\begin{Verbatim}[commandchars=\\\{\},codes={\catcode`\$=3\catcode`\^=7\catcode`\_=8\relax}] \PYG{k}{\PYGZbs{}newcommand}\PYG{k}{\PYGZbs{}diag}\PYG{n+na}{[2]}\PYG{n+nb}{\PYGZob{}}\PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}pmatrix\PYG{n+nb}{\PYGZcb{}} \PYGZsh{}2 \PYG{n+nb}{\PYGZam{}} \PYGZsh{}1\PYG{k}{\PYGZbs{}\PYGZbs{}} \PYGZsh{}1 \PYG{n+nb}{\PYGZam{}} \PYGZsh{}2 \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}pmatrix\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} De identiteitsmatrix is \PYG{l+s}{\PYGZdl{}}\PYG{n+nv}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}\PYG{l+m}{0}\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}\PYG{l+m}{1}\PYG{n+nb}{\PYGZcb{}}\PYG{l+s}{\PYGZdl{}}. We zien \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} 2\PYG{k}{\PYGZbs{}cdot}\PYG{k}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}0\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}1\PYG{n+nb}{\PYGZcb{}} = \PYG{k}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}0\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}2\PYG{n+nb}{\PYGZcb{}}. \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} Verder \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}5\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}0\PYG{n+nb}{\PYGZcb{}} + \PYG{k}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}2\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}0\PYG{n+nb}{\PYGZcb{}} = \PYG{k}{\PYGZbs{}diag}\PYG{n+nb}{\PYGZob{}}7\PYG{n+nb}{\PYGZcb{}}\PYG{n+nb}{\PYGZob{}}0\PYG{n+nb}{\PYGZcb{}}. \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} \end{Verbatim}