\begin{Verbatim}[commandchars=\\\{\}] \PYG{k}{\PYGZbs{}documentclass}\PYG{n+na}{[a5paper]}\PYG{n+nb}{\PYGZob{}}article\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} The trigonometric identity is given by \PYG{l+s}{\PYGZbs{}(}\PYG{n+nb}{ }\PYG{n+nv}{\PYGZbs{}sin}\PYG{n+nb}{\PYGZca{}}\PYG{l+m}{2}\PYG{o}{(}\PYG{n+nv}{\PYGZbs{}theta}\PYG{o}{)}\PYG{n+nb}{ }\PYG{o}{+}\PYG{n+nb}{ }\PYG{n+nv}{\PYGZbs{}cos}\PYG{n+nb}{\PYGZca{}}\PYG{l+m}{2}\PYG{o}{(}\PYG{n+nv}{\PYGZbs{}theta}\PYG{o}{)}\PYG{n+nb}{ }\PYG{o}{=}\PYG{n+nb}{ }\PYG{l+m}{1}\PYG{n+nb}{ }\PYG{l+s}{\PYGZbs{})}. This identity is also called the Pythagorean trigonometric identity. \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}document\PYG{n+nb}{\PYGZcb{}} \end{Verbatim}