\documentclass[a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage[margin=2.54cm]{geometry} \usepackage{siunitx} % voor m/s, graden Celsius \usepackage{parskip} % geen tab na paragraafeinde \usepackage{amsmath, amssymb} % voor equation* \usepackage[version=4]{mhchem} % chemie \usepackage{graphicx} % afbeeldingen \usepackage{fancyhdr} % headers en footers \usepackage{xcolor} % kleuren \usepackage[bookmarksnumbered]{hyperref} % links naar tabellen en figuren \usepackage[normalem]{ulem} \hypersetup{ colorlinks = true, %Colours links instead of ugly boxes linkcolor = blue, %Colour of internal links citecolor = blue, %Colour of internal links } \newcommand{\Ums}{[\si[per-mode=symbol]{\meter\per\second}]} \newcommand{\Um}{[\si{\meter}]} \title{Principles of Groundwater Flow} \author{Tim Weijers \and Vincent Kuhlmann} \date{\today} \begin{document} \maketitle { \hypersetup{linkcolor=black} \tableofcontents } \newpage \section{The polder problem} \begin{enumerate} \item We consider a \underline{vertical cross section} of an \textsc{infinitely long polder}. The polder consists of a confined aquifer with hydraulic conductivity $k_1$ \Ums{} and thickness $D$ \Um. The \textbf{top} layer has thickness $b$ \Um{} and hydraulic conductivity $k_2$ \Ums. We refer to $h_p$ \Um{} as `Polder level'. Note that $h(+\infty) = h_p$. The ambient air temperature is \SI{23}{\celsius}. The hydraulic head distribution in the Polder satisfies the general solution of the well-known \emph{Polder Problem}\cite{alfonso2010}: \begin{equation} \label{eq:polder} h(x) = C_1e^{+\frac{x}{\lambda}} + C_2e^{-\frac{x}{\lambda}} + h_p \end{equation} Where $\lambda$ is the seepage factor \begin{equation} \lambda = \sqrt{\frac{k_1}{k_2}bD} \end{equation} and $C_1$ and $C_2$ are yet unknown constants. \begin{enumerate} \item Determine the constants $C_1$ and $C_2$ \item Explain in words why it follows from \autoref{eq:polder}, that the following equalities must both hold: \begin{align*} Q'(0) &= \frac{k_1D}{\lambda}(h_0 - h_p)\\[1em] Q'(0) &= \int_0^{+\infty}q_z(s)ds \end{align*} \end{enumerate} \item Balance the following redox equation (using \ce{H+} and \ce{H3O-}) \begin{equation*} \ce{MnO2(s) + S2O3^2- -> MnOOH(s) + SO3^2-} \end{equation*} \end{enumerate} \section{Mineral compositions} \autoref{table:mineral} contains information about the composition of certain minerals. \begin{table}[h!] \centering \begin{tabular}{|r|c|c|} \hline \textbf{Mineral} & Albite & Anorthite \\ \hline \ce{SiO2} & 68.74 & 43.19\\ \hline \ce{Na2O} & 11.82 & 0.0 \\ \hline \end{tabular} \caption{Mineral compositions in oxide wt. \%} \label{table:mineral} \end{table} \section{Kaolinite in cuprite} \subsection{Chemical composition} Kaolinite is a {\LARGE clay mineral}, with the chemical composition \ce{Al2Si2O5(OH)4}. Cuprite is a \textcolor{brown}{brownish}-\textcolor{red}{red} mineral. The average kaolin price is estimated to reach \sout{\$160} \$180 per ton by 2025. \subsection{Deposits in Nevada} Recent measurements show deposits of the mineral kaolinite in cuprite in the Nevada desert, as seen in \autoref{fig:nevadasam}. \begin{figure}[h] \centering \includegraphics[width=0.5\textwidth]{kaolinite} \caption{SAM result for Kaolinite in Cuprite, Nevada desert in the USA deribed on an AVIRIS image.} \label{fig:nevadasam} \end{figure} \bibliographystyle{plain} \bibliography{literatuur.bib} \end{document}