\begin{Verbatim}[commandchars=\\\{\}] \PYG{k}{\PYGZbs{}newcommand\PYGZbs{}term}\PYG{n+na}{[1]}\PYG{n+nb}{\PYGZob{}}\PYG{k}{\PYGZbs{}textcolor}\PYG{n+nb}{\PYGZob{}}blue\PYG{n+nb}{\PYGZcb{}\PYGZob{}}\PYG{k}{\PYGZbs{}textit}\PYG{n+nb}{\PYGZob{}}\PYGZsh{}1\PYG{n+nb}{\PYGZcb{}\PYGZcb{}\PYGZcb{}} \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} We noemen een groep \PYG{k}{\PYGZbs{}term}\PYG{n+nb}{\PYGZob{}}abels\PYG{n+nb}{\PYGZcb{}} of \PYG{k}{\PYGZbs{}term}\PYG{n+nb}{\PYGZob{}}commutatief\PYG{n+nb}{\PYGZcb{}} als voor elk paar elementen van de groep \PYG{l+s}{\PYGZdl{}}\PYG{n+nb}{ a, b }\PYG{l+s}{\PYGZdl{}} er is \PYG{l+s}{\PYGZdl{}}\PYG{n+nb}{ a}\PYG{n+nv}{\PYGZbs{}cdot}\PYG{n+nb}{ b }\PYG{o}{=}\PYG{n+nb}{ b}\PYG{n+nv}{\PYGZbs{}cdot}\PYG{n+nb}{ a }\PYG{l+s}{\PYGZdl{}}. \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} \end{Verbatim}