\documentclass{article} \usepackage[margin=1in]{geometry} \usepackage{amsmath} \usepackage{amsthm} \usepackage{parskip} \usepackage{amssymb} \usepackage{fancyhdr} \usepackage{enumerate} \usepackage[bookmarksnumbered]{hyperref} \usepackage[english]{babel} \usepackage{dashrule} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \renewcommand{\P}{\mathbb{P}} \newcommand{\F}{\mathbb{F}} \newcommand{\half}{\frac{1}{2}} \usepackage{ textcomp } \newcommand{\A}{\mathcal{A}} \renewcommand{\H}{\mathcal{H}} \newcommand{\1}{\mathbb{1}} \newcommand{\teq}[1]{\stackrel{#1}{=}} \newtheorem{lemma}{Lemma} \newtheorem{theorem}[lemma]{Theorem} \newtheorem{definition}[lemma]{Definition} \pagestyle{fancy} \fancyhead[L]{Hand-in 8 Functional Analysis} \fancyhead[R]{Thomas van Maaren (9825827)} \begin{document} \textbf{Exercise 13} (exercisre similar to Example 7.11). Show that the operator $T:\ell^2\to \ell^2$ defined by $$(Tx)_n = n^{-3}x_n,\ \ \forall x\in \ell^2$$ is well-defined, bounded and compact \hdashrule{\textwidth}{.4pt}{1pt} \textbf{Well-defined:} For any $x\in \ell^2$ we see that $$\|Tx\|_2^2 = \sum_{n\in \N} n^{-6} |x_n|^2 \leq \sum_{n\in \N} |x_n|^2 = \|x\|_2^2<+\infty$$ hence $Tx\in \ell^2$. \textbf{Bounded:} As we saw earlier $\|Tx\|_2 \leq \|x\|_2$ for all $x\in \ell^2$, therefore $\|T\|\leq 1$ and $T$ is bounded. \textbf{Compact:} For each $k\in \N$ define $T_k:\ell^2\to \ell^2$ by $$(T_kx)_n = b_n^k,\ \ \text{where }\begin{cases}b_n^k = n^{-3}x_n,& n\leq k \\ b_n^k=0,&n>k\end{cases}$$ The operators $T_k$ are bounded and linear, and have finite rank. Furthermore for any $x\in \ell^2$ we have $$\|(T_k - T)x\|_2^2 = \sum_{n=k+1}^\infty |x_n|^2/n^6 \leq (k+1)^{-6}\sum_{n=k+1}^\infty |x_n|^2 \leq (k+1)^{-6} \|x\|_2^2$$ It follows that $$\|T_k - T\| \leq (k+1)^{-1}$$ and so $\|T_k - T\| \to 0$. Thus $T$ is compact by Corollary 7.10. \end{document}