\documentclass{article} \usepackage[margin=1in]{geometry} \usepackage{amsmath} \usepackage{amsthm} \usepackage{parskip} \usepackage{amssymb} \usepackage{fancyhdr} \usepackage{enumerate} \usepackage[bookmarksnumbered]{hyperref} \usepackage[english]{babel} \usepackage{dashrule} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \renewcommand{\P}{\mathbb{P}} \newcommand{\F}{\mathbb{F}} \newcommand{\half}{\frac{1}{2}} \usepackage{ textcomp } \newcommand{\A}{\mathcal{A}} \renewcommand{\H}{\mathcal{H}} \newcommand{\1}{\mathbb{1}} \newcommand{\teq}[1]{\stackrel{#1}{=}} \newtheorem{lemma}{Lemma} \newtheorem{theorem}[lemma]{Theorem} \newtheorem{definition}[lemma]{Definition} \pagestyle{fancy} \fancyhead[L]{Hand-in 6 Functional Analysis} \fancyhead[R]{Thomas van Maaren (9825827)} \begin{document} \textbf{Exercise 9.} Let $\mathcal{H}$ be a real Hilbert space. Let $a: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ be bilinear and continuous, and let $\Lambda \geq 0$ be such that $$ |a(x, y)| \leq \Lambda\|x\|\|y\| \quad \forall x, y \in \mathcal{H} $$ Suppose that $a$ is coercive, i.e. there exists $\lambda>0$ such that $$ a(x, x) \geq \lambda\|x\|^{2} \quad \forall x \in \mathcal{H} $$ (a) \begin{enumerate}[(i)] \item Let $x \in \mathcal{H}$. Show that there exists a unique vector $z \in \mathcal{H}$ such that $a(x, y)=\langle z, y\rangle$ for all $y \in \mathcal{H}$ \item Define a map $A: \mathcal{H} \rightarrow \mathcal{H}$ by $x \mapsto z$ (where $z$ is as above), and show that $A \in B(H)$, with $\|A\| \leq \Lambda$. \item Prove that $A$ is injective. (Hint: To do this you can estimate $\langle A x, x\rangle$ using (2)). \item Using Exercise 8, prove that $\operatorname{Im} A$ is closed. \item Show that $(\operatorname{Im} A)^{\perp}=\{0\}$. (Hint: For $x \in(\operatorname{Im} A)^{\perp}$, consider the inner product $\langle A x, x\rangle$.) \item Show that $A$ is surjective. \item Show that $A^{-1} \in B(\mathcal{H})$, and prove $\left\|A^{-1}\right\| \leq \lambda^{-1}$. \end{enumerate} \hdashrule{\textwidth}{.4pt}{1pt} \begin{enumerate}[(i)] \item For this exercise we use the Riesz-Fr\'echet Theorem (Theorem 5.2). We know that $a(x,\cdot):\H\to \R$ for every $x\in \H'$, hence $a(x,\cdot) \in \H'$. Because of theorem 5.2 we know there is a unique $z\in \H$ such that $a(x,y) = \langle y, z\rangle = \langle z,y\rangle$. \item What is B(H)? Because of (i) $A$ is well-defined. We see that \begin{align}\|Ax\|^2 = \langle Ax, Ax \rangle = a(x,Ax) \leq |a(x,Ax)| \leq \Lambda \|x\|\|Ax\|\label{toBeDivided}\end{align} for all $x\in \H$. If $Ax=0$ it is trivial that $\|Ax\| =0 \leq \Lambda \|x\|$ and if $Ax\neq 0$ we can divide both sides of \eqref{toBeDivided} by $\|Ax\|$ and see that $$\|Ax\|\leq \Lambda \|x\|$$ hence $\|A\|\leq \Lambda $ \item Let $x,x'\in \H$ and assume that $Ax=Ax'$. This means that $a(x,y) = \langle Ax, y\rangle = \langle Ax', y\rangle = a(x',y)$ for all $y\in \H$. Because of the bi-linearity of $a$ this means that $a(x-x',y) = a(x,y)-a(x',y) = 0$ for all $y\in \H$, hence $\lambda \|x-x'\|^2 \leq a(x-x',x-x') =0$. Because $\Lambda>0$ we know that $\|x-x'\|^2=0$, os $x=x'$. \item For all $x\in \H$ we see that \begin{align}\|Ax\|\|x\| \geq \langle Ax , x\rangle = a(x,x) \geq \lambda \|x\|^2\label{toBeDivided2}\end{align} If $x=0$ we see that $\|Ax\| = 0 = c\cdot 0 = c\|x\|$. And otherwise we can divide $\eqref{toBeDivided2}$ by $\|x\|$ and get that $\|Ax\| \geq \lambda\|x\|$ for all $x\in \H$. Also because $\H$ is a hilbert it must be a Banach space and in exercise (ii) we proved that $A\in B(\H,\H)$. Beause of exercise 8 we know that $\text{Im} A$ is closed. \item We need to show that if $\langle Ax, y\rangle =0$ for all $x\in \H$ that $y=0$. Note that if $\langle Ax, y\rangle =0$ for all $x\in \H$ that $ \lambda \|y\|^2 \leq a(y,y) = \langle Ay, y\rangle=0$, hence $\|y\|=0$ and also $y=0$. \item Because $A$ is linear $\text{Im} A$ must also be linear. We know from (iv) that $\text{Im} A$ is closed, so $\text{Im} A = \left(\text{Im} A\right)^{\perp \perp}$ by corollary 3.35. We know from (v) that $\text{Im} A ^\perp = \{0\}$, hence $\text{Im} A = \left(\text{Im} A\right)^{\perp \perp}= \{0\}^\perp = \H$, hence $A$ is surjective. \item Because (iii) and (vi) we know that $A$ is injective and surjective, hence $A^{-1}$ is well-defined. Know we only need to show that it is bounded. By definition we know that $a(A^{-1}z,y)= \langle z,y\rangle$ for any $z,y\in \H$. We then see \begin{align}\lambda \|A^{-1} z\|^2 \leq a(A^{-1} z,A^{-1} z) = \langle z, A^{-1} z \rangle \leq \|z\| \|A^{-1} z\|\label{toBeDivided3}\end{align} If $A^{-1}z=0$ we see that $\|A^{-1}z\|=0 \leq \lambda \|z\|$ and otherwise we can divide both sides of \eqref{toBeDivided3} by $\lambda \|A^{-1}z\|$ and get that $|A^{-1}z\|\leq \lambda^{-1} \|z\|$. \end{enumerate} \end{document}