
Project: wlp-based Bounded Symbolic Verification

In this project we will implement a wlp-based bounded symbolic
verification tool for a variation of GCL. Given a program 𝐹 , in the
bounded verification approach, we only verify a finite number of 𝐹 ’s
program paths. Obviously such an approach is incomplete, but on the
other hand it is fully automatic (modulo the decidability of your back-
end prover) as there is no need to manually annotate the program
with invariants. In the symbolic verification approach we basically
convert every program path to a logical formula 𝑝 , which is then
fully verified using e.g. a theorem prover. Since there can be many, or
even, infinite number of concrete executions that would traverse the
same program path, full verification of program paths offers a much
stronger correctness guarantee than traditional testing1.
An overview of what you are expected to do in this project:

(6.5 pt) write a basic implementation of a bounded symbolic
verification tool (mandatory).

(2 pt) write a paper presenting your tool (mandatory).
(1.5 pt) there are optional parts that you can do to get more

points.
A note on implementation language. You will use Haskell as
the implementation language; so you need to be proficient with it,
or at least willing to learn it as we go. You will get a Parser for GCL
in Haskell; it already defines a data type for representing GCL’s
abstract syntax trees. In theory you can do this project in C# or
Java, if you are willing to work without a parser. And the design
pattern to represent abstract syntax tree is also less clean in these
OO languages.

Getting your Z3-backend to work may require some effort, so
I recommend to address this first. GHC 8.10.7, 9.2.2, 9.2.5 work.
With 9.4.7 it works on some setups, but it does not work on my
setup. Since I have to review your work, I recomment not to use the
latter. I also recommend to use ghcup to manage multiple versions
of GHC on your machine. Installing haskell binding for Z3 (called
z3) in a Windows machine may have an issue; there is a doc in
the GCL-parser package (see below) about this. The package also
contains some examples on how to invoke Z3 from Haskell.

1 GCL
The syntax of the variant of GCL that we will use is defined below.
A parser is available (in Haskell) here:

https://github.com/wooshrow/gclparser
Programs have parameters. They do not return a value, but

instead they use a single output parameter to pass back the result
of their computation. For example, the program below takes x and
y as parameters. The latter is an output parameter. The program
affects the caller’s value of y, but it does not affect the caller’s value
of x, despite the assignment to x.

P(x:int | y:int){ x:=x+1; y:=y+x }

The syntax of programs is shown below.

1Do keep in mind that BMC also has its shortcomings; we will discuss them in the
lectures.

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::= 𝑁𝑎𝑚𝑒 – the program’s name
”(”𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ” |” 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ”)”
{ 𝑆𝑡𝑚𝑡 } – statement

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ::= zero or more 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 separated by comma
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ::= 𝑁𝑎𝑚𝑒 : 𝑇𝑦𝑝𝑒

𝑆𝑡𝑚𝑡 ::= – statement
𝐵𝑎𝑠𝑖𝑐𝑆𝑡𝑚𝑡

| 𝐵𝑎𝑠𝑖𝑐𝑆𝑡𝑚𝑡 ; 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then { 𝑆𝑡𝑚𝑡 } else { 𝑆𝑡𝑚𝑡 }
| while 𝐸𝑥𝑝𝑟 do { 𝑆𝑡𝑚𝑡 }
| var 𝑉𝑎𝑟𝐷𝑒𝑐𝑙𝑠 { 𝑆𝑡𝑚𝑡 }

𝐵𝑎𝑠𝑖𝑐𝑆𝑡𝑚𝑡 ::= – basic statement
skip

| assert 𝐸𝑥𝑝𝑟
| assume 𝐸𝑥𝑝𝑟
| 𝑁𝑎𝑚𝑒 := 𝐸𝑥𝑝𝑟 – assignment
| 𝑁𝑎𝑚𝑒 [𝐸𝑥𝑝𝑟] := 𝐸𝑥𝑝𝑟 – array assignment

𝑉𝑎𝑟𝐷𝑒𝑐𝑙𝑠 ::= zero or more𝑉𝑎𝑟𝐷𝑒𝑐𝑙 separated by comma
𝑉𝑎𝑟𝐷𝑒𝑐𝑙 ::= – declaration of local variable

𝑁𝑎𝑚𝑒 : 𝑇𝑦𝑝𝑒

𝐸𝑥𝑝𝑟 ::= – expression
𝐿𝑖𝑡𝑒𝑟𝑎𝑙

| 𝑁𝑎𝑚𝑒

| #𝑁𝑎𝑚𝑒 – array size
| 𝐸𝑥𝑝𝑟 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 𝐸𝑥𝑝𝑟

| ∼ 𝐸𝑥𝑝𝑟 – negation
| 𝑁𝑎𝑚𝑒 ”[”𝐸𝑥𝑝𝑟 ”]”
| ”(”forall 𝑁𝑎𝑚𝑒 :: 𝐸𝑥𝑝𝑟 ”)”
| ”(”exists 𝑁𝑎𝑚𝑒 :: 𝐸𝑥𝑝𝑟 ”)”

𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 ::= Let’s just have: +,−, ∗, /, && , | | , ⇒ ,<, ≤,>, ≥,=

𝑇𝑦𝑝𝑒 ::= 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑇 𝑦𝑝𝑒 | 𝐴𝑟𝑟𝑎𝑦𝑇 𝑦𝑝𝑒
𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑇 𝑦𝑝𝑒 ::= only int or bool
𝐴𝑟𝑟𝑎𝑦𝑇 𝑦𝑝𝑒 ::= ”[]” 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑇 𝑦𝑝𝑒 – only one-dimensional array

Quantified expressions e.g. (∀𝑖 :: 𝑝𝑖) always quantify over the
space of int. So, (∀𝑖 :: 𝑝𝑖), where 𝑝𝑖 is some predicate 𝑝 with 𝑖 as a
free variable, means: 𝑝 is true on all integer 𝑖 .

There is no separate syntax for pre- and post-conditions, because
we already have assume and assert in GCL. For example, consider
the (faulty) program below with its specification:

{* 1<x *} -- pre -condition

E(x:int | y:int){

while 0<x do{ x:=x-1 } ;

y:=x

}

{* y=1 *} -- post -condtion

Such pre- and post-conditions can be embedded inside the program
itself, as follows:

E(x:int | y:int){

assume 1<x; --encoding the pre -cond as assume

https://github.com/wooshrow/gclparser

Course Program Semantic & Verification, 24/25,

while 0<x do{ x:=x-1 } ;

y:=x ;

assert y=1 --encoding the post -cond as assert
}

2 PRELIMINARY: SOME BASIC CONCEPTS
Program paths
Assignments, skip, assert, and assume are called the basic state-
ments of GCL, whereas if andwhile are called compound statements
because they are made of other statements. The above GCL has two
guarded constructs: if and while. These constructs always have
two branches. The branches of if are its then and else statements.
The branches of while are its body and the next statement after the
while. Consider a guard 𝑔 that guards two branches 𝑆1 and 𝑆2; one
is taken if 𝑔 is true, and otherwise the other is taken. In the first
case, we say that the branch-condition of the branch is 𝑔, whereas
the other has ¬𝑔 as its branch condition.

Let 𝐹 be a GCL program. A program path of 𝐹 is a finite sequence
of basic statements and branch-conditions in 𝐹 representing termi-
nating executions that follow the same control path. As examples,
below are all the program paths of the program E (from Section 1,
the version with pre- and post-conditions embedded) of length ≤ 8.
The branch-conditions are colored red.

• A program path of length 4, let’s call it 𝜌 (𝐸,4) ; it corresponds
to executions of E where its loop immediately terminates:

𝜌 (𝐸,4) : assume 1<x ; ¬0<x ; y := x ; assert y=1

This path is actually unfeasible: there is no input for E that
satisfies its pre-condition and will trigger an execution along
this path.

• A program path of length 6, let’s call it 𝜌 (𝐸,6) ; it corresponds
to the execution of E where its loop iterates once:

𝜌 (𝐸,6) :


assume 1<x ;
0<x ; x := x−1 ;
¬0<x ; y := x ;
assert y=1

This path is also unfeasible.
• A program path of length 8; it corresponds to the execution
of E where its loop iterates twice:

𝜌 (𝐸,8) :


assume 1<x ;
0<x ; x := x−1 ;
0<x ; x := x−1 ;
¬0<x ; y := x ;
assert y=1

This path is feasible.
A program path is called full if it reaches the end of the program.
All the program paths in the examples above are full paths of the
program 𝐸, including the unfeasible path 𝜌 (𝐸,6)

There are several more things to note:
(1) A program path has finite length. Furthermore, it does not

contain any compound construct such as loop. This implies
that the correctness of a single path can be automatically
verified, assuming the decidability of GCL’s expressions.

(2) There may be multiple, even infinitely many, concrete exe-
cutions that traverse the same program path. So, full verifi-
cation a single path gives you a much stronger result than
traditional testing of the path.

(3) Some program paths may be unfeasible. Putting effort to
verify them is thus wasteful. On the other hand, avoiding
them requires you to know which paths are unfeasible.

Given a program path 𝜎 , we notice that the correctness (validity)
of the program path is actually equivalent with the validity of its
wlp over true. To show this, let us first pretend that we transform
the program path into a (linear) statement by converting all branch-
conditions 𝑐 in the path into assume 𝑐 . For example, the previous
example paths 𝜎 (𝐸,4) and 𝜎 (𝐸,8) can be seen as the following linear
statements:

• The statement representation of 𝜌 (𝐸,4) :
assume 1<x ; assume ¬0<x ; y := x ; assert y=1

You can now calculate its wlp over true, resulting in the
formula:

1<x ⇒ (¬(0<x) ⇒ x=1) (1)
The good news is that the above formula is valid (true for
all values of x). So, the path is correct. Unfortunately, in
this case this is not a very useful result. The formula ¬0<x
corresponds to the first branch condition of the path (well,
it only has one branch condition). Its conjunction with the
pre-condition: 1<x && ¬0<x is unsatisfiable, implying that
the path is unfeasible.
Any unfeasible path is trivially valid; so verifying it is waste
of effort.

• The statement representation of 𝜌 (𝐸,8) :

assume 1<x ;
assume 0<x ; x := x−1 ;
assume 0<x ; x := x−1 ;
assume ¬0<x ; y := x ;
assert y=1

The wlp of the above statement over true is:

1<x ⇒ (0<x ⇒ (0<x−1 ⇒ (¬(0<x−1−1) ⇒ x−1−1 = 1))) (2)

Let me simplify this tomake discussion easier; it is equivalent
to:

1<x ∧ 0<x ∧ 1<x ∧ x≤2 ⇒ x=3

This formula is not valid (the left hand side of⇒ implies that
x = 2, instead of 3). This means the path is incorrect!
If the post-condition was y=0, this would result in this for-
mula as the wlp, after simplification:

1<x ∧ 0<x ∧ 1<x ∧ x≤2 ⇒ x=2

This one is valid. So, the same path, butwith the post-condition
x = 2 is a correct path.

Feasibility of program paths
The wlp of an unfeasible program path is always valid. So, as we
already remarked, putting effort on verifying unfeasible paths is
wasteful. However, deciding if a program path is feasible is also not
trivial; it will take some effort.

A program path 𝜎 is feasible if there exists a combination of input
values for the program, satisfying the program pre-condition, that
would trigger an execution that satisfies every branch condition
along 𝜎 . In other words, every branch condition in 𝜎 has to be
feasible as well.

The feasibility of a branch condition 𝑔 in 𝜎 can be checked by
first calculating its wlp. That is, we look at the prefix 𝜎0 of 𝜎 that

Project: wlp-based Bounded Symbolic Verification Course Program Semantic & Verification, 24/25,

ends in 𝑔, and calculate the wlp over this prefix. However, the wlp
over assume is calculated conjunctively. So:

wlp (assume 𝑝) 𝑞 = 𝑝 ∧ 𝑞
In other words, we replace assume with assert.

Since in feasibility checking we are not really interested in know-
ing whether the assertions in the program would hold (as said, it is
about ’feasibility’), the asserts that are originally in the program
path can be ignored. In fact, they must be ignored, or else we might
end up excluding an invalid path where all instances of concrete ex-
ecutions through the path lead to an assertion violation, but falsely
believeing that it is unfeasible.

For example, the three branch conditions in the path 𝜌 (𝐸,8) result
in the following three conjunctive wlp:

𝐵0 : 1<x ∧ 0<x
𝐵1 : 1<x ∧ 0<x ∧ 1<x
𝐵2 : 1<x ∧ 0<x ∧ 1<x ∧ x≤2

A branch condition is satisfiable if its conjunctive wlp is satisfi-
able (there exists instances of its free variables that would make the
formula true). All three formulas above are satisfiable, and hence
all three branch conditions in 𝜌 (𝐸,8) are feasible. Hence, 𝜌 (𝐸,8) is
feasible.

To immediately verify 𝜌 (𝐸,8) we have to verify (2). Your back-end
theorem prover will have to expend some CPU cycles to do this,
which can potentially be pretty expensive if the path is long and
the post-condition is complex.

If we first check its feasibility, we have to check the satisfiability
of all the 𝐵𝑖 above. If they all turn out to be satisfiable, we still need
to verify (2). So we end up using more computation time. If 𝐵0 (the
smallest one above) turns out to be unsatisfiable, the whole path is
unsatisfiable. There is no need to check other 𝐵𝑖 ’s, nor (2). In this
case, you save yourself some computation time.

I will leave it to you to implement your own heuristic.

Symbolic-execution-based Verification
Symbolically verifying a program path using wlp as explained
above is also called verification by symbolic execution. Perform-
ing wlp-calculation can be thought as executing the path, though
backwardly. There is also forward-symbolic execution, e.g. as im-
plemented in the tool Klee. We will stick with wlp-based approach,
and will briefy discuss the forward approach during the lectures.

If we verify a program by verifying its program paths (up to
some depth 𝑘) one at a time by symbolically executing them, the
verification approach is called ’verification by symbolic execution’.
This is what we will do in this project.

In contrast, tools like CBMC and JBMCwould unroll the program
(we assume it has already annotated with ’asserts’) to some depth
𝑘 , and covert the entire unrolled program to a single formula (e.g.
by calculating the wlp over the whole unrolled program), which is
verified for its validity. This potentially yield a very large formula.
Such an approach is called bounded symbolic model checking.

There are pros and cons in both approaches; we can discuss them
during the lectures. In any case, the cons of the symbolic execution
approach is that the number of paths to verify may explode. A
possible mitigation ranges from to prioritizing the paths to verify
(incomplete, but may improve your probability to find bugs), to

allowing a program path to still contain in-then-else statements
(this prevents the doubling in the number of paths, at the expense
of obtaining a more complex wlp).

Some notes on implementation
(1) A possible, but naive, approach could to first extract the set

Π of all program paths up to some maximum depth, and then
we filter out those that are infeasible. Then we verify the rest.
However, when a program path 𝜌1++𝜌2 is infeasible because
the prefix 𝜌1 in infeasible, note that all extensions of 𝜌1 in Π
are actually infeasible as well. So, a post-filtering approach,
while intuitive, can be very wasteful.

(2) AST is probably not a very convenient structure for gen-
erating symbolic executions. You may want to first unroll
your AST to something like a tree, where every path in the
tree would be a program path. This tree can be built lazily in
Haskell. Furthermore, when you are about to unroll a branch
from a node in the tree, and discover that the branch is un-
feasible, you can then just remove the branch, and effectively
prune the whole subtree under that branch.

(3) The most expensive part of your verifier is likely the calls
to the back-end theorem prover. This is a well known phe-
nomenon in symbolic execution based approaches. Writing
a front-end simplifier pays off, as it can help e.g. in quickly
discovering that a certain branch is unfeasible, without in-
voking the theorem prover.

3 YOUR ASSIGNMENT, THE MANDATORY
PARTS

The mandatory parts of your assignment, explained below, require
you to implement your own basic bounded, symbolic-execution-
based, verification tool for GCL (6.5 pt) and then to write a paper
presenting your tool. Please do not under estimate the paper part.
It is worth 2 pt; I expect you to deliver a paper, which is more than
just a routine lab report.

You can get more points by doing the optional parts, where you
will implement additional features, each with its own challenge.

3.1 Base implementation (6.5 pt, mandatory)
Implement your basic bounded verification tool :) You will need a
back-end theorem prover for checking the validity of yourwlps and
the satisfiability of your branch conditions. You can for example
use Z3. There is a Haskell binding that will allow you to call Z3
from Haskell; see the course Website for links.

In this base implementation you can assume that you are given
input programs that do not throw any exception (e.g. because you
try to access an array outside its valid range).

• For the purpose of your study (see below), you should able to
turn your heuristics on and off, so that you can compare the
performance of your verifier with and without the heuristics.

• Your verifier should be able to accept a parameter 𝐾 ≥ 0.
Given an input program 𝐹 , it should then verify all 𝐹 ’s full
program paths of length op to and including 𝐾 . The length of
a program path is defined as the number of basic statements
in the path (including the added assume statements). We
focus on the verification of full paths (paths that reach the
end of 𝐹). So, partial paths (non-full paths) are not required

Course Program Semantic & Verification, 24/25,

to be verified (actually, we should leave them out to make
your results comparable to each other).
We will have two verdicts. If the verifier finds an incorrect
full path, the verifier should stop (so, we stop at the first
incorrect path) and report a reject. It should also print (to
the screen or to a file) the incorrect path (so that you can
inspect it) along with a concrete input of 𝐹 that would trigger
the incorrect path.
If the verifier cannot find an incorrect path, it reports an
accept.

• Your verifier should also report some basic statistics:
(1) Total number of inspected paths, and of these, the number

of paths you manage to identify as unfeasible.
(2) Consumed computation time.
(3) Total size of the formulas that you have to verify. We’ll

define size of a formula 𝑓 to be the number of leaves in the
AST of the formula (so, it is the number of variables and
literals in the formula). For example the formula 1<𝑥∧0<𝑥
has four leaves, and its size is 4.

• Study the performance of your verification tool by sys-
tematically running experiments against the benchmarks
in Appendix A. Try to script your experiments so that you
can easily rerun them with different parameters. Make it so
that the script also dumps the results to some csv files so
that you can import them into a spreadsheet program, or a
graph plotting program, so that you can easily visualize the
results.
Do not under estimate this part, as this forms an important
part of your paper.

Array assignment issue. Assignments to array elements will give
you some challenge. Consider the program path below:

1 assume i=1 ; i:=i-1

2 a[i] := 0

3 a[i+1] := 1

4 assert a[i]=0

The corresponding wlp:

i=1 ⇒ ((i−1=i → 1 | (i−1=i−1 → 0 | a[i−1])) = 0) (3)

Notice that each assignment to an array element generates an if-
then-else expression in thewlp. In the above formula the two array
assignments end up generating three cases that ultimately your
back-end theorem prover must inspect when it tries to prove the
validity of the above wlp. This can be a problem if you have a loop
that contains such an assignment. As you unfold the loop several
times, you may end up with a long program path with many array
assignments, thus generating many cases that the theorem prover
must inspect.

If you look at the process of how thewlp is calculated, we notice
that the wlp at location 3 above is:

(i=i+1︸ ︷︷ ︸
g

→ 1 | a[i]) = 0 (4)

At this point we can choose to consider/investigate if we can
already reduce this in-then-else expression. There are three cases:

(1) If the guard 𝑔 is valid, (4) can be reduced to 1=0.
(2) If ¬𝑔 is valid, we can reduce (4) to a[i]=0.

(3) Both of the above cases leads to the reduction of the if-then-
else expression. However, if neither 𝑔 nor ¬𝑔 is valid2, (4)
cannot be reduced.

In the example above, ¬𝑔 is the formula i ≠ i+1, which can
easily be filtered to be valid, without even invoking a theorem
prover, and hence reduction of (4) to a[i]=0 can be made with little
overhead.

We can now proceed with the calculation of thewlp, which then
gives the following intermediate wlp at location 2:

(i=i → 0 | a[i]) = 0 (5)

If we now repeat the above reduction scheme, we easily discover
that the condition i = i is valid at location 2, and hence (5) can be
reduced to 0 = 0.

What we can conclude from the above example is that it is possi-
ble to do on-the-fly reduction of if-then-elses expressions generated
during the the calculation of thewlp. However, such reduction costs
computation time, as we need to check the validity of the cases of
the guards of those if-then-else’s. Depending on the cost of each
checking, the effort is wasted if it turns out that most of the guards
cannot be reduced. It is hard to say upfront when an attempt for
reduction would be well spent.

We leave it to you to decide how you want to address this chal-
lenge. As mentioned before, if you implement a front-end simplifier,
it can help to perform the above reduction without invoking the
theorem prover. There are benchmarks at the end of this document
to measure your performance.

Not required. The focus of the project is on verification. Providing
a parser is not required (you will get a parser that you can reuse).
Implementing a type checker is also not required. You can assume
all input programs are type correct.

3.2 Write a paper (2 pt, mandatory)
Write a paper presenting your tool and your evaluation of its per-
formance. The paper should not exceed 6 pages including refer-
ences. This is a strict limit. Write the paper in LaTeX :) using the
ACM double column format. You can download the template from
https://www.acm.org/publications/proceedings-template.

If you do an optional part, do mention this in the paper, and
don’t forget to present your solution for the optional part as well.

We expect a neatly written paper. It should include the following
parts:

(1) An Abstract.
(2) An "Introduction" section, to introduce the problem(s) that

you try to solve, why it matters to solve it, and your pa-
per’s contribution (e.g. that the paper presents a prototype
solution along with an initial evaluation of its performance).
An Introduction section should be accessible by computer
scientists in general.
If you did something smart/special in your bounded verifica-
tion tool, do mention it in the Introduction, else the reader
would not be aware of it. If you do an optional part, you
should mention it here too.

(3) A "Related Work" section. I have compiled a list of about 15
papers that you can use as a starting point. You can find this

2Just a note: since they are negation of each other, if neither are valid, then both of
them are satisfiable.

https://www.acm.org/publications/proceedings-template

Project: wlp-based Bounded Symbolic Verification Course Program Semantic & Verification, 24/25,

list in /docs of gclparser source code. It should contain links
to their pdf.

(4) A presentation of your bounded verification approach. This
should target scientists/students in the software engineering
field. You do not need to repeat the whole presentation of
wlp rules here (unless you deviate from the standard), but it
is helpful for the readers if you present some selected rules
(after all, not all software engineering scientists are familiar
with formal verification).
If you have implemented something smart in your verifica-
tion tool, you would want to present it in this section (else
the readers, including the reviewers of your work, would
not know you did it).
Do keep in mind that the limit of 6 pages for the paper is
strict.

(5) A section presenting your evaluation of the performance of
your tool. This should present and discuss the results of your
benchmarking against the benchmark in Section A. You are
encouraged to present the results visually with graphs (if
you are familiar with Python you can use the Pyplot library
to produce your graphs).

(6) Conclusion.
(7) List of references.

Additional formatting instruction: use this magic incantation
at the start of your LaTeX file to suppress certain things we don’t
need:

\documentclass[sigconf]{ acmart}

\settopmatter{printacmref=false}

\renewcommand\footnotetextcopyrightpermission [1]{}

\pagestyle{plain}

\acmConference{Course

Program Semantic

\& Verification }{19/20}{}

4 OPTIONALS
There are three optional tasks below; two of them of more chal-
lenging. They give you more points (but also more risky to take).
Choose one; you won’t have the time to do more.

4.1 Exception handling (challenging, 1.5 pt)
We will now add a bit more realism to your GCL. Expressions can
now throw exceptions. There are two kind of exceptions: division
by 0, and attempt to read/write to an array outside its range. If
during an execution of a program 𝐹 it encounters an expression
and this expression throws an exception, the execution stops. This
also means, if either the left side or the right side of an assignment
𝑒1 := 𝑒2 throws an exception, the program stops and the assignment
itself does not take place.

We also extend GCL with try-catch statements:

try { 𝑆 } catch(𝑒𝑥𝑐) { 𝑆ℎ }
This structure introduces 𝑒𝑥𝑐 as a local variable of type int initial-
ized to 0. The scope of this variable is the entire try-catch statement.
The statement will execute the statement 𝑆 . If 𝑆 ends normally
(without throwing an exception), we are done. If 𝑆 throws an excep-
tion, it breaks off. It sets the value of 𝑒𝑥𝑐 to 1 if the exception was
caused by a division by zero, and 2 if the exception was caused by an
attempt to access an array outside its valid range. Then, the control

jumps to 𝑆ℎ , which acts as the exception handler and executes this
handler.

Extend your verification tool so that you can verify GCL pro-
grams that may throw exceptions.

Programs with exceptions pose an additional challenge for au-
tomated verification. First, it introduces jumps in your execution
flows, whichmakes it more complicated now to drive the generation
of your program paths.

Secondly, and this is a more challenging problem, there can be
many points in a program where exceptions can be thrown. In fact,
in a real programming language like C, Java, etc., every instruction
can potentially throw an exception, hence causing a blow up in the
number of program paths that have to be inspected,

The problem ismore limited in our GCL setup, but you essentially
will still have to deal with the same challenges. I leave it to you to
come up with your own solution.

4.2 Pointers (challenging, 1.5 pt)
Let’s add pointers/references to GCL. To start, we add ref as a new
primitive type. We can declare a parameter or a local variable to
have this type, e.g. as in u : ref. This declares u as a parameter/-
variable of type ref. The value of u is either null or it is a pointer,
pointing to a store containing an integer. For simplicity, we will
only have integer stores.

We add the following new constructs to GCL. Let u be a variable
of type ref:

(1) u.val is an expression. If u is not null, u.val returns the integer
value contained in the store that u points to3.

(2) An expression 𝑟 is a ref-typed if it is either a literal null or
a variable of type ref.
If 𝑟1 and 𝑟2 are ref-typed expression, 𝑟1 == 𝑟2 is an expres-
sion that returns a boolean. It returns true if both 𝑟1 and 𝑟2
are null, or if both are ref variables pointing to the same
store. Otherwise 𝑟1 == 𝑟2 returns false.

(3) Assignment u := new(𝑒) where 𝑒 is an int-typed expression.
First, the assignment creates a fresh store, let’s call it 𝑜 . It
then evaluates 𝑒 . The resulting integer is copied to the store
𝑜 . Finally, u is made to point to 𝑜 .
If 𝑒 evaluates to a concrete integer 𝑖 , after this assignment
the expression u.val = i would be true. Moreover, for any
ref-type expression 𝑟 which is not syntactically the same
as u, 𝑟 cannot point to the same store as u (since 𝑜 is a fresh
store). So, u == r would be false.

(4) Assignment u := 𝑟 , where 𝑟 is an ref-typed expression. This
copies the value of 𝑟 to u. Note that this assignment does
not copy 𝑟 ’s store content to u.
After this assignment, we would have u == r true.

(5) Assignment u.val := 𝑒 , where 𝑒 is an int-typed expression.
If u is not null, this assignment copies the value of 𝑒 to the
store pointed by u.
After the assignment, we would have u.val = 𝑒 true. But do
note, if 𝑢 == 𝑣 holds, then we would also have v.val = 𝑒

after the assignment.
Extend your verification tool so that you can also verify GCL

programs with pointers. Try to first formulate thewlp rule for each

3u.val corresponds to the dereference operator ∗u in C.

Course Program Semantic & Verification, 24/25,

of the new assignment type (there are three), before you fiddle with
your implementation. In the paper, I will require you to also present
your new wlp rules.

You can expect the treatment of the u.val := 𝑒 type of assignment
will generate an if-then-else expression during the wlp calculation,
similar to the phenomenon you saw in the array assignment, and
therefore may also trigger the same blow up. In programming
languages where the use of pointers is prevalent (e.g. as in Java
and C#), this indeed becomes a major issue. Although in your GCL
setup the blow up is much more limited, you essentially still have
to deal with the same challenge. I again leave it to you to come up
with your own solution.

4.3 Loop with invariant, (0.8 pt, optional)
You can treat an assert statement directly before a while-loop as
a candidate invariant provided by the programmer.

If a loop is annotated with a correct invariant, your verification
can skip over the loop by just assuming the invariant. Not only
that this saves you computation effort, you verification becomes
complete as well (’complete’ in the sense that when your verifier
approves a program, then all its program paths are valid).

Extend your testing tool so that it can benefit from such an-
notations. Note that just because the programmer annotates the
invariant of a loop does not mean that the annotated expression
is indeed an invariant. So, make sure that you also check the cor-
rectness of the annotations (see again the inference rule for while
loop).

Note: we can first covert a statement like 𝑆 ; do 𝑔 𝑏𝑜𝑑𝑦 ; 𝑇 to:

𝑆 ; assert 𝐼 ; var 𝑥1, 𝑥2, .. {assume 𝐼 ∧ ¬𝑔 ; 𝑇 }
as well as emitting a verification condition that {𝐼 ∧ 𝑔} 𝑏𝑜𝑑𝑦 {𝐼 }
should be valid.

A APPENDIX: BENCHMARK
The benchmark programs are listed below. Each program 𝐹 in
the benchmark has an experiment parameter 𝑁 , which should be
replaced by a concrete value e.g. 4, depending on the setup of the
experiment —this will be elaborated below. This 𝑁 determines how
many times the loop in 𝐹 needs to iterate before it can terminate,
and therefore 𝑁 affects how deep 𝐾 should be to have at least one
full and feasible path.

The post-conditions of all benchmark programs are valid4. There
are also invalid𝑁𝑎𝑚𝑒 .gcl variants of the benchmark programs with
invalid post-conditions. Just for your own testing, you can check
if your verifier gives an ’accept’ on all benchmark programs, and
’reject’ on their invalid-variants. You can use low 𝑁 for testing/de-
bugging.

We will run two sets of experiments. One to evaluate the com-
pleteness (ability to find bug) of your verifier, and one to evaluate
the performance of your heuristics.

(1) Evaluate your verifier’s completeness. For the invalid-variant
of each benchmark program 𝐹𝑁 , measure the time needed to
find the violation against increasing𝑁 , namely𝑁 ∈ [2..10].
Measure your other statistics too (# inspected paths, # pruned
paths, total wlp size, see Section 3.1). You can use your best
heuristic setup. Your 𝐾 should be fixed, at least for every 𝐹 .

4Otherwise we have a bug; do let me know about it!

(2) Evaluate the performance of your heuristics. Measure the time
and other statistics for verifying each benchmark program
𝐹𝑁 (the valid variant) for a fixed 𝑁 , namely 𝑁=10, against
increasing depth 𝐾 .
Have several setups, e.g. with no heuristic, with all heuris-
tics turned on, and with a selected heuristic on. Run the
measurement for each setup so that you can compare how
your heuristic performs against the setup with no heuristic
enabled.

Gather the measurement data from the experiments, which you
then presents in your paper.

A.1 The benchmark programs
(1) The following program checks if 𝑥 occurs in the array 𝑎.

This program should be valid. The 𝑁 in the pre-condition is
an experiment parameter. It is a concrete integer constant,
ranging over [2..10].
This problem is intended to see how you deal with path ex-
plosion. It can force you to generate up to 2𝑁 different paths
before you find one that is actually feasible (the program
always iterates over the whole 𝑎, so paths that try to leave
early are unfeasible).

memberOf(x:int , a:[]int | found:bool) {

// N is an experiment parameter

assume #a>=N // note the ">="

&& #a>=0

&& (exists k:: 0<=k && k<#a && a[k]=x) ;

var k:int {

k := 0 ;

found := false ;

while k<#a do {

if a[k]=x then found := true else skip ;

k := k+1

}

} ;

assert found && k>=0 && k==#a && k>=N

}

(2) The contrived program below checks if 𝑥 is divisible by 𝑁 .
𝑁 is an experiment parameter, to range over [2..10]. The
problem is intended to see if your verifier can deal with
nested loops.

divByN(x:int | divisible:bool) {

// N is an experiment parameter

assume x>1 ;

var k:int {

k := 1 ;

divisible := false ;

while k<=x && ~divisible do {

var i:int {

i := 0 ;

while i<N do {

i := i+1

} ;

divisible := i*k = x

} ;

k := k+1

}

} ;

assert divisible = (exists m:: 0<m && m<=x && m*N = x)

}

Project: wlp-based Bounded Symbolic Verification Course Program Semantic & Verification, 24/25,

(3) The following contrived program modifies an array a such
that each a[k+1] is at least equal to 𝑎[𝑘]+1. 𝑁 is an experi-
ment parameter, to range over [2..10].
This problem is to see how well your verifier handles array
assignment. The program will cause the verifier to generate
an exponential number of refby expressions, but perhaps
your heuristic can reduce them without using the back-end
theorem prover.
pullUp(step:int , a:[]int | b:[]int|) {

// N is an experiment parameter

assume #a>=2 && #a=N && step >0 ;

if a[0] >= a[1]

then { a[1] := a[0] + step }

else { skip } ;

var k:int {

k := 1 ;

while k < #a - 1 do {

if a[k] >= a[k+1]

then { a[k+1] := a[k] + step }

else { skip } ;

k := k+1

}

} ;

b := a ;

assert b[N-1] >= b[0] + #b - 1

}

(4) For the Exception-Optional (Sec. 4.1). The following program
checks if there are two consecutive elements a[i] and a[i+1]
such that

2

a[i] + a[i+1] < 1

If so, it returns with z = 2, and else with z = 1. If the division
throws an exception, the program returns with z = 0.
The pre-condition that a contains only positive integers is
intentionally added. Under this pre-condition the above di-
vision will not throw an exception; we’ll see if your verifier
can exploit this.
𝑁 is an experiment parameter, to range over [2..10]. The
pre-condition (∀i : 0≤i<N ⇒ a[i]=1) is intentionally added
to force your verifier to explore deeper to find feasible paths.
find12(a:[] int | z:int) {

// N is an experiment parameter

assume #a>0 && #a=N

&& (forall i:: 0<=i && i<#a ==> a[i]>0)

&& (forall i:: 0<=i && i<N ==> a[i]=1) ;

var k:int , r:int {

k := 0 ;

z := -1 ;

while k < #a && (z<0 || (z==1)) do {

z := -1 ;

try {

r := a[k] + a[k+1]

}

catch(e) {

if e=2 // array -range -exception

then { z := 1 }

else { skip }

} ;

try {

r := 2/r // idea: can we first check if r=0 is feasible?

}

catch(e) {

if e=1 // division by zero

then { z := 0 }

else { skip }

} ;

if z<0 && r < 1

then { z := 2 }

else { skip } ;

k := k+1

}

} ;

assert z>0

}

(5) For the Pointer-Optional (Sec. 4.2). The program below re-
turns the smallest element of an array a. Ref-typed variables
and creation of new stores are deliberately added to stress
your verifier. The assignments to u.val and x.val are also
deliberately added for the same reason; they should not af-
fect the post-condition as their pointers cannot point to the
same store pointed to by m (but your verifier has to prove
this first of course).
𝑁 is an experiment parameter, to range over [2..10].
min(a:[]int , x:ref , u:ref | m:ref) {

assume #a>0 && #a=N

&& ~(x == null)

&& (forall i:: 0<=i && i<#a ==> a[i]>0) ;

var k:int {

k := 0 ;

while k<#a do {

u := new(a[k]) ;

if k=0 then { m := u } else { skip } ;

if u.val < m.val then { m:=u }

else { u.val := u.val + 1 } ;

if ~(m == null) then { x.val := m.val + 1 }

else { skip } ;

k := k+1

}

} ;

assert (forall i:: 0<=i && i<#a ==> m.val <= a[i])

}

(6) For the Loop-Optional (Sec. 4.3). The following program has
does bubble sort. It should be valid. It has a nested loop.
Candidate invariants for both its loops are annotated.
𝑁 is an experiment parameter, to range over [2..10].
bsort(a : []int | b : []int) {

assume #a>=0 && #a>=N ;

var k:int {

k := 0 ;

// inv of outer loop

assert 0<=k && k<=#a

&& (forall i:: 0<=i && i<k ==>

(forall j:: i<=j && j<#a

==> a[i]<=a[j])) ;

while k<#a do {

var m:int , tmp:int {

m := #a-1 ;

// inv of inner loop

assert 0<=k && k<=#a

&& (forall i:: 0<=i && i<k ==>

(forall j:: i<=j && j<#a

==> a[i]<=a[j]))

&& k<=m && m<#a

&& (forall j:: m<=j && j<#a ==> a[m]<=a[j]) ;

while k<m do {

if a[m]<a[m-1]

then {

Course Program Semantic & Verification, 24/25,

tmp := a[m] ;

a[m] := a[m-1] ;

a[m-1] := tmp

}

else { skip } ;

m := m-1 }

} ;

k := k+1 }

} ;

b := a ;

assert (forall i:: 0<=i && i<#b ==>

(forall j:: i<=j && j<#b

==> b[i]<=b[j]))

}

B APPENDIX: ABSTRACTLY REPRESENTING
A LANGUAGE IN AN OO LANGUAGE

If you read this section, it means you decided in implement this
project in an OO language like C# or Java. Since I don’t have a C#
nor Java parser for GCL for you, you will have to work without
one (there is not enough time for you to implement one yourself).
However, we can still represent a program structurally as objects,
and I will show you how. In any case, you do not want to work on
a plain string representation of programs because it will become
very messy for you to identify the structures of the programs.

A structured representation of a program (or more generally, of
a sentence satisfying some formal grammar) is also call an abstract
syntax tree. This section provides some basic on how to represent
such a tree in an OO language; I will assume Java as the implemen-
tation language.

Let us consider, as an example, a simple language of 𝐸𝑥𝑝𝑟 ex-
pression, as an example. The syntax is shown below:

𝐸𝑥𝑝𝑟 ::= 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙

| 𝑁𝑎𝑚𝑒

| 𝐸𝑥𝑝𝑟 ”+” 𝐸𝑥𝑝𝑟
So, for example 𝑥+1+𝑦 is a sentence of 𝐸𝑥𝑝𝑟 . I will show you how

to implement a simple expression transformer. As an example let’s
take the substitution operation𝑞 [𝑒/𝑥] which is supposed to replaces
all occurences of 𝑥 in the expression 𝑞 with 𝑒 . Note our 𝐸𝑥𝑝𝑟 has
no construct to represent quantified expressions, so substitution
will be very simple compared to subsitution in your GCL. But this
will do as an example.

In Java, we can use an (abstract) class, let’s call it Expr, to rep-
resent all sorts of expression, and a subclass of Expr to represent
each sort of expressions. This is shown below.

abstract class Expr { }

class Lit_ extends Expr { // representing int literal

int val ;

Lit_(int val) { this.val = val ; }

}

class Name_ extends Expr {

String name ;

Name_(String name) { this.name = name ; }

}

class Plus_ extends Expr {

Expr a ;

Expr b ;

Plus_ (Expr a, Expr b) { this.a = a ; this.b = b ; }

}

For convenience, we can extend the definition a little bit, as
shown below:

abstract class Expr {

Plus_ plus(Expr b) { return new Plus_(this ,b) ; }

static Lit_ lit(int val) { return new Lit_(val) ; }

static Name_ name(String name) {

return new Name_(name) ;

}

}

With the newmethods, the expression 𝑥+1+𝑦 can be represented
by (with the help of static imports);

name(”x”) . plus(lit(1) . plus(name(”y”)))

Substitution can be implemented as shown below. There is a
nicer way to implement such a function, namely using the so-called
“Visitor” design pattern, but you can look this up yourself in the
Internet.

static Expr subst(Expr q, Expr e, String x) {

if (q instanceof Lit_) return q ;

if (q instanceof Name_) {

if (((Name_) q).name.equals(x)) return e ;

else return q ;

}

Plus_ p = (Plus_) q ;

return new Plus_(subst(p.a,e,x), subst(p.b,e,x)) ;

}

	1 GCL
	2 Preliminary: some basic concepts
	3 Your assignment, the mandatory parts
	3.1 Base implementation (6.5 pt, mandatory)
	3.2 Write a paper (2 pt, mandatory)

	4 Optionals
	4.1 Exception handling (challenging, 1.5 pt)
	4.2 Pointers (challenging, 1.5 pt)
	4.3 Loop with invariant, (0.8 pt, optional)

	A Appendix: Benchmark
	A.1 The benchmark programs

	B Appendix: Abstractly Representing a Language in an OO Language

