\frametitle{Table} If state $k$ with symbol $z$ writes $y$ to the tape and transitions into state $k'$ we get the following: \begin{columns} \begin{column}{0.52\textwidth} $$H_{kz} \mapsto [R_{k'*}R_{k'*}]^{ly}[H_{k'}]^{1-z}H_{k'}[L_{k'}L_{k'}]^{ry}$$ $$L_{kz} \mapsto L_{k'}[L_{k'}L_{k'}L_{k'}]^r$$ $$R_{kz} \mapsto R_{k'}[R_{k'}R_{k'}R_{k'}]^l$$ $$H_{k} \mapsto H_{k1}H_{k0}$$ $$L_{k} \mapsto L_{k1}L_{k0}$$ $$R_{k} \mapsto R_{k1}R_{k0}$$ $$R_{k*} \mapsto R_kR_k$$ \end{column} \begin{column}{0.48\textwidth} $$[H_{k1}]^zH_{k0}[L_{k1}L_{k0}]^{T_L}[R_{k1}R_{k0}]^{T_R}$$ becomes $$H_{k'}[L_{k'}]^{(3r+1)T_L+2yr}[R_{k'}]^{(3l+1)T_R+2yl}$$ becomes $$[H_{k1}]^{z'}H_{k0}[L_{k1}L_{k0}]^{\lfloor T_L/2\rfloor}[L_{k1}L_{k0}]^{2T_R}$$ Where $z'$ is the next symbol \end{column} \end{columns}