Exercise 9. Let \mathcal{H} be a real Hilbert space. Let $a : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ be bilinear and continuous, and let $\Lambda \geq 0$ be such that

$$|a(x,y)| \le \Lambda ||x|| ||y|| \quad \forall x, y \in \mathcal{H}$$

Suppose that a is coercive, i.e. there exists $\lambda > 0$ such that

$$a(x,x) \ge \lambda \|x\|^2 \quad \forall x \in \mathcal{H}$$

(a)

- (i) Let $x \in \mathcal{H}$. Show that there exists a unique vector $z \in \mathcal{H}$ such that $a(x, y) = \langle z, y \rangle$ for all $y \in \mathcal{H}$
- (ii) Define a map $A: \mathcal{H} \to \mathcal{H}$ by $x \mapsto z$ (where z is as above), and show that $A \in B(H)$, with $||A|| \leq \Lambda$.
- (iii) Prove that A is injective. (Hint: To do this you can estimate $\langle Ax, x \rangle$ using (2)).
- (iv) Using Exercise 8, prove that Im A is closed.
- (v) Show that $(\operatorname{Im} A)^{\perp} = \{0\}$. (Hint: For $x \in (\operatorname{Im} A)^{\perp}$, consider the inner product $\langle Ax, x \rangle$.)
- (vi) Show that A is surjective.
- (vii) Show that $A^{-1} \in B(\mathcal{H})$, and prove $||A^{-1}|| \leq \lambda^{-1}$.
 - (i) For this exercise we use the Riesz-Fréchet Theorem (Theorem 5.2). We know that a is bi-linear and continuous, hence $a(x, \cdot) : \mathcal{H} \to \mathbb{R}$ is linear and continuous for every $x \in \mathcal{H}$, hence $a(x, \cdot) \in \mathcal{H}'$. Because of theorem 5.2 we know there is a unique $z \in \mathcal{H}$ such that $a(x, y) = \langle y, z \rangle = \langle z, y \rangle$ for all $y \in \mathcal{H}$.
- (ii) Because of (i) A is well-defined. We will also show it is linear. For this need to show that $A(\lambda x + x') = \lambda Ax + Ax'$ for all $x, x' \in \mathcal{H}$ and $\lambda \in \mathbb{R}$. We see that

$$a(\lambda x + x', y) = \langle A(\lambda x + x'), y \rangle$$

and that

$$a(\lambda x + x', y) = \lambda a(x, y) + a(x', y) = \lambda \langle Ax, y \rangle + \langle Ax', y \rangle = \langle \lambda Ax + Ax', y \rangle$$

for all $y \in \mathcal{H}$. Because of (i) we know there is a unique $z \in \mathcal{H}$ such that $a(\lambda x + x', y) = \langle z, y \rangle$ for all $y \in \mathcal{H}$, hence $A(\lambda x + x') = \lambda Ax + Ax'$

Now we will show that A is bounded. We see that

$$||Ax||^2 = \langle Ax, Ax \rangle = a(x, Ax) \le |a(x, Ax)| \le \Lambda ||x|| ||Ax||$$
(1)

for all $x \in \mathcal{H}$. If Ax = 0 it is trivial that $||Ax|| = 0 \le \Lambda ||x||$ and if $Ax \ne 0$ we can divide both sides of (1) by ||Ax|| and see that

$$||Ax|| \le \Lambda ||x||$$

hence $||A|| \leq \Lambda$ and $A \in B(H)$.

(iii) Let $x, x' \in \mathcal{H}$ and assume that Ax = Ax'. This means that $a(x, y) = \langle Ax, y \rangle = \langle Ax', y \rangle = a(x', y)$ for all $y \in \mathcal{H}$. Because of the bi-linearity of a this means that a(x - x', y) = a(x, y) - a(x', y) = 0 for all $y \in \mathcal{H}$, hence $\lambda ||x - x'||^2 \le a(x - x', x - x') = 0$. Because $\lambda > 0$ we know that $||x - x'||^2 = 0$, so x = x'.

(iv) For all $x \in \mathcal{H}$ we see that

$$||Ax|| ||x|| \ge \langle Ax, x \rangle = a(x, x) \ge \lambda ||x||^2$$

$$\tag{2}$$

If x = 0 we see that $||Ax|| = 0 = c \cdot 0 = c||x||$. And otherwise we can divide (2) by ||x|| and get that $||Ax|| \ge \lambda ||x||$ for all $x \in \mathcal{H}$. Also because \mathcal{H} is a hilbert it must be a Banach space and in exercise (ii) we proved that $A \in B(\mathcal{H}, \mathcal{H})$. Beause of exercise 8 we know that ImA is closed.

- (v) We need to show that if $\langle z, y \rangle = 0$ for all $z \in im(A)$ that y = 0. In other words we need to show that if $\langle Ax, y \rangle = 0$ for all $x \in \mathcal{H}$ that y = 0. Note that if $\langle Ax, y \rangle = 0$ for all $x \in \mathcal{H}$ that $\lambda ||y||^2 \le a(y, y) = \langle Ay, y \rangle = 0$, hence ||y|| = 0 and also y = 0.
- (vi) Because of (ii) we know that A is linear and therefore ImA must be a linear space. We know from (iv) that ImA is closed, so $\text{Im}A = (\text{Im}A)^{\perp\perp}$ by corollary 3.35. We know from (v) that $\text{Im}A^{\perp} = \{0\}$, hence $\text{Im}A = (\text{Im}A)^{\perp\perp} = \{0\}^{\perp} = \mathcal{H}$, hence A is surjective.
- (vii) Because (iii) and (vi) we know that A is injective and surjective, hence A^{-1} is well-defined. We know that the inverse of a linear map is linear, hence A^{-1} is linear. Now we only need to show that it is bounded. By definition we know that $a(A^{-1}z, y) = \langle z, y \rangle$ for any $z, y \in \mathcal{H}$. We then see

$$\lambda \|A^{-1}z\|^2 \le a(A^{-1}z, A^{-1}z) = \langle z, A^{-1}z \rangle \le \|z\| \|A^{-1}z\|$$
(3)

If $A^{-1}z = 0$ we see that $||A^{-1}z|| = 0 \le \lambda^{-1}||z||$ and otherwise we can divide both sides of (3) by $\lambda ||A^{-1}z||$ and get that $|A^{-1}z|| \le \lambda^{-1} ||z||$.