FUNCTIONAL ANALYSIS (WISB315)

Exercise sheet 9

Exercises marked with a \swarrow symbol are **hand-in exercises**. The exercises marked with a + are particularly important for understanding the material. Exercises marked with a are quick warm-up exercises.

- + Exercise 1 (Lemma 6.11). Let \mathcal{H} and \mathcal{K} be a Hilbert space and let $T \in B(\mathcal{H}, \mathcal{K})$. Show that:
 - (i) Ker $T = (\text{Im } T^*)^{\perp}$:
- (ii) Ker $T^* = (\operatorname{Im} T)^{\perp};$
- (iii) Ker $T^* = \{0\}$ if and only if Im T is dense in \mathcal{K} .

Exercise 2 (Lemma 6.14). Let \mathcal{H} be a Hilbert space. Show that if $T \in B(\mathcal{H})$ is invertible, then T^* is invertible with inverse $(T^*)^{-1} = (T^{-1})^*$.

Exercise 3 (Exercise 6.5 in the book). Let \mathcal{H} be a Hilbert space and let $T \in B(\mathcal{H})$.

- (i) Show that $\operatorname{Ker} T = \operatorname{Ker}(T^*T)$.
- (ii) Deduce that $\overline{\operatorname{Im} T^*} = \overline{\operatorname{Im} T^* T}$

In this exercise sheet, all vector spaces are over \mathbb{C} .

Exercise 4. Let $\mathcal{H} = \mathbb{C}^2$, equipped with the standard inner product

 $\langle x, y \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2, \quad x, y \in \mathcal{H}.$

(i) Find $T \in B(\mathcal{H})$ that is self-adjoint, but not unitary.

(ii) Find an operator $T \in B(\mathcal{H})$ that is unitary, but not self-adjoint.

(iii) Find an operator $T \in B(\mathcal{H})$ that is normal, but neither self-adjoint nor unitary.

(iv) Find an operator $T \in B(\mathcal{H})$ that is not normal.

Exercise 5 (Example 6.17). Show that the unilateral shift $S \in B(\ell^2)$ (see (4.2) in the book) is not normal.

Exercise 6 (Example 6.38). Let $S \in B(\ell^2)$ be the unilateral shift. Show that:

- (i) If $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ then λ is an eigenvalue of S^* .
- (ii) $\sigma(S) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$

Exercise 7 (Example 6.17). Show that the unilateral shift $S \in B(\ell^2)$ (see (4.2) in the book) is not normal.

Exercise 8 (Exercise 6.23 in the book). Let $T: \ell^2 \to \ell^2$ be the operator defined by

 $T(x_1, x_2, x_3, x_4, \dots) = (0, x_1, 0, x_3, 0, \dots), \quad (x_n) \in \ell^2.$

Show that $T \in B(\ell^2)$ and $\sigma(T) = \{0\}$.

We recall that the resolvent set of $T \in B(X)$ is $\rho(T) := \mathbb{C} \setminus \sigma(T)$.

 $\mathbf{2}$

+ Exercise 9 (the resolvent set is open). Let X be a Banach space, $T \in B(X)$, and $\lambda_0 \in \rho(T)$. Suppose $\lambda \in \mathbb{C}$ is such that

$$|\lambda - \lambda_0| < ||(\lambda_0 - T)^{-1}||^{-1}.$$

Show that $\lambda \in \rho(T)$ and

$$(\lambda - T)^{-1} = \sum_{i=0}^{\infty} (\lambda_0 - \lambda)^i ((\lambda_0 - T)^{-1})^{i+1},$$

where the series converges in the operator norm sense.

+ Exercise 10 (Theorem 6.39 (a)). Let \mathcal{H} be a Hilbert space and let $T \in B(\mathcal{H})$. Show that if p is a polynomial then

$$\sigma(p(T)) = \{p(\mu) : \mu \in \sigma(T)\}$$

Remark. We can also use the shorthand notation $p(\sigma(T)) := \{p(\mu) : \mu \in \sigma(T)\}.$

Exercise 11 (Theorem 7.3). Show the following two statements.

- (i) Let X, Y be normed spaces, $S, T : X \to Y$ compact operators, and $a, b \in \mathbb{C}$. Then aS + bT is a compact operator.
- (ii) X, Y, Z normed spaces, $S \in B(X, Y)$, and $T \in B(Y, Z)$ such that S or T is compact. Then $TS: X \to Z$ is compact.

+ Exercise 12 (Theorem 7.5). Let X, Y be normed spaces. Show the following:

- (i) If dim $Y < \infty$ then every $T \in B(X, Y)$ is compact.
- (ii) If dim $X < \infty$ then every linear $T: X \to Y$ is compact.

Exercise 13 (exercise similar to Example 7.11). Show that the operator $T: \ell^2 \to \ell^2$ defined by $(Tx)_n = n^{-3}x_n, \quad \forall x = (x_n)_{n \in \mathbb{N}} \in \ell^2,$

is well-defined, bounded and compact.

Exercise 14 (Exercise 7.7 in the book). Let \mathcal{H} be an infinite-dimensional Hilbert space with an orthonormal basis (e_n) , and let $T \in B(\mathcal{H})$. Show that if T is compact then $\lim_{n\to\infty} ||Te_n|| = 0$.