\copyrightVincent \begin{saveblock}{align} \begin{highlightblock}[gobble=8,linewidth=\textwidth, framexleftmargin=0.25em,xleftmargin=0.25em] Dit doen we met de verdubbelingsformule \begin{align*} \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta), \end{align*} die we kunnen herschrijven als \begin{align*} &= \cos^2(\theta) - (1 - \cos^2(\theta))\\ &= 2\cos^2(\theta)-1. \end{align*} \end{highlightblock} \end{saveblock} \begin{saveblock}{alignEN} \begin{highlightblock}[gobble=8,linewidth=\textwidth, framexleftmargin=0.25em,xleftmargin=0.25em] We do this with the double-angle formula \begin{align*} \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta), \end{align*} which we can rewrite as \begin{align*} &= \cos^2(\theta) - (1 - \cos^2(\theta))\\ &= 2\cos^2(\theta)-1. \end{align*} \end{highlightblock} \end{saveblock} \begin{frame}{Align} \useblock{align\langsuffix} \centering\includegraphics[width=\linewidth,height=0.3\textheight,keepaspectratio]{ assets/mathAlignBroken\langsuffix.pdf} \end{frame} \begin{saveblock}{align} \begin{highlightblock}[gobble=8,linewidth=\textwidth, framexleftmargin=0.25em,xleftmargin=0.25em] Dit doen we met de verdubbelingsformule \begin{align*} \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta), \intertext{die we kunnen herschrijven als} &= \cos^2(\theta) - (1 - \cos^2(\theta))\\ &= 2\cos^2(\theta)-1. \end{align*} \end{highlightblock} \end{saveblock} \begin{saveblock}{alignEN} \begin{highlightblock}[gobble=8,linewidth=\textwidth, framexleftmargin=0.25em,xleftmargin=0.25em] We do this with the double-angle formula \begin{align*} \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta), \intertext{which we can rewrite as} &= \cos^2(\theta) - (1 - \cos^2(\theta))\\ &= 2\cos^2(\theta)-1. \end{align*} \end{highlightblock} \end{saveblock} \addtorecentlist{\textbackslash intertext} \begin{frame}{Align} \useblock{align\langsuffix} \centering\includegraphics[width=\linewidth,height=0.4\textheight,keepaspectratio]{ assets/mathAlignIntertext\langsuffix.pdf} \end{frame}