\documentclass{article} \usepackage{geometry} \usepackage[dutch]{babel} \usepackage{parskip} \usepackage{amsmath,amssymb} \geometry{ paperwidth=9cm, paperheight=7.5cm, margin=0.0cm, paperheight=3cm, paperheight=2cm, %paperwidth=4cm, %paperheight=4cm } \begin{document} % De trigonometrische identiteit is % $ \sin^2(\theta) + % \cos^2(\theta) = 1. $ % De trigonometrische identiteit is % \begin{equation} % \sin^2(\theta) + \cos^2(\theta) = 1. % \end{equation} De verdubbelingsformule herschrijven we nu als \begin{align} \cos(2\theta) = \cos^2(\theta)-\sin^2(\theta)\\ = 2\cos^2(\theta)-1. \end{align} % Daarmee kunnen we de verdubbelingsformule herschrijven als % \begin{align} % \cos(2\theta) &= \cos^2(\theta)-\sin^2(\theta)\\ % &= 2\cos^2(\theta)-1. % \end{align} % De verdubbelingsformule herschrijven we nu als % \begin{align*} % \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\%\nonumber\\ % &= 2\cos^2(\theta)-1.\tag{Alt. verd. form.} % \end{align*} % AA \(\sqrt{2}\) % BB \[\sqrt{3}\] % CC $$ \sqrt{4} $$ % Dit doen we met de verdubbelingsformule % \begin{align*} % \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta), % % \end{align*} % % die we kunnen herschrijven als % % \begin{align*} % \intertext{die we kunnen herschrijven als} % &= \cos^2(\theta) - (1 - \cos^2(\theta))\\ % &= 2\cos^2(\theta)-1. % \end{align*} \end{document}