
Walking the Dog Fast in Practice, Algorithm
Engineering of the Fréchet Distance
Bram Elderhorst

What is it
It is a number that sais how similar two curves are. You can imagine a dog running on the
first curve and a person on the second and the fréchet distance is the minimum length of the
leash.

A more formal definition is to have to curves and have a set of traversing functions T . For
every possible combination of traversal functions we calculate the maximum distance and
then we take the infimum of all the maximums

Applications

Running time

Free-space diagram
F := {(p, q) ∈ [1,n] × [1,m] ∣ ∥πp − σq∥ ≤ δ}

Reachable free-space diagram

What is freceht distance

Applications

Running time and overveiw

Free-Sapce diagrams

Pruning rule (main novelty)

Benchmarks

Conclusion

Signature authenticity

Map-matching

Decision problem: Given two curves is the distance smaller than δ

1995: o(mn) for the decision problem

Optimization problem in o(mn log(mn))

Later it was proven that it is not possible to have an algorithm better than
o(mn(logmn))

R := {(p, q) ∈ F ∣ There exist a monotone path fom (1,1) to (p,q) in] F}

New algorithm
A different algorithm uses a box B consisting of cells between two point of π and σ,
boundaries Bi,Br,Bb,Bt, inputs BR

i = Bi ∧ R,BR
b

= Bb ∧ R , outputs
BR

r = Br ∧ R,BR
l

= Bf ∧ R.
The first pruning rule is very simple. If BR

l
= BR

b
= ∅ and all inputs are empty, so propagation

is impossible then BR
r = BR

l
= ∅.

For the next rule we look at free-space boundaries and try to determine if they are
reachable. Simple boundaries have at most one intersection with the free-space. f
Bl ∧ F = ∅ the output is empty. If the boundary starts with a free-space part and the left
corner is reachable, then the free-space part is reachable. If the free-space part start in the
middle, we try if we can propagate from a reachable point at the bottom.

Experiment setup

Speed-up in running times

Effect of individual pruning rules

A cell is one rectangle based on a segment of π and of σ

Calculate the free space of a cell in constant time

The free space in a cell is convex, so the intersection with a cell border is at most one
line segment

Propagate this to the opposite cell border

Dynamic programming: O(nm)

Three data sets with more than thousand curves

Select a random curve π

Sort the other curves by increasing dF to π to get σi, … ,σn

For all k ∈ {1, … , | logn|}: Pick a random curve σ ∈ {σ2k , … ,σ2k+1}

Filters can quickly decide for very small and large δ

No-instances can terminate earlier instead of traversing the entire free-space diagram

For similar curves, the diagram is more dificult to compute

Comparison with the previous best from two years earlier

Speed ups mostly around 10x

Improved filters for yes-instances

Omit each rule one by one to see its effect

All rules are important, because that can remove a significant part of the free-space

Conclusion

Future work

The last rule can only be used for the edges of a diagram

New recursive algorithm using techniques from the first published algorithm

Tighter running time bound or a certain class of curves

Incorporate the algorithm in software libraries

Use this approach for solving other Fréchet distance problems

