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Exercise 2. For each N ∈ N we define the functional MN : ℓ∞(Z) → C by

MN (x) =
1

2N + 1

∑
|n|≤N

xn, ∀x ∈ ℓ∞(Z)

For each a ∈ Z we define the operator Ta : ℓ∞(Z) → ℓ∞(Z) by

(Tax)n = xn+a, ∀x ∈ ℓ∞(Z).

Let also e ∈ ℓ∞(Z) be defined by en = 1 for all n ∈ Z, and let V ⊂ ℓ∞(Z) be the subspace of all x that can
be written as a finite sum:

x = λ0e+

p∑
j=1

λj

(
fj − Taj

fj
)

for some ( x-dependent) p ∈ N, λ0, . . . , λp ∈ C, a1, . . . , ap ∈ Z, and f1, . . . , fp ∈ ℓ∞(Z).

(i) [1 p.] Show that for all x ∈ ℓ∞(Z) and a ∈ Z,

|MN (x− Tax)| ≤
2|a|

2N + 1
∥x∥∞.

(ii) [0,5 p.] For each x ∈ V , show that limN→∞ MN (x) equals the coefficient λ0 in any decomposition (1).
In consequence, we can define a map L : V → C by

L(x) = λ0.

Show that L ∈ V ′. (iii) [0, 5 p. ] Show that the functional L has norm ∥L∥ = L(e) = 1.

(iv) [1, 5 p. ] Show that there exists a functional M ∈ (ℓ∞(Z))′ such that:

(a) M(x) = L(x) for all x ∈ V ,

(b) M(e) = ∥M∥ = 1,

(c) M(x) = M (Tax) for all a ∈ Z and x ∈ ℓ∞(Z).

(v) [0, 5 p. ] Show that there exists no y ∈ ℓ1(Z) such that

M(x) =
∑
n∈N

xnyn, ∀ (xn)n∈Z ∈ ℓ∞(Z)

(vi) [0, 5 p. ] Using the result from the previous question show that ℓ1(Z) is not reflexive.

In the next exercises, all vector spaces are over C.

(i) Observe that if a ≥ 0
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|MN (x− Tax)| =
1

2N + 1

∣∣∣∣∣∣
∑

|n|≤N

(x− Tax)n

∣∣∣∣∣∣ = 1

2N + 1

∣∣∣∣∣
N∑

n=−N

xn −
N+a∑

n=−N+a

xn

∣∣∣∣∣ (1)

=
1

2N + 1

∣∣∣∣∣
−N+a−1∑
n=−N

xn +

N∑
n=−N+a

xn −
N∑

n=−N+a

xn −
N+a∑

n=N+1

xn

∣∣∣∣∣ (2)

=
1

2N + 1

∣∣∣∣∣
−N+a−1∑
n=−N

xn −
N+a∑

n=N+1

xn

∣∣∣∣∣ ≤ 1

2N + 1

(−N+a−1∑
n=−N

|xn|+
N+a∑

n=N+1

|xn|

)
(3)

≤ 1

2N + 1

(−N+a−1∑
n=−N

∥x∥∞ +

N+a∑
n=N+1

∥x∥∞

)
=

1

2N + 1
(a∥x∥∞ + a∥x∥∞) (4)

=
2a∥x∥∞
2N + 1

=
2|a|∥x∥∞
2N + 1

(5)

Now we need to prove it is true if a < 0. It is easy to prove that Ta is an isometry. For any a ∈ Z and
x ∈ ℓ∞ we see that ∥Tax∥∞ = supn∈Z |xn+a| = supn∈Z |xn| = ∥x∥∞. If a < 0 we know that −a > 0, so

|Mn(x− Tax)| = |−MN (Tax− x)| = |Mn(Tax− T−aTax)| (6)

≤ 2(−a)∥Tax∥∞
2N + 1

=
2|a|∥x∥∞
2N + 1

(7)

in the last equality we used that Ta is an isometry.

(ii) We will first determine limN→∞ Mn(e)

lim
N→∞

Mn(e) = lim
N→∞

1

2N + 1

∑
|n|≤N

1 = lim
N→∞

2N + 1

2N + 1
= 1 (8)

Because of (i) we know that for any 1 ≤ j ≤ p

lim
N→∞

|MN (fj − Taj
fj | ≤ lim

N→∞

2|a|
2N + 1

∥x∥∞ = 0 (9)

hence

λ0 = λ0 · 1 +
p∑

j=1

λj · 0 = λ0 · lim
N→∞

MN (e) +

p∑
j=1

λj · lim
N→∞

MN (fj − Taj
fj) (10)

= lim
N→∞

MN

λ0e+

p∑
j=1

λj(fj − Taj
fj)

 = lim
N→∞

MN (x) (11)

To show that L ∈ V ′ we need to show that L is linear and bounded. In (iii) we will prove that
∥L∥ = 1, hence L is bounded and therefore we only need to show that L is linear. For this we
need to prove that L(x + κx′) = L(x) + κL(x′) for all x, x′ ∈ V and κ ∈ F. We can write x and

x′ as λ0e +
∑p

j=1 λj

(
fj − Tajfj

)
and λ′

0e +
∑p′

j=1 λ
′
j

(
f ′
j − Ta′

j
f ′
j

)
. Now define µ0 = λ0 + κλ′

0 and

µi = λi, bi = ai, gi = fi for 1 ≤ i ≤ p and µi = κλ′
i−p, bi = a′i−p, gi = fi−p for p < i ≤ p + p′. We see

that x+ κy = µ0e+
∑p+p′

i=1 µi(gi − Tbi), so L(x+ κy) = µ0 = λ0 + κλ′
0 = L(x) + κL(x′).
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(iii) We saw in (ii) that L(e) = 1 and we know that ∥e∥∞ = 1, hence ∥L∥ ≥ 1. For all x ∈ V we see that

|L(x)| = |λ0| = lim
N→∞

|MN (x)| ≤ lim
N→∞

1

2N + 1

∑
|n|≤N

|xn| ≤ lim
N→∞

1

2N + 1

∑
|n|≤N

∥x∥∞ (12)

= lim
N→∞

2N + 1

2N + 1
∥x∥∞ = ∥x∥∞ (13)

hence ∥L∥ = 1.

(iv) We know that V is a linear subspace of ℓ∞(Z) and that L ∈ V ′. Because of theorem 5.19 we know
there exists M ∈ (ℓ∞)

′
such that ∥M∥ = ∥L∥. Because it is an extension we know that M(x) = L(x)

for all x ∈ V , Also we see that M(e) = L(e) = 1 = ∥L∥ = ∥M∥. Finally we also see that x− Tax ∈ V
and also L(x− Tax) = 0 for all x ∈ ℓ∞(Z) and a ∈ Z. Thus

M(x) = M(x− Tax) +M(Tax) = L(x− Tax) +M(Tax) = M(Tax)

(v) Assume that there exists an y ∈ ℓ1(Z) such that

M(x) =
∑
n∈Z

xnyn

for all (xn)n∈Z ∈ ℓ∞(Z). We know M(e) = 1, therefore
∑

n∈Z yn = 1, so there must be a n ∈ N such
that yn ̸= 0. Now define en ∈ ℓ∞(Z) as enn = 1 and eni = 0 for all i ∈ Z\{n}. We see because of

(iv)(c) that yn′ = M(en
′
) = M(Tn′−ne

n) = M(en) = yn for all n′ ∈ Z. Therefore (yn)n∈Z is a constant
sequence unequal to 0. Because of this y /∈ ℓ1(Z). This is a contradiction.

(vi) Define S : ℓ∞(Z) → (ℓ1(Z))′ as S(x)(y) =
∑

n∈Z xnyn. We will show that S is well-defined and
bijective. well-defined: Clearly S(x) is linear for all x ∈ ℓ∞(Z). We see that

|S(x)(y)| =

∣∣∣∣∣∑
n∈Z

xnyn

∣∣∣∣∣ ≤∑
n∈Z

|xn||yn| ≤ ∥x∥∞
∑
n∈Z

|yn| = ∥x∥∞∥y∥1

, hence ∥S(x)∥ ≤ ∥x∥∞, also

∥S(x)∥ = sup
∥y∥1=1

|S(x)(y)| ≥ sup
n∈Z

|S(x)(en)| = sup
n∈Z

|xn| = ∥x∥∞

and therefore ∥S(x)∥ = ∥x∥∞, so S(x) ∈ (ℓ1(Z))′ for all x ∈ ℓ∞(Z). injective: Let x, x′ ∈ ℓ∞(Z)
and assume S(x) = S(x′). We see that xn = S(x)(en) = S(x′)(en) = x′

n for all n ∈ Z, hence x = x′.
surjective: Let f ∈ ℓ1(Z). Choose xn := f(en) for all n ∈ Z. We see that ∥x∥∞ = supn∈Z |f(en)| ≤
supn∈Z ∥f∥∥en∥ = ∥f∥, therefore x ∈ ℓ∞(Z). Also because f is continuous S(x)(y) =

∑
n∈Z xnyn =∑

n∈Z f(e
n)yn =

∑
n∈N f(yne

n) = limN→∞
∑

|n|≤N f(yne
n) = f(limN→∞

∑
|n|≤N yne

n) = f(y) for all

y ∈ ℓ1(Z).

Because of this we can define Ψ :
(
ℓ1(Z)

)′ → F as Ψ(S(x)) = M(x) for all x ∈ ℓ∞(Z). We show that

Ψ is linear. Let S(x), S(x′) ∈
(
ℓ1(Z)

)′
and λ ∈ R then

Ψ(S(x) + λS(x′)) = Ψ(S(x+ λx′)) = M(x+ λx′) = M(x) + λM(x′) = Ψ(S(x)) + λΨ(S(x′))

also it is bounded
|Ψ(S(x))| = |M(x)| ≤ ∥M∥∥x∥∞ = ∥M∥∥S(x)∥

hence ∥Ψ∥ ≤ ∥M∥ and therefore Ψ ∈
(
ℓ1(Z)

)′′
. Because of (v) we know that there is no y ∈ ℓ1(Z) such

that Ψ(S(x)) = S(x)(y) = Jℓ1(Z)(y)(S(x)) for all x ∈ ℓ∞(Z), hence Ψ ̸= Jℓ1(Z)(y) for all y ∈ ℓ1(Z),
hence Jℓ1(Z)(ℓ

1(Z)) ̸=
(
ℓ1(Z)

)′′
and therefore ℓ1(Z) is not reflexive.
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