit of a sequence of functions of type

T (x) = a0 +
N

∑
k=1

(akcos(kx)+bksin(kx)).
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E Exercise 8.8 [part from the exam of 2014]In this exercise we work over R (hence we consider real-valued

functions and real algebras). Let X and Y be compact Hausdorff spaces. For u ∈ C (X), v ∈ C (Y ), define

u⊗ v ∈ C (X ×Y ) given by

u⊗ v : X ×Y → R, (u⊗ v)(x,y) := u(x)v(y),

and we denote by A ⊂ C (X ×Y ) the set of functions of type

k

∑
i=1

ui ⊗ vi with k ∈ N,u1, . . . ,uk ∈ C (X),v1, . . . ,vk ∈ C (Y )

Show that A is a dense subalgebra of C (X ×Y ).

E Exercise 8.9 [from the 2015 exam] Let X be compact Hausdorff space and let C(X) be the space of

real-valued continuous functions on X , endowed with the topology induced by the sup-metric.

Prove that if A ⊂C(X) is a dense subset of C(X), then A must be point-separating.

E Exercise 8.10 Show that, for any compact smooth manifold X , C ∞(X) is dense in C (X).

E Exercise 8.11 Let X be a locally compact Hausdorff space. We say that a function f : X → R vanishes

at ∞ if for each ε > 0 there exists a compact Kε ⊂ X such that

| f (x)| < ε, ∀ x ∈ X −Kε.

We denote by C0(X) the set of all such functions and we endow it with the usual operations of addition

and multiplication of functions, and multiplication of functions by scalars.

(i) Show that one has a well-defined norm

|| · || : C0(X)→ R, f 7→ || f || := sup{| f (x)| : x ∈ X}.
and, together with this norm, C0(X) becomes a Banach space.

(ii) Assume that A ⊂C0(X) has the following properties:

• A is a non-unital subalgebra of C0(X), i.e. it is a vector subspace A ⊂ C0(X) with the

property that f g ∈ A for all f ,g ∈ A .

• A is strongly point-separating, i.e. it is point-separating (as a subset of C(X)) and, for all

x ∈ X , there exists f ∈ A such that f (x) 6= 0.

Show that A is dense in C0(X).

5.2. On Gelfand-Naimark

E Exercise 8.12 Consider the algebra A = R[t] of polynomials in one variable t. Show that XA is homeo-

morphic to R. What if you take more variables?

E Exercise 8.13 Consider

A = R[X ,Y ]/(X2 +Y 2 −1)

(the quotient of the ring of polynomials in two variables, modulo the ideal generated by f = X2+Y 2 −1

or, equivalently, the ring of remainders modulo f ). Interpret it as an algebra over R and show that XA is

homeomorphic to S1. (Hint: Let α,β ∈ A corresponding to X and Y . Then a character χ is determined by

u = χ(α) and v = χ(β). What do they must satisfy? Also, have a look back at Exercise 3.41).

(if you do not understand the above definition of A, take as definition A :=the algebra of polynomial

functions on S1 ⊂ R2 and then α and β in the hint are the first and second projection).

E Exercise 8.14 Consider the algebra A = R[t]/(t3) (remainders modulo t3). Compute XA.
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E Exercise 8.15 Consider the algebra

A = { f ∈ C (Sn) : f (z) = f (−z) ∀ z ∈ Sn}.
Show that XA is homeomorphic to Pn.

E Exercise 8.16 More generally, if a finite group Γ acts on a compact space X , consider

A = C (X)Γ := { f ∈ C (X) : f (γ · x) = f (x) ∀ x ∈ X ,γ ∈ Γ}
and compute XA.

E Exercise 8.17 (This is from the retake exam of 2014) Let C (D2) be the algebra of real-valued continuous

functions on the unit disk D2 and let A be the subset consisting of those f ∈ C (D2) with the property

that they are constant on the boundary circle S1.

a. is A a sub-algebra of C (D2)?
b. is A dense in C (D2)?
c. show that the spectrum of A is homeomorphic to S2.

E Exercise 8.18 [from the 2015 retake] Let A be an algebra over R, assume that χ : A → R is a character

and let

I := Ker(χ) ( = {a ∈ A : χ(a) = 0}).
Show that:

a. I is an ideal of A.

b. a−χ(a) ·1A ∈ I for all a ∈ A (where 1A is the unit of A).

c. I is a maximal ideal.

E Exercise 8.19 Let A be a commutative algebra over R. Recall that, for all a∈A, we consider that function

fa : XA → R, fa(χ) = χ(a)

and the topology on XA was defined as the smallest topology on XA with the property that all the functions

fa, with a ∈ A, are continuous.

Show that, for any other topological space X , a function f : X → XA is continuous if and only if all the

functions fa ◦ f : X → R, with a ∈ A, are continuous.

E Exercise 8.20 Let A and B be two commutative algebras over R. A map

F : A → B

is called an algebra homomorphism if it is R-linear and satisfies

F(a1a2) = F(a1)F(a2)

for all a1,a2 ∈ A and F(1A) = 1B, where 1A ∈ A and 1B ∈ B are the units. If X and Y are compact

Hausdorff spaces, show that for any algebra homomorphism

F : C(Y )→C(X)

there exists a continuous function f : X →Y such that

F(φ) = φ◦ f ∀ φ ∈C(Y ).

E Exercise 8.21 [from the 2015 exam] For any algebra A and any ideal I of A, we define

X(A, I) := {χ ∈ XA : χ(x) = 0 ∀ x ∈ I} ⊂ XA
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and we endow it with the topology induced from the topology of the spectrum XA of A. Here we work

over R. Show that:

a. For any algebra A and any ideal I of A, X(A, I) is closed in XA.

b. Applied to A =R[x,y] (polynomials in two variables ) and I the ideal consisting of polynomials

that are are divisible by x2 + y2 −1, X(A, I) is homeomorphic to S1.

c∗· Assume now that X is a compact Hausdorff space, Y ⊂ X and set

A =C(X), I := { f ∈C(X) : f (y) = 0 ∀ y ∈ Y}.
Show that X(A, I) is homeomorphic to the closure Y of Y in X (where the last space is endowed

with the topology induced from X ).

E Exercise 8.22 [from the 2012 exam] Let A be a commutative algebra over R. Assume that it is finitely

generated, i.e. there exist a1, . . . ,an ∈ A (called generators) such that any a ∈ A can be written as

a = P(a1, . . . ,an),

for some polynomial P ∈ R[X1, . . . ,Xn]. Recall that XA denotes the topological spectrum of A; consider

the functions

fi : XA → R, fi(χ) = χ(ai) 1 ≤ i ≤ n,

f = ( f1, . . . , fn) : XA → Rn.

Show that

(i) f is continuous.

(ii) For any character χ ∈ XA and any polynomial P ∈R[X1, . . . ,Xn],

χ(P(a1, . . . ,an)) = P(χ(a1), . . . ,χ(an)).

(iii) f is injective.

(iv) the topology of XA is the smallest topology on XA with the property that all the functions fi are

continuous.

(v) f is an embedding.

Next, for a subspace K ⊂Rn, we denote by Pol(K) the algebra of real-valued polynomial functions on K

and let a1, . . . ,an ∈ Pol(K) be given by

ai : K → R, ai(x1, . . . ,xn) = xi.

Show that

(vi) Pol(K) is finitely generated with generators a1, . . . ,an.

(vii) Show that the image of f (from the previous part) contains K.

Finally:

(viii) For the (n− 1) sphere K = Sn−1 ⊂ Rn, deduce that f induces a homeomorphism between the

spectrum of the algebra Pol(K) and K.

(ix) For which subspaces K ⊂ Rn can one use a similar argument to deduce that the spectrum of

Pol(K) is homeomorphic to K?

E Exercise 8.23 (This is from the exam of 2011) Given a polynomial p ∈ R[X0,X1, . . . ,Xn], we denote by

Rp the set of reminders modulo p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1,q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 −q2 = pq}.
We also denote by πp : R[X0,X1, . . . ,Xn]→ Rp the resulting quotient map. Show that:
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(i) There is a unique algebra structure on Rp (i.e. unique operations +, · and multiplications by

scalars, defined on Rp) with the property that πp is an morphism of algebras, i.e.

πp(q1 +q2) = πp(q1)+πp(q2), πp(q1 ·q2) = πp(q1) ·πp(q2), λπp(q) = πp(λq)

for all q1,q2 ∈ R[X0,X1, . . . ,Xn], λ ∈ R. (0.5 p)

(ii) For p = x2
0 + . . .+ x2

n, the spectrum of Rp has only one point. (1 p)

(iii) For p = x2
0 + . . .+ x2

n −1, the spectrum of Rp is homeomorphic to Sn (1 p) .

(iv) What is the spectrum for p = x0x1 . . .xn? (0.5 p)

E Exercise 8.24 [from the exam of 2014] This is a continuaton of Exercise 8.8. Show that:

b. For any χ ∈ XA , χ1 : C (X)→ R and χ2 : C (Y )→ R given by

χ1(u) := χ(u⊗1), χ2(v) := χ(1⊗ v)

are characters.

c. (+) XA is homeomorphic to X ×Y .

E Exercise 8.25 [related to an exercise from the 2013-exam] In this exercise we work over R. Let X be a

compact, Hausdorff topological space, C(X) the space of real-valued continuous functions on X and let

A ⊂C(X).

be a point-separating subalgebra. Consider the map:

F : X → XA , F(x) = χx|A
(the restriction of χx : C(X)→ R to A , where we recall that χx sends f to f (x)).

(i) Show that F is continuous.

(ii) Show that F is injective.

(iii) Give an example of X and A for which F is not surjective.

E Exercise 8.26 This is a continuation of the previous exercise. Here, we assume that A has the extra-

property that

f ∈ A , f ≥ 0 =⇒
√

f ∈ A .

We want to prove that, under this extra-assumption, F is a homeomorphism. Let χ ∈ XA .

(iv) Show that, if f ,g ∈ A and f ≥ g, then χ( f )≥ χ(g).
(v) Show that for all f ∈ A one has |χ( f )| ≤ || f ||sup.

(vi) Deduce that for any sequence ( fn)n≥1 of elements in A , convergent to some f ∈ C(X), the

sequence (χ( fn))n≥1 is convergent.

(vii) Deduce that there exists an extension of χ : A → R to a continuous map

χ̃ : C(X)→ R.

(vii) And then show that χ̃ is a character.

Finally:

(viii) Conclude that F is a homeomorphism between X and XA.





CHAPTER 9

Embedding theorems

In this chapter we will describe a general method for attacking embedding problems. We will establish

several results but, as the main final result, we state here the following:

Theorem 9.1 Any compact n-dimensional topological manifold can be embedded in R2n+1.

(1) Using function spaces

(2) Using covers and partitions of unity

(3) Dimension and open covers

(4) More exercises
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1. Using function spaces

Throughout this section (X ,d) is a metric space which is assumed to be compact and Hausdorff, and

(Y,d) is a complete metric space (which, for the purpose of the chapter, youy may assume to be Rn with

the Euclidean metric). The associated embedding problem is: can X be embedded in (Y,Td). Since X is

compact, this is equivalent to the existence of a continuous injective function f : X →Y .

Definition 9.2 Given f ∈ C (X ,Y ), the injectivity defect of f is defined as

δ( f ) := sup {d(x,x′) : x,x′ ∈ X such that f (x) = f (x′)}.
For each ε > 0, we defined the space of ε-approximately embeddings of X in Y as:

Embε(X ,Y ) := { f ∈ C (X ,Y ) : δ( f )< ε}
endowed with the topology of uniform convergence.

Proposition 9.3 If Embε(X ,Y ) is dense in C (X ,Y ) with respect to the uniform topology, for all ε > 0,

then there exists an embedding of X in Y .

PROOF. The space Emb(X ,Y ) of all embeddings of X in Y can be written as

Emb(X ,Y ) = ∩nEmb1/n(X ,Y )

where the intersection is over all positive integers. Since (Y,d) is complete, Theorem 8.24 implies that

(C (X ,Y ),dsup) is complete. By Proposition 6.3, it will have the Baire property. Hence, it suffices to

show that the spaces Embε(X ,Y ) are open in C (X ,Y ) (and then it follows not only that Emb(X ,Y ) is

non-empty, but actually dense in C (X ,Y )).
So, let ε > 0 and we show that Embε(X ,Y ) is open. Let f ∈ Embε(X ,Y ) arbitrary; we are looking for

δ such that

Bdsup
( f ,δ) = {g ∈ C (X ,Y ) : dsup(g, f ) < δ}

is inside Embε(X ,Y ). We first claim that there exists δ such that

(1.1) d( f (x), f (y)) < 2δ =⇒ d(x,y) < ε.

If no such δ exists, we would find sequences (xn) and (yn) in X with

d( f (xn), f (yn))→ 0, d(xn,yn)≥ ε.

Hence (as we have already done several times by now), after eventually passing to convergent subse-

quences, we may assume that (xn) and (yn) are convergent, with limits denoted x and y. It follows that

d( f (x), f (y)) = 0, d(x,y) ≥ ε,

which is in contradiction with f ∈ Embε(X ,Y ). Hence we do find δ satisfying (1.1). We claim that δ has

the desired property; hence let g ∈ Bdsup
( f ,δ) and we prove that g ∈ Embε(X ,Y ). Note that

δ(g) = sup {d(x,x′) : x,x′ ∈ K(g)}
where K( f ) ⊂ X ×X consists of pairs (x,x′) with g(x) = g(x′). Since g is continuous, K( f ) is closed in

X ×X ; since X is compact, it follows that K( f ) is compact; hence the above supremum will be attained

at some x,x′ ∈ K(g). But for such x and x′:

d( f (x), f (x′))≤ d( f (x),g(x))+d(g(x′), f (x‘))+d(g(x),g(x′))< 2δ

hence, by (1.1), d(x,x′)< ε; hence δ(g)< ε. �
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2. Using covers and partitions of unity

In this section we assume that (X ,d) is a compact metric space and Y = RN is endowed with the

Euclidean metric (where N ≥ 1 is some integer). For the resulting embedding problem, we use the result

of the previous section. We fix

f ∈ C (X ,RN), ε,δ > 0

and we search for g ∈ C (X ,Y ) with δ(g)< ε, dsup( f ,g) < δ. The idea is to look for g of type

(2.1) g(x) =
p

∑
i=1

ηi(x)zi,

where {ηi} is a continuous partition of unity and zi ∈RN some points. To control δ(g), the points zi have

to be chosen in “the most general” position.

Definition 9.4 We say that a set {z1, . . . ,zp} of points in RN is in the general position if, for any

λ1, . . . ,λp ∈ R from which at most N +1 are non-zero, one has:

p

∑
i=1

λizi = 0,
p

∑
i=1

λi = 0 =⇒ λi = 0 ∀ i ∈ {1, . . . , p}.

We now return to our problem. Recall that, for a subset A of a metric space (X ,d), diam(A) is

sup{d(a,b) : a,b ∈ A}. For a family A = {Ai : i ∈ I}, denote by diam(A) the the supremum of {diam(Ai)
with i ∈ I}. In the following, we control δ(g).

Lemma 9.5 Let U = {Ui} be an open cover of X , {ηi} a partition of unity subordinated to U and {zi}
a set of points in RN in general position, all indexed by i ∈ {1, . . . , p}. Assume that, for some integer m,

each point in X lies in at most m+ 1 members of U. If N ≥ 2m+ 1 then the resulting function g given

by (2.1) satisfies δ(g) ≤ diam(U).

PROOF. Assume that g(x) = g(y), i.e. ∑
p
i=1(ηi(x)−ηi(y))zi = 0. Now, x lies in at most m + 1

members of U, so at most m+1 numbers from {ηi(x) : 1 ≤ i ≤ p} are non-zero. Similarly for y. Hence

at most 2(m+ 1) coefficients ηi(x)−ηi(y) are non-zero. Note also that the sum of these coefficients is

zero. Hence, since {z1, . . . ,zp} is in general position and 2(m+1)≤ N +1, it follows that ηi(x) = ηi(y)
for all i. Choosing i such that ηi(x)> 0, it follows that x,y ∈Ui, hence d(x,y) ≤ diam(Ui). �

Next, we control dsup( f ,g). We use the notation f (U) = { f (U) : U ∈ U}.

Lemma 9.6 Let U = {Ui} be an open cover of X , {ηi} a partition of unity subordinated to U and {zi}
a set of points in RN , all indexed by i ∈ {1, . . . , p}. Assume that, for some r > 0,

diam( f (U)) < r, d(zi, f (Ui))< r ∀ i ∈ {1, . . . , p}.
Then the resulting function g given by (2.1) satisfies dsup( f ,g)< 2r.

PROOF. Since d(zi, f (Ui))< r we find xi ∈Ui with ||zi − f (xi)||< r. Writing

g(x)− f (x) = ∑
i

ηi(x)(zi − f (xi))+∑
i

ηi(x)( f (xi)− f (x)),

||g(x)− f (x)|| ≤∑
i

ηi(x)||zi − f (xi)||+∑
i

ηi(x)|| f (xi)− f (x)||.

Here each ||zi − f (xi)|| < r by hypothesis, hence the first sum is < r. For the second sum note that,

whenever ηi(x) 6= 0, we must have x ∈Ui hence, || f (xi)− f (x)||< r. Hence also the second sum is < r,

proving that ||g(x)− f (x)|| < 2r for all x ∈ X . Since X is compact, we have dsup( f ,g) < 2r. �
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Next, we show the existence of “small enough” covers of X and points in RN in general position.

Proposition 9.7 For ε, δ > 0 there exists an open cover U = {Ui : 1 ≤ i ≤ p} of X with

diam(U)< ε, diam( f (U)) < δ/2.

Moreover, for any such cover, there exist points {z1, . . . ,zp} in RN in general position such that

d(zi, f (Ui))< δ/2 ∀ i ∈ {1, . . . , p}.
In particular, g given by (2.1) satisfies δ(g)< ε and dsup( f ,g)< δ, provided U has the property that each

point in X lies in at most m+1 members of U, where m satisfies N ≥ 2m+1.

PROOF. For the first part we use that f is uniformly continuous and choose r < ε such that

d(x,y) < r =⇒ d( f (x), f (y)) <
δ

2
.

Consider then the open cover of X by balls of radius r (or any other arbitrarily smaller radius) and

choose a finite subcover. For the second part, we choose xi ∈ Ui arbitrary and set yi = f (xi) ∈ RN . We

prove that, in general, for any finite set {y1, . . . ,yp} of points in RN and any r > 0, there exists a set

{z1, . . . ,zp} of points in general position such that d(zi,yi) < r for all i. We proceed by induction on p.

Assume the statement holds up to p and we prove it for p+ 1. So, let {y1, . . . ,yp+1} be points in RN .

From the induction hypothesis, we may assume that {y1, . . . ,yp} is already in general position. For each

I ⊂ {1, . . . , p} of cardinality at most N we consider the “hyperplane”

HI := {∑
i∈I

λiyi : λi ∈ R,∑
i∈I

λi = 1}.

Since |I| ≤ N, each such hyperplane has empty interior (why?), hence so does their union ∪IHI taken

over all Is as above. Hence B(yp+1,r) will contain an element zp+1 which is not in this intersection. It is

not difficult to check now that {y1, . . . ,yp,zp+1} is in general position. �
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3. Dimension and open covers

As in the previous section, we fix a compact metric space (X ,d) and Y = RN with the Euclidean

metric. We assume that N = 2m+ 1 for some integer m. Proposition 9.7 almost completes the proof of

the existence of an embedding of X in R2m+1; what is missing is to make sure that the covers U from the

proposition can be chosen so that each point in X lies in at most m+1 members of U. Note however that

this is an important demand. After all, all that we have discussed applies to any compact metric space X

(e.g. S5) and any RN (e.g R!); this extra-demand is the only one placing a condition on N in terms of the

topology of X . Actually, this is about “the dimension” of X .

Definition 9.8 Let X be a topological space, m ∈ Z+. We say that X has dimension less or equal

to m, and we write dim(X) ≤ m, if any open cover U admits an open refinement V of multiplicity

mult(V )≤ m+1, i.e. with the property that each x ∈ X lies in at most m+1 members of V .

The dimension of X is the smallest m with this property.

With this, Proposition 9.7 and Proposition 9.3 give us immediately:

Corollary 9.9 Any compact metric space X with dim(X)≤ m can be embedded in R2m+1.

Of course, this nice looking corollary is rather cheap at this point: it looks like we just defined the

dimension of a space, so that the corollary holds. However, the definition of dimension given above

is not at all accidental. By the way, did you ever think how to define the (intuitively clear) notion of

dimension by making use only of the topological information? What are the properties of the opens

that make R one-dimensional and R2 two-dimensional? You may then discover yourself the previous

definition. Of course, one should immediately prove that dim(RN) is indeed N or, more generally, that

any m-dimensional topological manifold X has dim(X) = m. These are all true, but they are not easy to

prove right away. What we will show here is that:

Theorem 9.10 Any compact m-dimensional manifold X satisfies dim(X)≤ m.

This will be enough to apply the previous corollary and deduce Theorem 9.1 from the beginning of

this chapter. The rest of this section is devoted to the proof of this theorem. First, we have the following

metric characterization of dimension:

Lemma 9.11 Let (X ,d) be a compact metric space and m an integer. Then dim(X)≤ m if and only if,

for each δ > 0, there exists an open cover V with diam(V )< δ and mult(V )≤ m+1.

PROOF. For the direct implication, start with the cover by balls of radius δ/2 and choose any re-

finement V as in Definition 9.8. For the converse, let U be an arbitrary open cover. It then suffices to

consider an open cover as in the statement, with δ a Lebesgue number for the cover U (see Proposition

6.10). �

Lemma 9.12 Any compact subspace K ⊂ RN has dim(K)≤ N.

PROOF. For simplicity in notations, we assume that N = 2. We will use the previous lemma. First,

we consider the following families of opens in the plane:

• U0 consisting of the open unit squares with vertices in the integral points (m,n) (m,n ∈ Z).

• U1 consisting of the open balls of radius 1
2

with centers in the integral points.

• U2 consisting of the open balls of radius 1
4

with centers in the middles of the edges of the

integral lattice.

Make a picture!Note that the members of each of the families Ui are disjoint. Hence

U := U0 ∪U1 ∪U2
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is an open cover of R2 of multiplicity 3 with diam(U)=
√

2. To obtain similar covers of smaller diameter,

we rescale. For each λ > 0, φλ : R2 → R2, v 7→ λ 7→ λv is a homeomorphism. The rescaling of U is

Uλ = {φλ(U) : U ∈ U},
it has multiplicity 3 and diameter λ

√
2. Now, for K ⊂ R2 compact, we use the covers Uλ (and the

compactness o K) to apply the previous lemma. �

Lemma 9.13 If X is a topological space and X = ∪p
i=1Xi where each Xi is closed in X with dim(Xi)≤ m,

then dim(X)≤ m.

PROOF. Proceeding inductively, we may assume m = 2, i.e. X = Y ∪ Z with Y , Z-closed in X of

dimension ≤ m. Let U be an arbitrary open cover of X ; we prove that it has a refinement of multiplicity

≤ m+1. First we claim that U has a refinement V such that each y ∈Y lies in at most m+1 members of

V . To see this, note that {U ∩Y : U ∈ U} is an open cover of Y , hence it has a refinement (covering Y )

{Ya : a ∈ A} (for some indexing set A). For each a ∈ A, write Ya = Y ∩Va with Va ⊂ X open, and choose

Ua ∈ U such that Ya ⊂Ua. Then

V := {Va ∩Ua : a ∈ A}∪{U −Y : U ∈ U}
is the desired refinement. Re-index it as V = {Vi : i ∈ I} (we assume that there are no repetitions, i.e.

Vi 6= Vi′ whenever i 6= i′). Similarly, let W = {Wj : j ∈ J} be a refinement of V with the property that

each z ∈ Z belongs to at most m+1 members of W . For each j ∈ J, choose α( j)∈ I such that Wj ⊂Vα( j).

For each i ∈ I, define

Di = ∪ j∈α−1(i)Wj.

Consider D = {Di : i ∈ I}. Since for each j ∈ J, i ∈ I

Wj ⊂ Dα( j), Di ⊂Vi,

D is an open cover of X , which refines V (hence also U). It suffices to show that mult(D) ≤ m+ 1.

Assume that there exist k distinct indices i1, . . . , ik with

x ∈ Di1 , . . . ,Dik .

We have to show that k ≤ m+ 1. If x ∈ Y , since Di ⊂ Vi for all i, the defining property of V implies

that k ≤ m+1. On the other hand, for each a ∈ {1, . . . ,k}, since x ∈ Dia , we find ja ∈ α−1(ia) such that

x ∈Wja ; hence, if x ∈ Z, then the defining property of W implies that k ≤ m+1. �

PROOF. (end of the proof of Theorem 9.10) Since X is a manifold, around each x ∈ X we find a

homeomorphism φx : Ux → Rn defined on an open neighborhood Ux of x. Let Vx ⊂ Ux corresponding

(by φx) to the open ball of radius 1. From the open cover {Vx : x ∈ X}, extract an open subcover,

corresponding to x1, . . . ,xk ∈ X . Then X = ∪iXi, and each Xi is a closed subset of X homeomorphic to a

closed ball of radius 1, hence has dim(Xi)≤ m. �



CHAPTER 10

Previous exams

1. The exam of January 28, 2015

Note: In all the questions below, please explain/prove your answers (e.g., in Exercise 1, part a., b., etc,

please do not just say ”yes” or ”no”. Also, in part e. or g. of the same exercise, do not just write down the

final result, but also explain how you found it- e.g. by explaining your reasoning using pictures). There

are three questions marked with a ”*”; they are probably more difficult than the rest. The final mark for

the exam is the number of points that you collect, except for the case in which you collect more than 10

points, when the final mark will be 10 (in total, the exercises below are worth 11.5 points).

E Exercise 10.1 Prove that, for any Hausdorff space (X ,T ), any finite subset F ⊂ X is closed in X .

(1 point)

E Exercise 10.2 Consider the family B of subsets of R2 consisting of all the subsets of type (a,b)× (a,b)
with a < b real numbers:

B = {(a,b)× (a,b) : a,b ∈ R,a < b}.
Let T be the smallest topology on R2 containing B . We also consider

A = [0,1]× [0,2] ⊂ R2.

a. Is (R2,T ) second countable? (0.5 points)

b. Is (R2,T ) Hausdorff? (0.5 points)

c. Is the identity map Id : R2 → R2 continuous as a map from (R2,T ) to (R2,TEucl)? But as a

map from (R2,TEucl) to (R2,T )? (0.5 points)

d. Is A, with the topology induced from T , connected? Is it compact? (0.5 points)

e. Let x = (0,2) ∈ R2 (the point of coordinates 0 and 2). Compute the closure of {x} in (R2,T ).
(0.5 points)

f. Show that the sequence (xn)n≥1 given by

xn = (sin2(n),cos4(n+2015)) ∈ R2

is convergent in (R2,T ) and has more than one limit. (0.5 points)

g. Compute the interior and the closure of A in (R2,T ). (1 point)

h∗· Show that any continuous map f : (R2,T )→ R must be constant. (1 point)

(total: 6×0.5+2×1 = 5 points)

E Exercise 10.3 Consider the group of integers modulo 2, Z2 = {0̂, 1̂}. Define the following action of Z2

on the closed unit disk D2 = {z ∈ C : |z| ≤ 1}:

0̂ · z = z, 1̂ · z =−z (for all z ∈ D2).

Prove that the resulting quotient D2/Z2 is homeomorphic to D2 (provide a complete argument; a ”proof”

based only on pictures is not enough to get the entire 1 point for this exercise).

(1 point)
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E Exercise 10.4 Let X be compact Hausdorff space and let C(X) be the space of real-valued continuous

functions on X , endowed with the topology induced by the sup-metric.

Prove that if A ⊂C(X) is a dense subset of C(X), then A must be point-separating.

(1 point)

E Exercise 10.5 For any algebra A over R and any ideal I of A, we define

X(A, I) := {χ ∈ XA : χ(x) = 0 ∀ x ∈ I} ⊂ XA

and we endow it with the topology induced from the topology on the spectrum XA of A. Show that:

a. For any algebra A and any ideal I of A, X(A, I) is closed in XA. (0.5 points)

b. Applied to A =R[x,y] (polynomials in two variables ) and I the ideal consisting of polynomials

that are are divisible by x2 + y2 −1, X(A, I) is homeomorphic to S1. (0.5 points)

c∗· Assume now that X is a compact Hausdorff space, Y ⊂ X and set

A =C(X), I := { f ∈C(X) : f (y) = 0 ∀ y ∈ Y}.
Show that X(A, I) is homeomorphic to the closure Y of Y in X (where the last space is endowed

with the topology induced from X ). (1 point)

(total: 2×0.5+1 = 2 points)

E Exercise 10.6 For each natural number n we consider a space Xn that is obtained by removing n distinct

points from R2. We consider the 1-point compactification X+
n and we denote by ∞n ∈ X+

n the point at

infinity (so that X+
n = Xn ∪{∞n}). Show that

a. X+
n can be embedded in R3 (here you do not have to write down explicit formulas for the

embedding, but please explain your reasoning using pictures and mention what result(s) you

use in order to reach the final conclusion). (0.5 points)

b∗· If Xn and Xm are homeomorphic, then n = m. (1 point)

(total: 0.5+1 = 1.5 points)
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2. Retake, March 11, 2015

Note: Please explain/prove your answers. E.g., in Exercise 1, parts c., d., f. please do not just say ”yes”

or ”no” but also prove your claims. Also, in part e. or h., do not just write down the final result, but also

explain how you found it. Also, in Exercise 2, do not forget to prove that the examples you give are not

homeomorphic; etc. etc.

E Exercise 10.7 Let k be a natural number (k ∈ {0,1,2, . . .}). Let Bk be the family of subsets of R

consisting of R and all the open intervals (a,b) which contain at most k integers (when k = 0, that

means: intervals (a,b) that contain no integers). Show that:

a. Bk is a topology basis on R. (0.5 points)

b. for k ≥ 1, the topology induced by Bk on R is the Euclidean topology. (0.5 points)

Next, we assume that k = 0 and we look at the topology T0 := T (B0) induced by B0.

c. Is (R,T0) Hausdorff? (0.5 points)

d. Is (R,T0) compact? (0.5 points)

e. Compute the interior and the closure of A = [0,2) in (R,T0). (0.5 points)

f. Is the sequence (xn)n≥1 given by

xn =
n2015 + sin(n)

n2

convergent in (R,T0)? (0.5 points)

g. Show that any continuous function f : (R,T0)→ (R,TEucl) is constant. (0.5 points)

h. Compute the interior and the closure of

D := {(x,y) ∈R2 : x2 + y2 ≤ 1} ⊂ R2

in R2 endowed with the product topology T0 ×TEucl . (1 point)

E Exercise 10.8 Find two locally compact Hausdorff spaces X and Y which are not homeomorphic but

which have homeomorphic one-point compactifications. (0.75 pts) Can you find such X and Y such that

all the spaces X , Y , X+ and Y+ are connected? (0.75 pts)

E Exercise 10.9 Let Γ = R>0 be the group of strictly positive real numbers, endowed with the usual

multiplication. Let X =Rn \{0}. Show that

Γ×X → X , (r,x) 7→ rx

(the usual multiplication of vectors x by scalars r) defines an action of Γ on X and prove that X/Γ is

homeomorphic to Sn−1 (the n−1-dimensional sphere).

E Exercise 10.10 Let X be a topological space.

a. If γ1,γ2 : [0,1]→ X are continuous and γ1(1) = γ2(0), show that

γ : [0,1]→ X , γ(t) =

{
γ1(2t) if t ∈ [0, 1

2
]

γ2(2t −1) if t ∈ (1
2
,1]

is continuous. (0.5 points)

b. If there exist A,B ⊂ X path connected such that X = A∪B and A∩B 6= /0, then X is connected.

(0.5 points)
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E Exercise 10.11 Let A be an algebra over R, assume that χ : A → R is a character and let

I := Ker(χ) ( = {a ∈ A : χ(a) = 0}).
Show that:

a. I is an ideal of A. (0.5 points)

b. a−χ(a) ·1A ∈ I for all a ∈ A (where 1A is the unit of A). (0.5 points)

c. I is a maximal ideal. (0.5 points)

E Exercise 10.12 Let X be a compact Hausdorff space,

F = (F1, . . . ,Fn) : X → Rn

a continuous function and consider

AF = { f ∈C(X) : f = P◦F for some polynomial function P : Rn → R}.
Show that F is an embedding if and only if AF is dense in C(X). (1.5 points)

(Recall: C(X) denotes the space of all continuous functions from X to R, and it is a topological space

with the topology induced by the sup-norm).
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3. The exam of January 29, 2014

Note: The questions marked with “+” are worth 1 point, the rest 0.5 points. As aggreed, you are allowed

to use during the exam the three sheets of A4 papers (= six pages) containing definitions, theorems, etc

from the course- that you prepared at home. For some explanations/hints, please see the end of the

exam!!!!!!!!!!!!.

E Exercise 10.13 For R we consider the family S of subsets consisting of all the intervals of type (m,M)
with m < M < 0, all intervals of type (m,M) with 0 < m < M (m and M real numbers) and the interval

[−1,1). Denote by T the smallest topology on R containing S .

a. show that S is not a topology basis and describe a basis of (R,T ).
b. is (R,T ) Hausdorff? Is it second countable?

c. find an interval of type [a,b] whose closure inside (R,T ) is not an interval.

d. find an interval of type (a,b) whose interior inside (R,T ) is not an interval.

e. find an interval of type [a,b] with the property that, together with the topology induced from

(R,T ), is not compact.

f. find an interval of type (a,b) with the property that, together with the topology induced from

(R,T ), is not connected.

g. (+) consider

f : (R,T )→ (R,TEucl), f (x) =

{
0 if x <−1

1 if x ≥−1

Is f continuous? Is f sequentially continuous?

E Exercise 10.14 Let X be the open cylinder (−1,1)× S1 and let Y be the open Moebius band (i.e. the

Moebius band discussed in the lectures, from which the boundary circle was removed).

a. Describe the 1-point compactification X+ as a subspace of R3.

b. (+) Describe X+ ⊂ R3 by explicit formulas and write down an explicit embedding

f : X → R3

so that X+ is the image of f together with the extra-point (0,0,0).
c. Show that the 1-point compactification of Y is homeomorphic to the projective plane P2.

d. Show that X and Y are not homeomorphic.

E Exercise 10.15 Let X = [−1,1]×R.

a. (+) Find all the numbers λ,a,b ∈R with the property that

n · (x,y) := (λnx,a+by+λn)

defines an action of the additive group (Z,+) on X .

b. Show that, in all cases, X/Γ is compact.

c. For the values of λ,a,b that you found compute the resulting quotients X/Γ/
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E Exercise 10.16 In this exercise we work over R (hence we consider real-valued functions and real alge-

bras). Let X and Y be compact Hausdorff spaces. For u ∈ C (X), v ∈ C (Y ), define u⊗v ∈ C (X ×Y ) given

by

u⊗ v : X ×Y → R, (u⊗ v)(x,y) := u(x)v(y),

and we denote by A ⊂ C (X ×Y ) the set of functions of type

k

∑
i=1

ui ⊗ vi with k ∈ N,u1, . . . ,uk ∈ C (X),v1, . . . ,vk ∈ C (Y )

Show that:

a. (+) A is a dense subalgebra of C (X ×Y).
b. For any χ ∈ XA , χ1 : C (X)→ R and χ2 : C (Y )→ R given by

χ1(u) := χ(u⊗1), χ2(v) := χ(1⊗ v)

are characters.

c. (+) XA is homeomorphic to X ×Y .

Notes/hints:

(1) Please motivate all your answers. For instance, in Exercise 1, for b. do not just give an yes/no

answsr, for, c.-f. prove why the intervals that you found do satisfy the required conditions, at

point g. explain/prove why f is, or isn’t, continuous or sequentially continuous, and similarly

for the other exercises.

(2) For items a. and c. of Exercise 2, and item c. of Exercise 3, you do not have to give explicit

formulas; pictures are enough, provided they are properly explained.

(3) Exercise 2: you may want to remember the models TR,r of the torus:

TR,r = {(x,y,z ∈ R3 : (
√

x2 + y2 −R)2 + z2 = r2}=
= {(R+ r cos(a))cos(b),(R+ r cos(a))sin(b),r sin(a)) : a,b ∈ [−π,π]}

(where, to obtain a torus, one has to assume R > r > 0). For d.: you may want to remember

that P2 is a 2-dimensional topological manifold (in particular, each point has a neighborhood

homeomorphic to R2).

(4) In exercise 3, if you encounter 00, take it to be 1 (say by convention).
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4. Retake, March 12, 2014

E Exercise 10.17 Let T be the smallest topology on R with the property that

f : (R,T )→ (R,TEucl), f (x) = x2

is continuous.

a. Describe a basis of (R,T ) and show that any U ∈ T has the property that

−x ∈U ∀ x ∈U.

b. Find the closure and the interior of (−1,2) in (R,T ).
c. Is (R,T ) Hausdorff? Can you find a sequence with two (distinct) limits?

d. Is [−1,1] (with the topology induced from T ) compact? But connected?

e. Is [−1,1) (with the topology induced from T ) compact?

f. Is [−3,1)∪ (1,3] (with the topology induced from T ) connected?

g. Does there exist a metric space X and a finite group Γ acting on X such that X/Γ is homeomor-

phic to (R,T )?

E Exercise 10.18 Let f : (X ,TX)→ (Y,TY ) be a continuous function between two Hausdorff topological

spaces. Define f ∗TY as the smallest topology on X with the property that

f : (X , f ∗TY )→ (Y,TY )

is continuous, and define f∗TX as the largest topology on Y with the property that

f : (X ,TX)→ (Y, f∗TX)

is continuous. Show that

a. f ∗TY = { f−1(V ) : V ∈ TY} and f∗TX = {V ⊂ Y : f−1(V ) ∈ TX}.

b. If f is a homeomorphism then f∗TX = TY and f ∗TY = TX .

c. If f∗TX = TY and (Y,TY ) is connected, then f is surjective.

d. If f ∗TY = TX then f is injective.

e. f ∗TY = TX holds if and only if f is an embedding.

E Exercise 10.19 Assume that X is a sphere S2 minus n points and Y is a sphere minus m points, where

m,n ≥ 0 are integers. Show that if X is homeomorphic to Y , then n = m.

E Exercise 10.20 Assume that (X ,TX) is a compact Hausdorff space and A is a closed subset of X . We

consider the complement of A in X ,

Y := X −A = {x ∈ X : x /∈ A},
we denote by X/A the space obtained from X by collapsing A to a point and we consider the canonical

projection:

π : X → X/A

(recall that X/A is endowed with the topology π∗TX ). Show that:

a. Y is locally compact and Hausdorff.

b. For any open U in X with the property that U ∩A = /0 or A ⊂ U , one has that π(U) is open in

X/A.

c. X/A is a compact Hausdorff space.

d. The one point compactification of Y is homeomorphic to X/A.
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E Exercise 10.21 Let C (D2) be the algebra of real-valued continuous functions on the unit disk D2 and let

A be the subset consisting of those f ∈ C (D2) with the property that they are constant on the boundary

circle S1.

a. is A a sub-algebra of C (D2)?
b. is A dense in C (D2)?
c. show that the spectrum of A is homeomorphic to S2.

Notes:

(1) You may give your answers in Dutch or English.

(2) All the questions a., b. etc are worth 0.5 points. Exercise 3 is worth 1.5 points (note also that

the sum of all the points is 11 ...).

(3) As before, you are allowed to use during the exam the three sheets of A4 papers (= six pages)

containing definitions, theorems, etc from the course- that you prepared at home.

(4) PLEASE MOTIVATE ALL YOUR ANSWERS!!!!!!!!!! (give details, explain your reasoning,

use pictures whenever appropriate, etc etc).
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5. Exam A, April 17, 2013

E Exercise 10.22 (1 pt) Let X and Y be two topological spaces. For A ⊂ X , B ⊂ Y , we consider A×B as a

subset of X ×Y . Show that:

Int(A×B) = Int(A)× Int(B)

(the interior of A×B inside X ×Y (with respect to the product topology)= the product of the interior of

A in X with the interior of B in Y ).

E Exercise 10.23 (1 pt) Give an example of a connected, bounded, open subset of R2 which cannot be

written as a finite union of balls (here we use the Euclidean metric and topology on R2).

E Exercise 10.24 Let X = (−1,∞).

(i) (1 pt) Find all the numbers a,b ∈ R with the property that

n · t = φn(t) = 2nt +an +b

defines an action of the group (Z,+) on X .

(ii) (1 pt) For the a and b that you found, show that the resulting quotient space X/Z is homeomor-

phic to S1.

E Exercise 10.25 On X = Z we consider the family B of subsets of X consisting of the empty set and the

subsets of type

Na,b := a+bZ= {a+bn : n ∈ Z} ⊂ Z,

with a,b ∈ Z, b > 0.

(i) (0.25 pts) Show that, for a,a′,b,b1,b2 ∈ Z with b,b1,b2 > 0:

Na,1 = Na,−1 = Z,

Na,b1b2
⊂ Na,b1

∩Na,b2

and one has the following equivalences:

a′ ∈ Na,b ⇐⇒ a ∈ Na′,b ⇐⇒ Na,b = Na′,b.

(ii) (0.5 pts) Show that B is not a topology on X .

(iii) (0.5 pts) Show that B is a topology basis on X . Let T be the induced topology.

(v) (1 pt) Compute the interior and the closure of A := {−1,1} in (X ,T ).
(iv) (0.5 pts) Show that (X ,T ) is Hausdorff.

(vi) (0.25 pts) Show that, for any b ∈ Z, b > 0, Z can be written as a union of b nonempty subsets

that belong to B , each two of them being disjoint.

(vii) (0.5 pts) Show that any subset of type Na,b is both open and closed in (X ,T ).
(viii) (1 pt) Show that

Z\{−1,1}=
⋃

p−prime number

N0,p

and then, using (vii) and (v), deduce that the set of prime numbers is infinite.

E Exercise 10.26 Consider the 3-sphere S3 viewed as a subspace of C2:

S3 = {(u,v) : u,v ∈ C, |u|2 + |v|2 = 1}.
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Inside the sphere we consider

A := {(u,v) ∈ S3 : |v|=
√

2

2
}.

(i) (1 pt) Show that S3 \A has two connected components.

(ii) (0.5 pts) Show that the two connected components, denoted X1 and X2, satisfy:

X1 ∩X2 = ∂(X1) = ∂(X2) = A.

(where the closures and boundaries are inside the space S3).

(iii) (1 pt) Consider the unit circle and the closed unit disk

S1 = {(α,β) ∈ R2 : α2 +β2 = 1}, D2 = {(x,y) ∈ R2 : x2 + y2 ≤ 1}.
By a solid torus we mean any space homeomorphic to S1 ×D2. Show that

f : S1 ×D2 → R3, f ((α,β),(x,y)) = ((2− x)α,(2− x)β,y)

is an embedding and indicate on a picture what the image of f is (... motivating the name ”solid

torus”).

(iv) (1 pt) Show that X i is a solid torus for i ∈ {1,2}.

(v) (1 pt) Deduce that the 3-sphere can be obtained from two disjoint copies of S1 ×D2 (i.e. two

solid tori) by gluing any point (z1,z2) ∈ S1 ×S1 in the boundary of the first copy with the point

(z2,z1) in the boundary of the second.

Note 1: The mark for this exam is the minimum between 10 and the number of points that you score

(in total, there are 13 points in the game!).

Note 2: please MOTIVATE ALL YOUR ANSWERS (e.g., in Exercise 2, do not just give the example,

but also explain/prove why it has the required properties).
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6. Exam B, June 26, 2013

E Exercise 10.27 Prove that there is no continuous injective map f : S2 → S1. (1p)

(warning: there are injective maps from S2 to S1!).

E Exercise 10.28 Let X = (0,∞) and consider the open cover of X

U = {U1,U2,U3, . . .} with Un = (0,n).

(i) Show that U does not admit a subcover which is locally finite. (0.5p)

(ii) Describe a locally finite refinement of U. (0.5p)

E Exercise 10.29 Consider

X = {(u,v,w) ∈ R3 : u2 + v2 +w2 = 1}\{(0,0,1),(0,0,−1)},
Y = {(x,y,z ∈R3 : x2 + y2 + z2 = 2

√

x2 + y2}\{(0,0,0)}.
π : X → R3, π(u,v,w) = (2u

√

u2 + v2,2v
√

u2 + v2,2w
√

u2 + v2).

(i) Compute the closure Y of Y in R3 and prove that it is compact. (1p)

(ii) Prove that the one-point compactification of X is homeomorphic to Y . (1p)

(iii) Draw a picture of Y and explain the map π on the picture. (1p)

E Exercise 10.30 Let X be a Hausdorff, locally compact, 2nd countable topological space and assume that

U is an open in X ×R containing X ×{0}:

X ×{0} ⊂U ⊂ X ×R.

The aim of this exercise is to prove that there exists a continuous function f : X → (0,∞) such that U

contains

U f := {(x, t) ∈ X ×R : |t|< f (x)}.
Consider

r : X → R, r(x) = sup{r ∈ (0,1] : {x}× (−r,r) ⊂U}.
(i) Show that one can find an open cover {Vi : i∈ I} of X and a family {ri : i ∈ I} of strictly positive

real numbers (for some indexing set I) such that

r(y) > ri ∀ y ∈Vi, ∀ i ∈ I. (0.5p)

(note: depending on the argument that you find, I that you construct may be countable, but it

may also be “very large”- e.g. “as large as X”).

(ii) For {Vi : i ∈ I}, {ri : i ∈ I} as above, use a partition of unity argument to build a continuous

function f : X → (0,∞) such that U f ⊂U . (1.5p)

(iii) Deduce that if X is actually compact, then f may be choosen to be constant. (0.5p)

E Exercise 10.31 In this exercise we work over R. Let X be a compact, Hausdorff topological space, C(X)
the space of real-valued continuous functions on X and let

A ⊂C(X).
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be a point-separating subalgebra. The aim of this exercise is to show that the spectrum XA is homeomor-

phic to X . The homeomorphism will be provided by the map:

F : X → XA , F(x) = χx|A
(the restriction of χx : C(X)→ R to A , where we recall that χx sends f to f (x)).

(i) Show that F is continuous. (0.5p)

(ii) Show that F is injective. (0.5p)

(iii) Give an example of X and A for which F is not surjective. (0.5p)

The next five steps are to prove that F the image of F consists of those characters χ ∈ XA with the

property that χ is continuous (where A is endowed with the topology induced by the sup-metric). Let χ
be such a character.

(iii) Show that, if f ,g ∈ A and f ≥ g, then χ( f )≥ χ(g). (0.5p)

(Hint: recall that, in the proof of the Stone-Weierstrass theorem we showed that, for f ∈ A

with f ≥ 0, one has
√

f ∈ A).

(iv) Show that for all f ∈ A one has |χ( f )| ≤ || f ||sup. (0.5p)

(v) Deduce that for any sequence ( fn)n≥1 of elements in A , convergent to some f ∈ C(X), the

sequence (χ( fn))n≥1 is convergent. (0.5p)

(vi) Deduce that there exists an extension of χ : A → R to a continuous map

χ̃ : C(X)→ R. (0.5p)

(vii) And then show that χ̃ is a character. (0.5p)

Finally:

(viii) Conclude that F is a homeomorphism between X and the space of continuous characters, en-

dowed with the topology induced from XA. (0.5p)

Notes:

• English or Dutch (or both)- doesn’t matter, but please write clearly (thanks!).

• Please motivate your answers. For instance, in exercise 4, part (ii), do not forget, after you write

the function f , to check that f is well defined, continuous and that it has the desired property.

• In this exam, the sub-points of any exercise do not fully depend on each other. For instance, in

the last exercise, you may do (v) without doing (iv) (... but using it).
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7. Herkansing, August, 2013

E Exercise 10.32 On X = [0,∞) we consider the family B of subsets consisting of the empty set and all

intervals of type [r,∞) with r ∈ R+ and we denote by T the smallest topology on X containing B .

(i) Show that B is not a topology, but it is a topology basis. (0.5p)

(ii) Is (X ,T ) Hausdorff? Is it compact? Is it connected? (0.75p)

(iii) Is the sequence (xn)n≥1 given by

xn = 1+
(−1)n

n

convergent in (X ,T )? To what? (0.5p)

(iv) Compute the interior and the closure of [1,2)× (1,2] in X ×X endowed with the product topol-

ogy. (0.5p).

E Exercise 10.33 Decide (and explain) which of the following statements hold true:

(i) S1 ×R can be embedded in R2. (0.5p)

(ii) S1 ×S1 ×S1 can be embedded in R4. (0.5p)

(iii) S2 can be embedded in S1. (0.5p)

(iv) the Moebius band can be embedded into the projective space P2. (0.5p)

(v) the projective space P3 can be embedded in R6. (0.5p)

E Exercise 10.34 By a solid torus we mean any space homeomorphic to S1 ×D2.

(i) Show that

f : S1 ×D2 → R3, f ((α,β),(x,y)) = ((2− x)α,(2− x)β,y)

is an embedding and indicate on a picture what the image of f is (... motivating the name solid

torus). (1p)

Next, consider the 3-sphere S3 viewed as a subspace C2:

S3 = {(u,v) : u,v ∈ C, |u|2 + |v|2 = 1}.
Inside the sphere we consider

A := {(u,v) ∈ S3 : |v|=
√

2

2
}.

(ii) Show that S3 \A has two connected components; denote them by X1 and X2. (0.5p)

(iii) Show that X i is a solid torus for i ∈ {1,2}. (0.5p)

(iv) Show that the 3-sphere S3 can be obtained from two disjoint copies of S1 ×D2 (i.e. two solid

tori) by gluing any point (z1,z2)∈ S1×S1 in the boundary of the first copy with the point (z2,z1)
in the boundary of the second.(1p)

E Exercise 10.35 Give an example of two connected, Hausdorff, locally compact spaces X and Y which

are not homeomorphic but have the property that their one-point compactifications are homeomorphic.

(1p)



162 10. PREVIOUS EXAMS

E Exercise 10.36 If A and B are two commutative algebras over R, a map

F : A → B

is called an algebra homomorphism if it is R-linear and satisfies

F(a1a2) = F(a1)F(a2)

for all a1,a2 ∈ A, and F(1A) = 1B, where 1A ∈ A and 1B ∈ B are the units. It is called an isomorphism of

algebras if it is also bijective.

(1) Show that for any algebra homomorphism F : A → B, one has an induced continuous map

F∗ : XB → XA, F∗(χ) = χ◦F.

Moreover, if F is an isomorphism, show that F∗ is a homeomorphism. (0.5p)

(2) If X and Y are two compact Hausdorff spaces, show that for any algebra homomorphism

F : C(Y )→C(X)

one finds a continuous function f : X →Y such that

F(φ) = φ◦ f ∀ φ ∈C(Y ). (1p)

(3) Compute the spectrum of

A := { f : R2 → R continuous : f (x+1,y) = f (x,y+1) = f (x,y), ∀ x,y ∈ R}. (0.5p)

Note: As usual, please motivate/explain/prove all your statements!!!
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8. Exam A, April 18, 2012

E Exercise 10.37 Let B be the familly of subsets of R consisting of R and the subsets

[n,a) := {r ∈R : n ≤ r < a} with n ∈ Z,a ∈ R.

(1) Show that B is not a topology on R, but it is a topology basis. Denote by T the associated

topology. (1p)

(2) Is (R,T ) second countable? But Hausdorff? But metrizable? Can it be embedded in R2012

(with the Euclidean topology)? (1p)

(3) compute the closure, the interior and the boundary of A = [− 1
2
, 1

2
] in (R,T ). (1.5p)

E Exercise 10.38 Prove directly that the abstract torus Tabs is homeomorphic to S1 × S1. More precisely,

define an explicit map

f̃ : [0,1]× [0,1]→ R4

whose image is

S1 ×S1 = {(x,y,z, t) ∈R4 : x2 + y2 = z2 + t2 = 1}
and which induces a homeomorphism f : Tabs → S1 ×S1. Provide all the arguments. (1.5p).

E Exercise 10.39 Let X be the space obtained from the sphere S2 by gluing the north and the south pole

(with the quotient topology). Show that X can be obtained from a square [0,1]× [0,1] by glueing some

of the points on the boundary (note: you are not allowed to glue a point in the interior of the square to

any other point). More precisely:

(1) Describe the equivalence relation R0 on S2 encoding the glueing that defines X . (0.25p)

(2) Make a picture of X in R3. (0.25p)

(3) Describe an equivalence relation R on [0,1]× [0,1] encoding a glueing with the required prop-

erties. (1p)

(4) Show that, indeed, X is homeomorphic to [0,1]× [0,1]/R (provide as many arguments as you

can, but do not write down explicit maps- instead, indicate them on the picture). (0.5p)

E Exercise 10.40 Show that:

(1) There exist continuous surjective maps f : S1 → S1 which are not injective. (0.5p)

(2) Any continuous injective map f : S1 → S1 is surjective. (1p)

E Exercise 10.41 Show that any continuous map

f : (R,TEucl)→ (R,Tl)

must be constant (recall that Tl is the lower limit topology- i.e. the one generated by intervals of type

[a,b)). (1.5p)

Note 1: Motivate all your answers. Whenever you use a Theorem or Proposition, please make that

clear (e.g. by stating it). Please write clearly (English or Dutch).

Note 2: The final mark is

min{10,1+ p},
where p is the number of points you collect from the exercises.
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9. Exam B, June 27, 2012

E Exercise 10.42 (1p) Show that

K := {(x,y) ∈ R2 : x2012 + y2012 ≤ 10sin(ex + ey +1000)+ ecos(x2+y2)}.
is compact.

E Exercise 10.43 (1.5p) Let X be a bouquet of two circles:

X = {(x,y) ∈ R2 : ((x−1)2 + yr−1)((x+1)2 + y2 −1) = 0}.
We say that a space T is an exam space if there exist three distinct point p,q,r ∈ X such that Y is

homeomorphis to the one one point compactification of X −{p,q,r}.

Find the largets number l with the property that there exist exam-aces Y1, . . . ,Yl with the property that

any two of them are not homeomorphic (prove all the statements that you make!).

E Exercise 10.44 (1p) Let X be a topological space and let γ : [0,1]→ X be a continuous function. Assume

that γ is locally injective, i.e. that, for any t ∈ [0,1], there exists a neighborhodd V of t in [0,1] such that

γ|V : V → X

is injective. Show that, for any x ∈ X , the set

γ−1(x) := {t ∈ [0,1] : γ(t) = x}
is finite.

E Exercise 10.45 (1p) Let X be a normal space and let A ⊂ X be a subspace with the property that any two

continuous functions f ,g : X → R which coincide on A must coincide everywhere on X . Show that A is

dense in X (i.e. the closure of A in X coincides with X ).

E Exercise 10.46 (1p) Consider the following open cover of R:

U := {(r,s) : r,s ∈R, |r− s|< 1

3
}.

Describe a locally finite subcover of U.

E Exercise 10.47 (each of the sub-questions is worth 0.5 p) Let A be a commutative algebra over R.

Assume that it is finitely generated, i.e. there exist a1, . . . ,an ∈ A (called generators) such that any a ∈ A

can be written as

a = P(a1, . . . ,an),

for some polynomial P ∈ R[X1, . . . ,Xn]. Recall that XA denotes the topological spectrum of A; consider

the functions

fi : XA → R, fi(χ) = χ(ai) 1 ≤ i ≤ n,

f = ( f1, . . . , fn) : XA → Rn.

Show that

(i) f is continuous.

(ii) For any character χ ∈ XA and any polynomial P ∈R[X1, . . . ,Xn],

χ(P(a1, . . . ,an)) = P(χ(a1), . . . ,χ(an)).

(iii) f is injective.
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(iv) the topology of XA is the smallest topology on XA with the property that all the functions fi are

continuous.

(v) f is an embedding.

Next, for a subspace K ⊂Rn, we denote by Pol(K) the algebra of real-valued polynomial functions on K

and let a1, . . . ,an ∈ Pol(K) be given by

ai : K → R, ai(x1, . . . ,xn) = xi.

Show that

(vi) Pol(K) is finitely generated with generators a1, . . . ,an.

(vii) Show that the image of f (from the previous part) contains K.

Finally:

(viii) For the (n− 1) sphere K = Sn−1 ⊂ Rn, deduce that f induces a homeomorphism between the

spectrum of the algebra Pol(K) and K.

(ix) For which subspaces K ⊂ Rn can one use a similar argument to deduce that the spectrum of

Pol(K) is homeomorphic to K?

Note: Motivate all your answers; give all details; please write clearly (English or Dutch). The mark is

given by the formula:

min{10,1+ p},
where p is the number of points you collect from the exercises.
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10. Herkansing, August 22, 2012

E Exercise 10.48 On X =R consider the topology:

T = {(−a,a) : 0 ≤ a ≤ ∞}.
(i) Is (X ,T ) metrizable? (0.5 p)

(ii) Is (X ,T ) 1st countable? (0.5 p)

(iii) Is (X ,T ) connected? (0.5 p)

(iv) Is the sequence xn = (−1)n + 1
n

convergent in (X ,T )? To what? (0.5 p)

(v) Find the interior and the closure of A = (−1,2) in (X ,T ). (0.5 p)

(vi) Show that any continuous function f : X → R is constant. (0.5 p)

E Exercise 10.49 Let M be the Moebius band. For a continuous map f : S1 → M we denote

X f := M− f (S1).

(i) Show that, for any f , X f is locally compact but not compact. (0.5 p)

(ii) Is there a function f such that X+
f is homeomorphic to the projective space P2? (0.5 p)

E Exercise 10.50

(i) Let A be a commutative algebra over R and assume that a0,a1, . . . ,an ∈ A generate A, i.e. that

any a ∈ A can be written as

a = P(a0, . . . ,an),

for some P ∈ R[X0, . . . ,Xn]. Let XA be the topological spectrum of A. Show that

f : XA → Rn+1, f (χ) = (χ(a0), . . . ,χ(an))

is an embedding. (1.5 p)

(ii) If A = Pol(K) is the algebra of real-valued polynomial functions on a subset K ⊂ Rn+1 and ai

are the polynomial functions

ai : K → R, ai(x1, . . . ,xn) = xi, (0 ≤ i ≤ n),

show that the image of the resulting f contains K. (0.5 p)

(iii) For the sphere Sn ⊂Rn+1, deduce that the spectrum of the algebra Pol(Sn) is homeomorphic to

Sn. (1 p)

E Exercise 10.51 (1 p) Prove that there is no continuous map g : C→ C with the property that g(z)2 = z

for all z ∈ C.

E Exercise 10.52 (1 p) On (0,∞) we define the action of the group (Z,+) by:

Z× (0,∞)→ (0,∞), (n,r) 7→ 2nr.

Show that the quotient (0,∞)/Z is homeomorphic to S1.

E Exercise 10.53 (1 p) Let X be a normal space. Show that, for A,B ⊂ X , A and B have the same closure

in X if and only if, for any continuous function f : X → R, one has the equivalence

f |A = 0 ⇐⇒ f |B = 0.
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Note: Please motivate all your answers.
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11. Exam A, April 20, 2011

Notes:

• justify all your answers!!!

• the marking starts from 1 point. By solving the exercises, you can earn 9.5 more points. Your

mark for this exam will be the minimum between your total number of points and 10.

E Exercise 10.54 On X = R consider the family of subsets:

B := {(−p, p) : p ∈Q, p > 0}, T = {(−a,a) : 0 ≤ a ≤ ∞}.
• Show that B is a topology basis (0.5 pt).

• Show that T is the topology associated to B . (0.5 pt).

• Is the sequence xn = (−1)n + 1
n

convergent in (X ,T )? To what? (0.5 pt).

• Find the interior and the closure of A = (−1,2) in (X ,T ) (0.5 pt).

• Show that any continuous function f : X → R is constant (0.5 pt).

• For the topological space (X ,T ), decide whether it is:

1. Hausdorff (0.5 pt).

2. 1st countable (0.5 pt).

3. Metrizable (0.5 pt).

4. Connected (0.5 pt).

E Exercise 10.55 Which of the following spaces are homeomorphic and which are not:

• (1,∞) and (0,∞) (0.5 pt).

• R2 −D2 and R2 −{0} (0.5 pt).

• (0,1) and [0,1) (0.5 pt).

• S1 × (R2 −{0}) and T 2 ×R∗ (0.5 pt).

• S1 × (R2 −{0}) and T 2 ×R∗
+ (0.5 pt).

(here D2 denotes the closed unit disk, T 2 denoted the torus. R∗ = R−{0}, R∗
+ = (0,∞)).

E Exercise 10.56 Consider the map

π : R2 → S1 ×R, (x,y) 7→
((

cos(x+ y),sin(x+ y)
)
, x− y

)

∈ S1 ×R.

• Describe an equivalence relation R on R2 such that (S1 ×R,π) is a quotient of R2 modulo R

(0.5 pt).

• Find a group Γ and an action of Γ on R2 such that R is the equivalence relation induced by this

action (0.5 pt).

• Show that, indeed, R2/Γ is homeomorphic to S1 ×R (0.5 pt).

E Exercise 10.57 Show that, if a topological space X is Hausdorff, then the cone Cone(X) of X is Hausdorff

(0.5 pt).

E Exercise 10.58 Show that any continuous function f : [0,1]→ [0,1] admits a fixed-point, i.e. there exists

t0 ∈ [0,1] such that f (t0) = t0. (0.5 pt).
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12. Exam B, June 29, 2011

E Exercise 10.59 Consider

X1 = {(x,y,z) ∈ R3 : (z = 0) or (x = y = 0,z ≥ 0)},
X2 = {(x,y,z) ∈R3 : (z = 0) or (x = 0,y2 + z2 = 1,z ≥ 0)}.

X3 = {(x,y,z) ∈ R3 : (x2 + y2 + z2 = 1) or (y = 0,z = 0,
1

2
< |x|< 1)},

(i) Show that X1, X2, X3 are locally compact (hint: try to use the basic properties of locally compact

spaces; alternatively, you can try to find direct arguments on the pictures). (0.5 p)

(ii) Show that the one-point compactifications of X1, X2 and X3 are homeomorphic to each other.

(1 p)

E Exercise 10.60 Given a polynomial p ∈ R[X0,X1, . . . ,Xn], we denote by Rp the set of reminders modulo

p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1,q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 −q2 = pq}.
We also denote by πp : R[X0,X1, . . . ,Xn]→ Rp the resulting quotient map. Show that:

(i) There is a unique algebra structure on Rp (i.e. unique operations +, · and multiplications by

scalars, defined on Rp) with the property that πp is an morphism of algebras, i.e.

πp(q1 +q2) = πp(q1)+πp(q2), πp(q1 ·q2) = πp(q1) ·πp(q2), λπp(q) = πp(λq)

for all q1,q2 ∈ R[X0,X1, . . . ,Xn], λ ∈ R. (0.5 p)

(ii) For p = x2
0 + . . .+ x2

n, the spectrum of Rp has only one point. (1 p)

(iii) For p = x2
0 + . . .+ x2

n −1, the spectrum of Rp is homeomorphic to Sn (1 p) .

(iv) What is the spectrum for p = x0x1 . . .xn? (0.5 p)

E Exercise 10.61 Let X be the space of continuous maps f : [0,1] → [0,1] with the property that f (0) =
f (1). We endow it with the sup-metric dsup and the induced topology (recall that dsup( f ,g) = sup{| f (t)−
g(t)| : t ∈ [0,1]}). Prove that:

(i) X is bounded and complete. (1 p)

(ii) X is not compact. (0.5 p)

E Exercise 10.62 Show that:

(i) The product of two sequentially compact spaces is sequentially compact. (1 p)

(ii) Deduce that the product of two compact metric space is a compact space. (1 p)

E Exercise 10.63 Show that the family of open intervals

U := {(q,q+1) : q ∈ R}
forms an open cover of R which admits no finite sub-cover, but which admits a locally finite sub-cover.

(1.5 p)
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E Exercise 10.64 Prove that there is no continuous injective map f : S1 ∨ S1 → S1, where S1 ∨ S1 is a

bouquet of two circles (two copies of S1, tangent to each other). (1.5 p)

Note: The mark for this exam is the minimum between 10 and the number of points that you score (in

total, there are 11 points in the game!).
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13. Retake, August 24, 2011

E Exercise 10.65 Show that the equation

x5 +7x2 −30x+1 = 0

has at least two solutions x0,x1 ∈ (0,2). (1 p)

E Exercise 10.66 Consider the space C ([0,1]) of all continuous maps f : [0,1] → R, endowed with the

sup-metric. Show that

A := { f ∈ C ([0,1]) : x2 ≤ e f (x)+ sin( f (x)) ≤ x ∀ x ∈ [0,1]}
is a closed and bounded subset of C ([0,1]). (1 p)

E Exercise 10.67 Describe a subspace X ⊂ R2 which is connected, whose closure (in R2) is compact, but

with the property that X is not locally compact. (1 p)

E Exercise 10.68 Let G = (0,∞) be the group of strictly positive reals, endowed with the usual product.

Find an action of G on R4 \{0} with the property that (R4 \{0})/G is homeomorphic to S3. (1 p)

E Exercise 10.69 Let X = R2 endowed with the product topology Tl × Tl , where Tl is the lower limit

topology on R.

a. Describe a topology basis for the topological space X . (0.5 p)

b. Find a sequence (xn)n≥1 of points in R2 which converges to (0,0) with respect to the Euclidean

topology, but which has no convergent subsequence in the topological space X . (0.5 p)

c. Compute the interior, the closure and the boundary (in X ) of

A = [0,1)× (0,1]. (1p)

(please use pictures!).

E Exercise 10.70 Decide (and explain) which of the following statements hold true:

a. S1 ×S1 ×S1 can be embedded in R4. (0.5 p)

b. S1 can be embedded in (0,∞). (0.5 p)

c. the cylinder S1 × [0,1] can be embedded in the Klein bottle. (0.5 p)

d. The Moebius band can be embedded into the projective space P2. (0.5 p)

e. the projective space P3 can be embedded in R6. (0.5 p)

E Exercise 10.71 Given a polynomial p ∈R[X0,X1, . . . ,Xn], we denote by Rp the set of reminders modulo

p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1,q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 −q2 = pq}.
For q ∈R[X0,X1, . . . ,Xn], we denoted by [q] ∈ Rp the induced equivalence class. Show that:

a. The operations (on Rp) +, · and multiplications by scalars given by

[q1]+ [q2] := [q1 +q2], [q1] · [q2] := [q1 ·q2], λ[q] := [λq]

are well-defined and make Rp into an algebra. (0.5 p)
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b. For p = x2
0 + . . .+ x2

n, the spectrum of Rp has only one point. (0.5 p)

c. For p = x2
0 + . . .+ x2

n −1, the spectrum of Rp is homeomorphic to Sn (1 p) .

Note: please motivate all your answers (e.g., in Exercise 10.70, explain/prove in each case your answer.

Or, in Exercise 10.68 prove that R4/G is homeomorphic to S3).
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14. Exam A, April 21, 2010

Important: motivate/prove your answers to the questions from the exercises. When making pictures,

try to make them as clear as possible. When using a result from the lecture notes, please give a clear

reference.

E Exercise 10.72 Let X be the (interior of an) open triangle, as drawn in the picture (the edges are not part

of X !), viewed as a topological space with the topology induced from R2. Let A ⊂ X be the open disk

drawn in the picture (tangent to the edges of the closed triangle). Compute the closure and the boundary

of A in X . (1p)

A= an open disk inside X  X= an open triangle

FIGURE 1.

E Exercise 10.73 Let X be obtained by taking two disjoint copies of the interval [0,2] (with the Euclidean

topology) and gluing each t in the first copy with the corresponding t in the second copy, for all t ∈ [0,2]
different from the midle point. Explicitely, one may take the space

Y = [0,2]×{0}∪ [0,2]×{1} ⊂ R2

with the topology induced from the Euclidean topology, and X is the space obtained from Y by gluing

(t,0) to (t,1) for all t ∈ [0,2], t 6= 1. We endow X with the quotient topology.

(i) Is X Hausdorff? But connected? But compact? (1.5p)

(ii) Can you find A,B ⊂ X which, with the topology induced from X , are compact, but such that

A∩B is not compact? (1p)

(iii) Show that X can also be obtained as a quotient of the circle S1. (0.5p)

E Exercise 10.74 Let X , Y and Z be the spaces drawn in Figure 2.

(i) Show that any two of them are not homeomorphic. (1.5p)

(ii) Compute their one-point compactifications X+, Y+ and Z+. (1p)

(iii) Which two of the spaces X+, Y+ and Z+ are homeomorphic and which are not? (1p)
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X Y Z

FIGURE 2.

E Exercise 10.75 Let M be the Moebius band. For any continuous function f : S1 → M we denote by M f

the complement of its image:

M f := M− f (S1)

and we denote by M+
f the one-point compactification of M f .

(i) Show that for any f , M f is open in M, it is locally compact but not compact. (1p)

(ii) Find an example of f such that M+
f is homeomorphic to D2. Then one for which it is homeo-

morphic to S2. And then one for P2. (1.5p)

E Exercise 10.76 Let T be the family consisting of all open intervals (a,b) ⊂ R with a,b ∈ R∪{∞,−∞}.

(i) Show that T is a topology on R. (0.5p)

(ii) Is the identity Id : (R,TEucl)→ (R,T ) continuous? But Id : (R,T )→ (R,TEucl)? (1p)

(iii) Is (R,T ) Hausdorff? But compact? But connected? (1.5p)

(iv) Show that [0,1], with the topology induced from T , is compact. Does it follow from one of the

properties of compact spaces (which one?) that [0,1] is closed in (R,T )? Explain. (1p)
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15. Retake Exam A, August 27, 2010

E Exercise 10.77 Let N= {0,1,2, . . .} be the set of non-negative integers. We consider the following two

collections of subsets of N:

• T1 consisting of /0, N and all the sets of the form {0,1, . . . ,n} with n ∈ N.

• T2 consisting of /0 and all the sets of the form {n.n+1, . . .} with n ∈ N.

Questions:

(1) Show that T1 and T2 are two topologies on N. (1p)

(2) Show that the spaces (N,T1) and (N,T2) are not homeomorphic. (0.5p)

(3) for each of the spaces (N,T1) and (N,T2) decide whether the space is Hausdorff, connected or

compact. (1.5p)

E Exercise 10.78 Let Tu be the topology on R induced by the topology basis

Bu := {(a,b] : a,b ∈ R,a < b}.
Compute the interior, the closure and the boundary of

A := ((0,
1

3
)∪ [

1

2
,1])× [0,1)

inside the topological space X = R×R endowed with the product topology Tu ×Tu. (2p).

E Exercise 10.79 Let X be the connected sum of a Moebius band and a torus. Show how one can obtain X

from a disk by gluing some of the points on the boundary of the disk (2p). Then describe on the picture a

continuous map f : S1 → X such that the one-point compactification of X is homeomorphic to a sphere.

(0.5p)

E Exercise 10.80 Let X be the one-point compactification of the space obtained by removing two points

from the torus. Show that:

(1) X can be embedded in R3.(1p)

(2) X is not homeomorphic to S2. (1p)
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16. Exam A, April, 2009

E Exercise 10.81 (3.25p) Let Tl be the topology on R induced by the topology basis

Bl := {[a,b) : a,b ∈ R,a < b}.
(i) With the topology induced from (R,Tl), is [0,1) connected? But compact? (1p)

(ii) The same questions for (0,1]. (1p)

(iii) Are [0,1) and (0,1] (with the induced topologies) homeomorphic? (0.25p)

(iv) Compute the interior, the closure and the boundary of

A = (0,1]× [0,1)

in the topological space X = R×R endowed with the product topology Tl ×Tl . (1p)

E Exercise 10.82 (2.5p) Describe an embedding of the cylinder S1 × [0,1] into the space X , show that its

complement is locally compact, and find the one-point compactification of the complement, in each of

the cases:

(i) X is a torus. (1.5p)

(ii) X is the plane R2. (1p)

E Exercise 10.83 (2.5p)

(i) Write the Moebius band as a union of two subspaces M and C where M is itself a Moebius

band, C is a cylinder (i.e. homeomorphic to S1 × [0,1]) and M∩C is a circle. (1p)

(ii) Similarly, decompose P2 as the union of a Moebius band M and another subspace Q, such that

Q is a quotient of the cylinder and M∩Q is a circle. (1p)

(iii) Deduce that P2 can be obtained from a Moebius band and a disk D2 by gluing them along their

boundary circles. (0.5p)

E Exercise 10.84 (1.75p) Let X be a topological space and let Cone(X) be its cone. Show that:

(i) If X is compact then so is Cone(X). (1p)

(ii) If X is path connected then so is Cone(X). (0.5p)

(iii) If X is connected then so is Cone(X). (0.25p)

Overall hint: At the end of each question, you can see its “point value” (10 points in total). The more

difficult questions of each exercise are the ones for which you get less points! So, try not to spend too

much time with the more difficult questions before you answered the others. Finally: use pictures!
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17. Herkansing for Exam A, 2009

E Exercise 10.85 (2.5p) Let X be the (interior of an) open triangle, as drawn in the picture (the edges are

not part of X !), viewed as a topological space with the topology induced from R2. Let A ⊂ X be the open

disk drawn in the picture (tangent to the edges of the closed triangle).

A= an open disk inside X  X= an open triangle

FIGURE 3.

(i) Compute the closure and the boundary of A in X . (1p)

(ii) Show that both of them are locally compact but not compact. (0.5p)

(iii) For each one of them, compute their one-point compactification. (1p)

E Exercise 10.86 (3.5p) In each of the following examples, decide (and prove) whether X can be embedded

in Y :

(i) X = [0,1], Y = [0,1). (0.5p)

(ii) X = R, Y = S1. (0.5p)

(iii) X = S1 ×R, Y = R2. (0.5p)

(iv) X = S1 ×S1, Y = R3. (0.5p)

(v) X = Moebius band, Y = Klein bottle. (0.5p)

(vi) X = a bouquet of two circles, Y = S1. (1p)

E Exercise 10.87 (4p) Given two topologies T1 and T2 on a set X , show that:

(i) T1 ∩T2 := {U ⊂ X : U ∈ T1,U ∈ T2} is a topology on X . (0.5p)

(ii) If (X ,T1) or (X ,T2) is connected, then so is (X ,T1 ∩T2). (0.5p)

(iii) If (X ,T1) or (X ,T2) is compact, then so is (X ,T1 ∩T2). (0.5p)

Next, let X = R, let Tl be the topology on R induced by the topology basis

Bl := {[a,b) : a,b ∈ R,a < b}
and let Tu be defined similarly, using intervals of type (a,b].

(iv) What is Tl ∩Tu? (1p)

(v) Show that the discrete topology is the only topology on R containing T1 ∪T2. (0.5p)

(vi) Finally, show that the converses of (ii) and (iii) above do not hold in general. (1p)
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18. Exam A, April 15, 2008

E Exercise 10.88 We consider the collection of subsets of R:

B := {[a,b) : a,b ∈ R,a ≤ b}∪{R}.

E Exercise 10.89

(i) Show that B is not a topology on R, but it is a topology basis. (0.5p)

(ii) Let T be the smallest topology on R containinig B . Show that T is larger than the Euclidean

topology Teucl. (1p)

(iii) In the topological space (R,T ), find the closure, the interior and the boundary of

A = (0,1)∪ [2,3]. (1.5p)

(iv) Show that (R,T ) and (R,Teucl) are not homeomorphic.(0.5p)

E Exercise 10.90 (1.5p) Show that the torus T contains a subspace C homeomorphic to a bouquet of two

circles such that T −C is homeomorphic to the open 2-disk. Similarly for the double torus and a bouquet

of four circles.

E Exercise 10.91 (1.5p) Consider the group Zn = {0,1, . . . ,n−1} of reminders modulo n (with the adition

modulo n), and the action of Zn on the circle S1 given by

k • (cos(t),sin(t)) = (cos(t +
2kπ

n
),sin(t +

2kπ

n
))

(for k ∈ Zn, (cos(t),sin(t)) ∈ S1). Show that the resulting quotient S1/Zn is homeomorphic to S1. What

can you say when n = 2?

. . .

 . . .

. . .

(0, 1)

(0,0) (1/8,0) (1/4,0) (1/2,0) (1,0)

(1/8,1) (1/4,1) (1/2,1) (1,1)
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E Exercise 10.92 Consider the following subset of R2:

X =
⋃

n≥1 integer

{ 1

2n
}× [0,1] ∪ [0,1]×{0} ∪ {(0,1)}

(see the picture), with the induced topology. Explain which of the following properties are true for X .

(i) it is Hausdorff. (0.5p)

(ii) it is compact. (1p)

(iii) it is locally compact. (0.5p)

(iv) it is connected. (0.5p)

(v) it is path connected. (0.5p)

Moreover, show that X −{(0,1)} is locally compact and realize its one-point compactification as a

subspace of R2. (0.5p)
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19. Exam A, April 16, 2007

E Exercise 10.93 Show that, in any topological space X , for any subspace A ⊂ X , one has

∂(A) = ∂(X −A).

(1.5p)

E Exercise 10.94

(i) Is it true that any continuous surjective map f : S1 → S1 is a homeomorphism? (0.75p)

(ii) Show that S1 cannot be embedded in R. (1p)

(iii) Show that any continuous injective map f : S1 → S1 is a homeomorphism. (0.75p)

E Exercise 10.95 Let (X ,d) be a metric space and A,B closed subsets of X such that

d(A,B) = 0.

(Recall that d(A,B) =: inf{d(a,b) : a ∈ A,b ∈ B}).

(i) Is it true that A and B must have a common point (i.e. A∩B 6= /0)? (1p)

(ii) What if we assume that both A and B are compact? (0.75p)

(iii) What if we assume that either A or B is compact? (0.75p)

E Exercise 10.96 For any continuous map f : S1 → T 2 we define

X f := T 2 − f (S1).

(i) Is it true that, for any continuous function f , X f compact? But locally compact? But metrizable?

But normal? But connected? (0.5p)

(ii) Describe two embeddings f1, f2 : S1 → T 2 such that X f1
and X f2

are not homeomorphic. (.75p)

(iii) Describe the one-point compactifications X+
f1

and X+
f2

. (0.75p)

(iv) Describe f : S1 → T 2continuous such that X+
f is homeomorphic to S2. (0.5p)

Note: The marking starts from 1p and the maximum is 10p:

1+(1.5)+ (0.75+1+0.75)+ (1+0.75+0.75)+ (0.5+0.75+0.75+0.5) = 10.

The ”point exercises” (handed in during the semester) will be taken into account with their weight (how-

ever, the maximum remains 10p).
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20. Exam A, April 16, 2006

E Exercise 10.97 Let (X ,T ) be a topological space and assume that A,B ⊂ X are compact subsets. Prove

that A∪B are compact. Prove that the same holds for A∩B if X is Hausdorff.

E Exercise 10.98 Let N= {0,1,2, . . .} be the set of non-negative integers. We consider the following two

collections of subsets of N:

• T1 consisting of /0, N and all the sets of the form {0,1, . . . ,n} with n ∈ N.

• T2 consisting of /0 and all the sets of the form {n.n+1, . . .} with n ∈ N.

Questions:

(1) Show that T1 and T2 are two topologies on N.

(2) Show that the spaces (N,T1) and (N,T2) are not homeomorphic.

(3) for each of the spaces (N,T1) and (N,T2) decide whether the space is Hausdorff, connected or

compact.

E Exercise 10.99 Questions:

(1) Is [0,1] homeomorphic to [0,1)?
(2) Does there exist a continuous surjective map f : [0,1]→ [0,1)? But a continuous injective one?

(3) Does there exist a continuous surjective map f : S1 → [0,1)? But an injective one?

E Exercise 10.100 Consider

X = [0,1]× [0,1)

with the topology induced from R2. Prove that X is a locally compact Hausdorff space and describe the

one-point compactification (use a picture). What happens if we replace X by Y = X ∪{(1,1)}?
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closed in a subset, 33

closed set, in topological space, 32

closed under finite sums, 102

closed under quotients, 102

closure, of a set, 39

co-countable, 32

co-finite topology, 32

coarser topology, 32

collapsing a set to a point, 60

compact convergence, 66

compact convergence, topology of, 131

compact topological space, 82

compactness in Euclidean space, 29

compactness, of metric space, 114

complete metric space, 30, 112

cone on a space, 60

connected, 78

connected component, 80

continuity at a point, 36

continuous function, 5

continuous function, between topological spaces, 34

convergence, 65

convergence, of a sequence, 36

converges, 7

coordinate chart, 42

cover, 82

dense subset, 40

dimension of a topological space, 147

discrete topology, 32

disk, 9

distance, 7

embedding, 35

embedding theorem, 143

equicontinuous, family of functions, 132

equivalence relation, 25

exhaustion of a space, 89

extreme topologies, 32

finer topology, 32

finite shrinking lemma, 103

first countability axiom, 37

first countable, 37

Gelfand-Naimark theorem, full version, 130

generated topology, 64

gluing, operation of, 9

Hausdorff, 41

hemisphere, 12

homeomorphic, 34

homeomorphism, 5

homeomorphism, between topological spaces, 34

ideal of an algebra, 129

induced topology, 33

initial topology, 64

interior, of a set, 39

invariant, topological, 5

involution, 125

Klein bottle, 21

larger topology, 32

Lebesgue lemma, 115

Lebesgues number, 115

locally compact, 89

locally finite, family of functions, 104

locally finite, family of sets, 104

maximal ideal, 129
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metric, 7

metric space, 7

metrizable, 5

metrizable topology, 33

metrization theorem of Smirnov, 121

metrization theorem, of Urysohn, 120

modulo, equivalence relation, 25

Moebius band, 15

neighborhood, of a point, 36

norm, on a vector space, 124

normal space, 43

normality, of compact Hausdorff space, 83

one-point compactification, 90

open ball, 29

open cover, 82

open in a subset, 33

open map, 35

open set, 29

open set, in topological space, 32

paracompact space, 105

paracompactness, of metric space, 117

partition of unity, 103

path connected, 78

point- separating set of functions, 127

pointwise bounded set of maps, 133

pointwise convergence, 65

pointwise topology, 131

pointwise totally bounded, 133

product topology, 58

projective plane, 23

projective space, 23

projective space, as quotient, 56

quotient, 25

quotient map, 25

quotient topology, 52

quotient, by a group action, 54

refinement of a cover, 105

relatively compact subset, 115

removing a point trick, 47

second countability axiom, 42

second countable, 42

separable metric space, 115

separated, 43

separated, by continuous functions, 43

sequentially compact, 88

sequentially continuous, 36

shrinking lemma, 105

smaller topology, 32

Smirnov metrization theorem, 121

spectrum, of an algebra, 129

sphere, n-dimensional, 12

square metric, 7

stereographic projection, 12

Stone-Weierstrass theorem, 127

subalgebra, 127

subcover, 82

subspace topology, 33

support of a function, 103

suspension of a space, 60

the flea and the comb, 81

topological manifold, 42

topological property, 35

topological quotient map, 52

topological space, 5, 32

topological spectrum, of an algebra, 130

topology, 5

topology basis, 62

topology generated, 64

topology induced by a metric, 29

topology of uniform convergence, 65

topology, on a set, 32

torus, 17

torus, abstract, 53

totally bounded set, 113

totally bounded set of maps, 133

triangle inequality, 7

trivial topology, 32

tube lemma, 84

uniform convergence, 65

uniform convergence on compacts, 65

uniform topology, 124, 131

uniformly continuous map, 132

uniformly equicontinuous, 132

Urysohn metrization theorem, 120

Urysohn’s lemma, 107


