With $n = 6$	k = 1	k = 2	k = 3	k = 4	k=5
$f(e) = \mathrm{id}_A$	6				$\binom{6}{5} = 6$
f(r) = T = (012345)	0				0
$f(r^2) = T^2 =$	0				0
$f(r^3) = T^3 =$	0				0
$f(r^4) = T^4 =$	0				0
$f(r^5) = T^5 =$	0				0
f(s) = S = (15)(24)	2				2
f(sr) = ST =	0				0
$f(sr^2) = ST^2 =$	2				2
$f(sr^3) = ST^3$ =	0				0
$f(sr^4) = ST^4 =$	2				2
$f(sr^5) = ST^5 =$	0				0
Total	12	36	36	36	12
Number of orbits	1	3	3	3	2

Question (d). Prove that the amount of equivalence classes of elements of A with k = 6 and n = 12 equals 50.

With the same methodology as in Question (c) we can compute a table of $|A^g|$.

With $n = 12$, part 1	k = 6
id_A	
T = (0,	
$T^2 =$	
$T^3 = (0)$	
$T^4 = (0)$	
$T^5 = (0)$	
$T^6 = (0$	
$T^7 = \dot{\mathfrak{C}}$	
$T^8 = (0)$	
$T^9 = (0)$	
$T^{10} = ($	
$T^{11} = ($	