\begin{Verbatim}[commandchars=\\\{\}] The double angle formula can now be rewritten as \PYG{k}{\PYGZbs{}begin}\PYG{n+nb}{\PYGZob{}}align\PYG{n+nb}{\PYGZcb{}} \PYG{k}{\PYGZbs{}cos}(2\PYG{k}{\PYGZbs{}theta}) \PYG{n+nb}{\PYGZam{}}= \PYG{k}{\PYGZbs{}cos}\PYG{n+nb}{\PYGZca{}}2\PYG{k}{\PYGZbs{}theta} \PYGZhy{} sin\PYG{n+nb}{\PYGZca{}}2\PYG{k}{\PYGZbs{}theta} \PYG{k}{\PYGZbs{}\PYGZbs{}} \PYG{n+nb}{\PYGZam{}}= 2\PYG{k}{\PYGZbs{}cos}\PYG{n+nb}{\PYGZca{}}2\PYG{k}{\PYGZbs{}theta} \PYGZhy{} 1 \PYG{k}{\PYGZbs{}end}\PYG{n+nb}{\PYGZob{}}align\PYG{n+nb}{\PYGZcb{}} \end{Verbatim}