\begin{Verbatim}[commandchars=\\\{\}] \PYG{k}{\PYGZbs{}newenvironment}\PYG{n+nb}{\PYGZob{}}gauss\PYG{n+nb}{\PYGZcb{}}[1]\PYG{n+nb}{\PYGZob{}} \PYG{k}{\PYGZbs{}left}(\PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}array\PYG{n+nb}{\PYGZcb{}\PYGZob{}}*\PYG{n+nb}{\PYGZob{}}\PYGZsh{}1\PYG{n+nb}{\PYGZcb{}\PYGZob{}}c\PYG{n+nb}{\PYGZcb{}}|c\PYG{n+nb}{\PYGZcb{}} \PYG{n+nb}{\PYGZcb{}\PYGZob{}} \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}array\PYG{n+nb}{\PYGZcb{}}\PYG{k}{\PYGZbs{}right}) \PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} We krijgen nu de matrix \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} A = \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}gauss\PYG{n+nb}{\PYGZcb{}\PYGZob{}}2\PYG{n+nb}{\PYGZcb{}} 0 \PYG{n+nb}{\PYGZam{}} 1 \PYG{n+nb}{\PYGZam{}} \PYGZhy{}9\PYG{k}{\PYGZbs{}\PYGZbs{}} 1 \PYG{n+nb}{\PYGZam{}} 0 \PYG{n+nb}{\PYGZam{}} 2 \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}gauss\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}align*\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} \end{Verbatim}