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Figure 1: The possibility of having the property P=? [ F phi ] for 0 ≤ x ≤ 7

Part 1

1. Exploring the model in PRISM

Look at the trace displayed in the main part of the window. What is the final value of s? It should be 7. What is the value of the die?
The final result of s is indeed 7. The value of the die happens to be 2 in this case.

Try to reach a state where the value of the die is 6. I got a 6 after running the simulation one more
time. What a coincidence.

What is the minimum path length you observe? What is the maximum? When looking at the graph-
ical illustration we see that the minimum path length is 4. We also see that the graph contains loops.
This means that the maximum path length is unbounded. I ran the simulation 20 times and the shortest
path I came across had length 4 and the longest path had length 10.

2. Model checking with PRISM

What does phi mean in this case? What does the property mean? In this case we have phi equal
to

F s=7 & d=x

meaning that at some point s should be 7, meaning that a die has reached and that d=x, meaning that
the die should be on its x-th side.

Right click on the property in the GUI and select ”Verify”. Pick a value of x between 1 and 6 and select ”OK”. Is the answer as you expected?
I picked x=5. The answer I get is 1.6666650772094727. Of the course the answer should have been 1/6.
I didn’t know that PRISM uses a numerical method, so I was expecting an exact answer. Later I found
out that PRISM uses a numerical method with ϵ = 10−6. As we can see the first six digits of the result
are the same as the first six digits of 1/6, hence the answer is correct.

Re-verify the property and see how the answer changes. If I re-verify the property I get the same
result. This shows us that the numerical algorithm is determenistic. If I fill in a different value for x.
For example 6 or 1 I also get the same result. This shows us that the method to obtain the probability
is the same for each die.

Use PRISM to plot a graph of the value of the property P=? [ F phi for values of x between 0
and 7.]

3. Statistical model checking with PRISM
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Figure 2: Comparing sample size 10 whith the original

Figure 3: Comparing different sample sizes.

Change the number of samples to 10. How are good are these approximate results? As we can
see in figure 2, the chances are a lot less accurate. This is because the law of the large number tells us
that the bigger the sample size, the closer the average will be to the expected value. In the case of the
bernouli experiment, the expected value is equal to the probability.

How many samples do you need to get results close to those generated through verification? Looking
at figure 3, I would say that a sample size of 10000 is a minimum and a 100000 is good.

4. Expected termination time

Compute the expected number of steps that the algorithm being modelled requires to generate a value for the die by hand.
Let xs be the expected number of steps in state s. We now that state 7 is always the final state, so
x7 = 0. We also see that state 4 and state 5 always go to 7, hence x4 = x5 = 1. We see that state 3 and 6
will go back to the previous state halve of the time. Hence x3 = 1+0.5 ·x7+0.5 ·x1 = 1+0.5 ·x1 and x6 =
1+0.5·x7+0.5·x2 = 1+0.5·x2. We see that x1 = 1+0.5·x3+0.5·x4 = 1+0.5·(1+0.5·x1)+0.5·1 = 2+0.25x1

and x2 = 1+0.5 ·x5+0.5 ·x6 = 1+0.5 ·1+0.5 · (1+0.5 ·x2) = 2+0.25 ·x2, hence 0.75 ·x1 = 0.75 ·x2 = 2,
thus x1 = x2 = 8

3 . Finally, we see that x0 = 1+ 0.5 · x1 + 0.5 · x2 = 11
3 . Our final answer is therefore 14

3 .

What should ϕ be? We want to measure the amount of steps untill we get a die. This is the same as
measuring the amount of steps until s=7, hence ϕ = s = 7.

What is the result? The result is 3.6666650772094727. We see that this is between 14
3 − ϵ and 14

3 + ϵ and
is therefore correct.
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Part 5

1. The EGL contract contract signing protocol.

Look at the first 4 variables in the table representing the path. In the first eight steps, the party
constantly switches between 1 and 2, the phase is equal to 1, n inceases every two steps and b is
constantly equal to 1. This makes sense as we are looping for(i=1,...,n) and doing OT(A,B,a i,a N+i),
OT(B,A,b i,b N+i). Therefore party is switch between 1 and 2, because it is switching between sending
a and sending b. Also n is increasing for the same reason as i is increasing and b is constant, because we
are not looking at individual bits at the moment. For the remaining part of the program we see that b
increases halfway as the outer loop is looping over the bits. Within the bit loop it switches from A sending
to B sending so party switches three times. When n reaches 3 we want to start looking at n+1, . . . , 2N ,
hence phase switches 7 times. It loops over al the secrets, so n counts from 0 to 3 constantly.

2. Analysing a weakness of the algorithm

Figure 4:

Plot the results of the two properties

3. Improving the algorithm: EGL2

Figure 5:

Plot the results of the two properties for EGL2

4. Two more versions: EGL3 and EGL4

EGL3 I replaced the SECOND AND THIRD PHASES with the following code

[receiveB] phase=2 & party=1 -> (party’=2);

[receiveA] phase=2 & party=2 & n<N-1 -> (party’=1) & (n’=n+1);

[receiveA] phase=2 & party=2 & n=N-1 -> (phase’=3) & (n’=0) & (party’=1);

[receiveB] phase=3 & party=1 -> (party’=2);

[receiveA] phase=3 & party=2 & n<N-1 -> (party’=1) & (n’=n+1);

[receiveA] phase=3 & party=2 & n=N-1 & b<L -> (phase’=2) & (n’=0) & (party’=1) & (b’=b+1);

[receiveA] phase=3 & party=2 & n=N-1 & b=L -> (phase’=4);

EGL4 Again I only had to replace the SECOND AND THIRD PHASES. This time with the following code

[receiveB] phase=2 & party=1 & n=0 -> (party’=2);

[receiveA] phase=2 & party=2 & n<N-1 -> (n’=n+1);

[receiveA] phase=2 & party=2 & n=N-1 -> (n’=1) & (party’=1);
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[receiveB] phase=2 & party=1 & n>0 & n<N-1 -> (n’=n+1);

[receiveB] phase=2 & party=1 & n=N-1 & b<L -> (n’=0) & (b’=b+1);

[receiveB] phase=2 & party=1 & n=N-1 & b=L -> (n’=0) & (b’=1) & (phase’=3);

[] phase=2 & party=1 & n=N & b<L -> (n’=0) & (b’=b+1);

[] phase=2 & party=1 & n=N & b=L -> (n’=0) & (b’=1) & (phase’=3);

[receiveB] phase=3 & party=1 & n=0 -> (party’=2);

[receiveA] phase=3 & party=2 & n<N-1 -> (n’=n+1);

[receiveA] phase=3 & party=2 & n=N-1 -> (n’=1) & (party’=1);

[receiveB] phase=3 & party=1 & n>0 & n<N-1 -> (n’=n+1);

[receiveB] phase=3 & party=1 & n=N-1 & b<L -> (n’=0) & (b’=b+1);

[receiveB] phase=3 & party=1 & n=N-1 & b=L -> (phase’=4);

[] phase=3 & party=1 & n=N & b<L -> (n’=0) & (b’=b+1);

[] phase=3 & party=1 & n=N & b=L -> (phase’=4);

Figure 6:

Graph5. Other properties of the algorithm(s)

Reward structure I added this code to all the files

rewards "messages_A_needs"

[receiveA] kB & !kA : 1;

endrewards

rewards "messages_B_needs"

[receiveB] !kB & kA : 1;

endrewards

\end{description}

Figure 7:
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