
Exercise: Packing and Paging

1 Missing cow
Consider you are a cow getting lost on a misty grassland. Nearby there is a very long fence. You know
that somewhere at the fence, there is a hole so you can escape. However, you don’t know where the
hole is nor which direction the hole is in. Furthermore, because it is so foggy, you see the hole only
when it is exactly in front of you. In such a situation, all you can do is walk straightly toward one
direction and search for the hole, or turn around, walk toward the other direction, and search for the
hole. You want to escape using as small a total walking distance as possible.

Answer the following questions:
1. Let your starting position be the origin and the fence is the x-axis. Assume that the hole is at

position n (where n can be positive or negative), what is the optimal solution cost?

The optimal solution knows where the hole is. It can walk directly toward the whole and the
cost is |n|.

2. Consider the following algorithm ALG1 that first go to position 1, then go to position −1, and
then 2, −2, 4, −4, ... (Figure 1):

Figure 1: Cow path for ALG1

(a) Find an adversary for ALG1 on the right hand side of the cow and give a lower bound of
ALG1’s competitive ratio.
Let n ∈ (2k, 2k+1]. The cost of ALG1

=1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 4 + 4 + 4 + 4 + · · ·+ 2k + 2k + 2k + 2k + |n|
>4 · Σk

i=02i + 2k

≈4 · 2k+1 + 2k

=9 · 2k

1

Hence, ALG1(n)
OPT(n) ≥

9·2k

n > 9·2k

2k = 9, and ALG1 is at least 9-competitive.

(b) Find an adversary for ALG1 on the left hand side of the cow and give a lower bound of
ALG1’s competitive ratio.

Let n ∈ (2k, 2k+1]. The cost of ALG1

=1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 4 + 4 + 4 + 4 + · · ·+ 2k + 2k + 2k + 2k

+ 2k+1 + 2k+1 + |n|
>4 · Σk

i=02i + 2 · 2k+1 + 2k

≈4 · 2k+1 + 2 · 2k+1 + 2k

=13 · 2k

Hence, ALG1(n)
OPT(n) ≥

13·2k

n > 13·2k

2k = 13, and ALG1 is at least 13-competitive.

(c) From (a) and (b), which adversary gives a stronger lower bound?

(b) is a stronger lower bound as it is bigger.

(d) Prove that ALG1 is 13-competitive.

For any instance n ∈ (2k, 2k+1],
ALG1 = 4 · Σk

i=02i + n ≤ 4 · 2k+1 + n.
Hence, ALG1(n)

OPT(n) ≤
8·2k+n

n . The ratio increases as n decreases. However, |n| ≥ 2k and
ALG1(n)
OPT(n) ≤

8·2k+|n|
|n| ≤ 8·2k+2k

2k = 9.

For any instance n ∈ [−2k+1,−2k),
ALG1 = 4 · Σk

i=02i + 2 · 2k+1 + |n| ≤ 4 · 2k+1 + 2 · 2k+1 + |n|.
Hence, ALG1(n)

OPT(n) ≤
12·2k+|n|
|n| . The ratio increases as |n| decreases. However, |n| ≥ 2k and

ALG1(n)
OPT(n) ≤

12·2k+|n|
|n| ≤ 12·2k+2k

2k = 13.

The competitive ratio of ALG1 is max{9, 13} = 13.

3. Consider the following algorithm ALG2: First go to 1, then go to −2, 4, −8, 16, · · · (Figure 2.

Figure 2: Cow path for ALG1

2

(a) By intuition, do you think this ALG2 is better than ALG1 or worse?

ALG2 is better. To get the same position, ALG2 passes through smaller number of zig-zags
compared to ALG1.

(b) Show that this algorithm is 9-competitive.

For any instance n ∈ (2k, 2k+1],
ALG2 = 2 · Σk

i=02i + n ≤ 2 · 2k+1 + n.
Hence, ALG2(n)

OPT(n) ≤
4·2k+n

n . The ratio increases as n decreases. However, |n| ≥ 2k and
ALG2(n)
OPT(n) ≤

4·2k+|n|
|n| ≤ 4·2k+2k

2k = 5.

For any instance n ∈ [−2k+1,−2k),
ALG2 = 2 · Σk+1

i=0 2i + |n| ≤ 2 · 2k+2 + |n|.
Hence, ALG2(n)

OPT(n) ≤
8·2k+|n|
|n| . The ratio increases as |n| decreases. However, |n| ≥ 2k and

ALG2(n)
OPT(n) ≤

8·2k+|n|
|n| ≤ 8·2k+2k

2k = 9.

The competitive ratio of ALG2 is max{5, 9} = 9.

2 Applying doubling technique
Recall the ski rental problem with the buying price of B and the renting price of 1 per day. Use the
doubling technique to analyze the optimal online algorithm that buys a pair of skis on the B-th day.

(i) Let the parameter r be B and adapt the analysis for doubling.

(ii) Let the parameter r be 2 and adapt the analysis for doubling. What happens if B = 2k for some
integer k, and what happens if B 6= 2k?

(i) In phase 0 (from day B0 to day B1 − 1), the algorithm pays B − 1 for renting while the optimal
solution lower bound increases from 0 to 1. In phase 1 (from day B to day B2− 1, the algorithm
pays B for buying while the optimal solution lower bound increases from 1 to B. For any later
phase, both the optimal solution lower bound and the incurred cost of the algorithm are 0.
Therefore, the algorithm is max{B−1

1 , B
B−1} = B − 1 competitive.

(ii) We first assume B = 2k for some integer k. In phase 0 (where there is exactly one day),
the algorithm pays 1 for renting while the optimal solution lower bound increases from 0 to
1. For i = 1, 2, · · · , k − 1, the optimal solution lower bound increment is 2i − 2i−1 while the
algorithm pays 2i−1 for renting. In phase k, the increment of the optimal solution lower bound
is 2k − 2k−1, and the online algorithm pays B = 2k for buying. Therefore, the competitive ratio
is max{1, 2k

2k−1 } = 2.
However, when B = 2k + c for some 0 < c < 2k, in the k-th phase, the optimal solution lower
bound increases by 2k−1 while the algorithm pays (c − 1) + B ≤ 3 · 2k − 3 since c ≤ 2k − 1.
Therefore, the competitive ratio by this analysis is 6.

3 NextFit algorithm
Recall that we introduced the FirstFit algorithm for the BinPacking problem during the lecture.
Now consider another algorithm NextFit:

NextFit Algorithm

When a new item arrives, put it into the last bin if the item fits into that bin.
Otherwise, close the last bin, open a new bin, and put this new item to this new bin.

3

1. Claim that in the NextFit solution, the total size of jobs in any two consecutive bins is at least
1.

If there are two consecutive bins together have items with total size less than 1, the items in the
second bins can be assigned to the first bin without exceeding the bin capacity. According to
the NextFit algorithm, the jobs in the second bin would be put in the first bin. Hence, the case
won’t happen.

2. Prove that NextFit ≤ 2 ·OPT.

Assume that NextFit uses k bins. By (a), any two consecutive bins (but the last one) have total
item sizes at least 1. Hence, the total size of all items is at least bk−1

2 c. Moreover, the optimal
solution uses at least bk−1

2 c bins. Hence,

bk − 1
2 c ≤ OPT

k − 1
2 ≤ OPT + 1

k − 1 ≤ 2 · (OPT + 1)
NextFit = k ≤ 2 ·OPT + 3

4 Another lower bound of First-Fit
Recall the adversary for First-Fit algorithm introduced in the lecture that contains m items of size
1
6 − 2ε, m items of size 1

3 + ε, and m items of size 1
2 + ε. Note that the largest denominator 6 in this

adversary is a perfect number. That is, it is equal to the sum of its positive divisors, excluding the
number itself. (Ex: 6’s divisors are 1, 2, 3, 6, and 6 = 1 + 2 + 3.) The fact of 6 being a perfect number
gives us the convenience where 1

6 + 1
3 + 1

2 = 1+2+3
6 = 6

6 = 1, and the adversary is designed based on
that.

Consider the next perfect number, 28, whose divisors are 1, 2, 4, 7, 14, 28, and 1+2+4+7+14 = 28.
What is the best adversary against First-Fit you can come up with? Is it a stronger lower bound than
the one we saw in the lecture? Can you see why?

We release m items with size 1
28 − 4ε, m items with size 1

14 + ε, m items with size 1
7 + ε, m items

with size 1
4 +ε, and m items with size 1

2 +ε for some very large m. In this order, the First-Fit algorithm
will open:

• m
28 bins, each contains 28 size- 1

28 − 4ε items,

• m
13 bins, each contains 13 size- 1

14 + ε items,

• m
6 bins, each contains 6 size- 1

7 + ε items,

• m
3 bins, each contains 3 size- 1

4 + ε items, and

• m bins, each contains 1 size- 1
2 + ε items.

That is, the total number of bins used by First-Fit is (1
28 + 1

13 + 1
6 + 1

3 + 1)m. Meanwhile, the optimal
can pack all items into m bins by putting exactly one item from each of the types in one bin. Therefore,
the competitive ratio is at most 1

24 + 1
13 + 1

6 + 1
3 + 1 = 1.618589... ≤ 1.61859.

This adversary is weaker than the one introduced in the lecture.

4

5 Online load balancing
There is a finite set of m machines. A sequence of n jobs is arriving where each job Ji is specified by
its processing load `i. Each job must be assigned to exactly one of the machines upon arrival. The
total load of a machine is the sum of loads of the jobs assigned to it. The cost of an assignment is
the maximum total load among the machines. The goal of the LoadBalancing problem is to find
an assignment with the minimum cost.

Consider the greedy algorithm (also see the illustration):
Assign each arriving job ri to the machine with the lowest load (breaking ties

arbitrarily).

1. Consider any job Jk. Claim that the cost of the optimal assignment is at least `k.

In the optimal solution, there is a machine where job Jk is assigned. Hence, the load (in the
optimal solution) of the machine is at least `k

2. Claim that the cost of the optimal assignment is at least
∑n

j=1
`j

m

(Hint: Use the similar argument for bin packing optimal cost lower bound.)

To minimize the highest load, the best thing an algorithm can do is to put the load as even as
possible. If there is an algorithm which can place the total load evenly on each of the machines
(without worrying about if we have to cut a job into pieces), the cost of this algorithm is

total load
number of machines =

∑n
j=1 `j

m
.

The optimal algorithm has to assign the jobs without cutting them, so it cannot do better than
this assignment. Hence,

the cost of OPT ≥
∑n

j=1 `j

m
.

3. Show that the greedy algorithm is 2− 1
m -competitive.

Assume the highest load machine Mi in the algorithm assignment has load `k + s, where `k is
the load of the last job Jk assigned to Mi and s ≥ 0. Since the algorithm uses a greedy strategy,
it always assigns the job to the current lowest-load machine. Hence, when the job Jk arrives,
the load of each of the machines is at least s (otherwise, the job Jk will be assigned to another
machine with a lower load instead of to the machine Mi). Therefore, the total load of the jobs
is at least (m− 1) · s + (`k + s) = m · s + `k.
By part (b), the cost of optimal is at least total load

m ≥ m·s+`k

m = s + `k

m . Hence, s ≤ OPT− `k

m
(where OPT denotes the cost of the optimal solution).
The cost of the algorithm

`k + s ≤ `k + (OPT−`k

m
) ≤ OPT + `k · (1−

1
m

) = (2− 1
m

) ·OPT

(where the second inequality comes from part (a) that OPT ≥ `k).

5

6 Last-In-First-Out
Consider the algorithm LIFO (Last-In-First-Out) for the Paging problem:

LIFO (Last-In-First-Out) Algorithm

When there is a page fault and the cache is full, replace the page that has been copied into the
cache the most recently.

Answer the following questions:

1. Given a sequence of n page requests, show that LIFO is at most O(n
k)-competitive.

In the worst case, LIFO incurs one page fault for each of the page requests. And the optimal
solution has to copy each of the k pages into the cache. Therefore, for any sequence of requests
R, LIFO(R)

OPT(R) ≤
n
k .

2. Show that the analysis in (a) is tight.

Consider the sequence of requests R = 1, 2, 3, · · · , k followed by n pairs of requests k + 1, k. An
offline algorithm can evict page k− 1 when the page k + 1 is requested for the first time and the
total number of page faults is k + 1. However, FirstFit replaces page k when the page k + 1
is requested and replaces page k + 1 when page k is requested. Hence, it incurs a page fault
for every request, and the total number of page faults is k − 1 + n. Therefore, when n is large
enough, LIFO(R)

OPT(R) ≥
k−1+n

k+1 ≈ Ω(n
k).

6

	Missing cow
	Applying doubling technique
	NextFit algorithm
	Another lower bound of First-Fit
	Online load balancing
	Last-In-First-Out

