
Algorithms for Decision Support

NP-Completeness (2/3)
NP-Completeness

1

Turing machine

• An infinitely long tape/memory

• Ini@ally contains the (finite) input sequence and is blank everywhere else

• A tape head that can read and write symbols and move around on the tape

• Finite-state control

• The Turing machine may end up with an accept state or reject state

• It accepts the input or rejects the input

2

0 11 1 1 10 # 00 1

control

…………

Non-Determinis@c Turing machine

• Like the (determinis@c) Turing machine, but have non-determinis@c behavior

• If there is a path ends at an accept state, the input is accepted

3

0 11 1 1 10 # 00 1

control

…………

accept

reject

Formal Language Framework
• Following the vein of Turing machine concept, a language is a set of strings

• Language problem

• String instance

• Asking if a string is in a language
 if the instance sa@sfies the property that the problem asks

• Given a problem/language, a instance/string is a

• yes instance: an instance that sa@sfies the property that the problem asks

• no instance: an instance that does not sa@sfy the property that the problem asks

⇔

⇔

⇔

4

Class P and Class NP
• The class P is the class of languages that are accepted or rejected in polynomial

@me by a determinis-c Turing machine

• The class NP is the class of languages that are accepted in polynomial @me by a
non-determinis-c Turing machine.

5

accept

reject

Running <me
 f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n

…

Cer@ficate and (Polynomial-@me) Verify
• A language is verifiable if for any of its yes-instances , there exists a piece of

hint (cer@ficate) such that using this hint , one can be convinced that is
indeed a yes-instance of

• Only yes-instances have cer@ficates

• Polynomial-<me verifiable: the verifica@on can be done in @me of polynomial in
input length

• The hint size should also be polynomial

• It does NOT mean that the hint should be constructed within polynomial
@me!

A w
c c w

A

c

6

0 11 1 1 10 # 00 1…

Input length n

…

cer@ficate size should also be poly(n)

Class NP Alterna@ve Defini@on
• The class P is the class of languages that are accepted or rejected in polynomial

@me by a determinis@c Turing machine

• The class NP is the class of languages that can be verified in polynomial @me by a
determinis@c Turing machine.

7

accept

reject

Running <me
 f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n
…

cer@ficate size should also be poly(n)

Prove NP Membership

8

• To show that a problem is in NP, we can show that it is polynomial-@me verifiable

<Proof Idea>

1. Show that for any yes instance , there is a cer@ficate .

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial @me (in the length of)

w c

V ⟨w, c⟩ w ∈ A w ∉ A

V w

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

9

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

10

Boolean Formula
• Boolean formula: an expression involving Boolean variables and opera@ons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is sa<sfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable Boolean formula}
11

x = FALSE, y = TRUE, z = TRUE yes-instance

no-instance

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

12

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

13

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

14

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

15

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

16

Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all
problems in NP can be solve in polynomial @me.

• That is, SAT can be solved in polynomial @me only if P = NP

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P =
NP

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

• In 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial @me, then P = NP

• These problems form a class NP-Complete

17

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

18

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

19

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

20

NP NP P

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

21

NP NP P NP-Complete

difficult

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

22

NP NP P NP-Complete

difficult

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

23

NP NP
P

= NP-Complete
= NP

difficult

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

24

NP NP P NP-Complete

difficult

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

25

NP NP P NP-Complete

difficult

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all
NP-complete problems

26

NP NP P NP-Complete

NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem
in NP can be solved in polynomial @me

• A researcher who aiempts to prove that P equals NP only need to find a
polynomial @me algorithm for an NP-complete problem to achieve this goal

• If any problem in NP requires more than polynomial @me, an NP-complete one does

• The phenomenon of NP-completeness may prevent was@ng @me searching for a
nonexistent polynomial @me algorithm to solve a par@cular problem

• The problems Maximum Clique, Minimum Vertex Cover, Par<<on, Subset Sum are all
NP-complete problems

27

How do we know if a problem is “difficult”?

28

How do we know if a problem is “difficult”?

29

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

.

A A
A

B

30

Reduc@on

A

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

A A
A

B B A

31

Reduc@on

A B

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

A A
A

B B A

32

Reduc@on

A B

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

A A
A

B B A

33

Reduc@on

A B

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

• Ex:

• Problem : Can I travel to New Zealand

A A
A

B B A

A

34

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

• Ex:

• Problem : Can I travel to New Zealand

• Problem : Do I earn enough money

A A
A

B B A

A

B

35

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

• Ex:

• Problem : Can I travel to New Zealand

• Problem : Do I earn enough money

• If I earn enough money, I can travel to New Zealand;
If I don’t have enough money, I cannot travel to New Zealand.

A A
A

B B A

A

B

36

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

• Ex:

• Problem : Can I travel to New Zealand

• Problem : Do I earn enough money

• If I earn enough money, I can travel to New Zealand;
If I don’t have enough money, I cannot travel to New Zealand.

A A
A

B B A

A

B

37

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving directly, we can show that we
are able to solve by using an (existed) algorithm for solving another problem

. According to the answer to problem , we know the answer to problem .

• Ex:

• Problem : Can I travel to New Zealand

• Problem : Do I earn enough money

• If I earn enough money, I can travel to New Zealand;
If I don’t have enough money, I cannot travel to New Zealand.
(If I travel to New Zealand, I must have enough money.)

A A
A

B B A

A

B

↔
38

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem

• That is, given any instance , we want to answer yes if and answer no
otherwise

• Instead of solving directly, we can show that we are able to solve by using
an (existed) algorithm for solving another problem

• The -solver (algorithm for solving) returns yes if the input and
returns no if

• This -solver might be hypothe@cal

A

w w ∈ A

A A
B

B B w′ ∈ B
w′ ∉ B

B

39

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem

• That is, given any instance , we want to answer yes if and answer no
otherwise

• Instead of solving directly, we can show that we are able to solve by using
an (existed) algorithm for solving another problem

• The -solver (algorithm for solving) returns yes if the input and
returns no if

• This -solver might be hypothe@cal

A

w w ∈ A

A A
B

B B w′ ∈ B
w′ ∉ B

B

40

Reduc@on

How do we know if a problem is “difficult”?

• We want to solve problem

• That is, given any instance , we want to answer yes if and answer no
otherwise

• Instead of solving directly, we can show that we are able to solve by using
an (existed) algorithm for solving another problem

• The -solver (algorithm for solving) returns yes if the input and
returns no if

• This -solver might be hypothe@cal

A

w w ∈ A

A A
B

B B w′ ∈ B
w′ ∉ B

B

41

Reduc@on

Bw′

Yes

No
B

How do we know if a problem is “difficult”?

• We want to solve problem

• That is, given any instance , we want to answer yes if and answer no
otherwise

• Instead of solving directly, we can show that we are able to solve by using
an (existed) algorithm for solving another problem

• The -solver (algorithm for solving) returns yes if the input and
returns no if

• This -solver might be hypothe@cal

A

w w ∈ A

A A
B

B B w′ ∈ B
w′ ∉ B

B

42

Reduc@on

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

43

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

44

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

45

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No
w

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

46

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No
w f

A B

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

47

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w f

A B

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Reduc@on

48

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

49

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

50

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

The sun rises in the east on day w

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

51

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

The sun rises in the east on day w

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

52

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

1. Show that there is a func@on
that transforms every to
in polynomial @me

w w′

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

53

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

54

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

55

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on
3. Show that for any

no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

56

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on
3. Show that for any

no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

57

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on
3. Show that for any

no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

58

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func@on
that transforms every to
in polynomial @me

w w′

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on A ≤p B

59

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func@on
that transforms every to
in polynomial @me

w w′

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

60

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

61

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

62

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

63

literals

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

64

clause

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

65

Only “or”s in each clause

CNF-SAT
• Conjunc@ve normal form (CNF):

• Variables:

• CNF-SAT =

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x2)

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

66

“and”s between clauses

3SAT

67

3SAT
• A Boolean formula is a 3CNF-formula if it is in conjunc@ve normal form and all the

clauses have exactly three literals.

• Example:

• 3SAT = is NP-Complete

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x2 ∨ x4)

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

68

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

69

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? ? ? ? ? ? ? (∨ ∨) ∧ (∨ ∨) ∧ (∨ ∨) ∧ ⋯A 3-CNF Boolean formula

Sa@sfiable

Sa@sfiable
⇕↓ Polynomial @me func@on

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

70

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? ? ? ? ? ? ? (∨ ∨) ∧ (∨ ∨) ∧ (∨ ∨) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

71

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? ? ? ? (x1 ∨ x2 ∨ x3) ∧ (∨ ∨) ∧ (∨ ∨) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

The clause is true iff the original clause is true

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

72

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? ? ? ? (x1 ∨ x2 ∨ x3) ∧ (∨ ∨) ∧ (∨ ∨) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

73

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ x1) ∧ (∨ ∨) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

The clause is true iff the original clause is true

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

74

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? ? ? ? (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ x1) ∧ (∨ ∨) ∧ (∨ ∨)A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

75

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ x1) ∧ (∨ ∨) ∧ (x1 ∨ x2 ∨ x2)A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

The clause is true iff the original clause is true

3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that
CNF is NP-Complete)

76

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (is sa@sfiable)ϕ′

No (is NOT sa@sfiable)ϕ′

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

 (x1 ∨ x2 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2)Any CNF Boolean formula

 ? ? ? (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ x1) ∧ (∨ ∨) ∧ (x1 ∨ x2 ∨ x2)A 3-CNF Boolean formula
↓

• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

77

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

78

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

79

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

80

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

81

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

82

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

83

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

84

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

85

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

86

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

87

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

88

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

89

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

90

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

91

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

92

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

93

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

94

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

95

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

Dummy variable: no single dummy variable can make more than one clause TRUE

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

96

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

97

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

98

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

99

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

100

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

101

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

102

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

001

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

103

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

0010

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

104

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

105

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

106

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

107

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 1

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

108

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 1 0

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

109

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 11 0

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

110

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 11 0

If the (big) clause is TRUE, there exists an assignment to such that the sequence of 3-clauses are all TRUE.ϕ′

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

111

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is FALSE, every literal is 0

0000 00

0000 0 0

If the (big) clause is FALSE, there exists NO assignment to such that the sequence of 3-clauses are all TRUE
since no single dummy variable can make more than one clause TRUE

ϕ′

3SAT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal (dummy) variables

For example: can be replaced with the
clauses

 .

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk) k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

112

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

If this clause is FALSE, every literal is 0

0000 00

0000 0 0

If the (big) clause is FALSE, there exists NO assignment to such that the sequence of 3-clauses are all TRUE
since no single dummy variable can make more than one clause TRUE

ϕ′

At most one TRUE At most one TRUE

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa@sfiable if and only if is sa@sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

113

• CNF-SAT 3SAT≤p

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa@sfiable if and only if is sa@sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

114

• CNF-SAT 3SAT≤p

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa@sfiable if and only if is sa@sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

115

• CNF-SAT 3SAT≤p

3SATw′

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF-SAT

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa<sfiable if and only if is sa<sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

116

• CNF-SAT 3SAT≤p

3SATw′

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF-SAT

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa<sfiable if and only if is sa<sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

117

• CNF-SAT 3SAT≤p

3SATw′

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF 3SAT

CNF-SAT

3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula into a 3CNF-formula ,
with is sa<sfiable if and only if is sa<sfiable:

First, let , , , be the clauses in . If is a 3CNF-formula, we just set = .

Otherwise, the only reasons why is not a 3CNF-formula are:

1. Some clauses has less than 3 literals, or

2. Some clauses has more than 3 literals.

F F′

F F′

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci

118

• CNF-SAT 3SAT≤p

3SATw′

Yes

No

Yes

No

w

CNF-SAT

f

Polynomial-@me func@on

3SAT

<Proof (cont.)>

For each clause that has less than 3 literals, we duplicate one of the literals un@l the
total number is three.

119

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof (cont.)>

For each clause that has more than 3 literals, we split it into several clauses and add
addi@onal variables to preserve the sa<sfiability or non-sa<sfiability of the original
clause: each of the clauses can be replaced
with the clauses

 .

The conversion can be done in @me, where is the number of variables,
 is the number of clauses, and is the number of literals in the largest clause.

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk)
k − 2

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

O(n⋅m⋅k) n
m k

120

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

3SAT

<Proof (cont.)>

Now we prove that the sa<sfiability or non-sa<sfiability of the 3SAT problem is
preserved. That is, is sa@sfiable if and only if is sa@sfiable.

If is sa@sfiable, there exists a corresponding truth assignment in such that = 1
(TRUE). For each of the clauses with less than or equal to 3 literals in which is true,
the corresponding clause in is also true since we only duplicate the literals from
the same clause. For each clause with more than 3 literals in , since is sa@sfiable,
there must be at least one literal which has value 1. There exists a corresponding
true assignment in : = 1 for all , and = 0 for all .

F F′

F F′ F′

F
F′

F F
xt

F′ di i ≤ t − 2 di i ≥ t − 1

121

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

CNF 3SAT

3SAT

<Proof (cont.)>

Now we prove that the sa<sfiability or non-sa<sfiability of the 3SAT problem is
preserved. That is, is sa@sfiable if and only if is sa@sfiable.

If is sa@sfiable, there exists a corresponding truth assignment in such that = 1
(TRUE). For each of the clauses with less than or equal to 3 literals in which is true,
the corresponding clause in is also true since we only duplicate the literals from
the same clause. For each clause with more than 3 literals in , since is sa@sfiable,
there must be at least one literal which has value 1. There exists a corresponding
true assignment in : = 1 for all , and = 0 for all .

F F′

F F′ F′

F
F′

F F
xt

F′ di i ≤ t − 2 di i ≥ t − 1

122

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

CNF 3SAT

3SAT

<Proof (cont.)>

If is sa@sfiable, the corresponding truth assignment for variables , , ,
makes = 1 (TRUE). For each of the clauses with less than or equal to 3 literals in ,
all these clauses are TRUE since duplica@ng the literals from the same clause does
not change the TRUE/FALSE of a clause. For each clause with more than 3 literals in

, since is sa@sfiable, the corresponding clauses in must be all TRUE as no truth
value of a dummy literal can solely make more than two clauses TRUE.

F′ x1 x2 ⋯ xn
F F

F F′ F′

123

• Theorem: 3SAT = is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT 3SAT≤p

What Happened
• CNF-SAT 3SAT

• There may be some clause in the CNF-SAT instance that has fewer than 3
literals

• Duplicate existed literal

• There may be some clause in that has more than 3 literals

• make a chain of 3-clauses in , using dummy variables

• Each clause in is TRUE if and only if the corresponding (chain of) clauses in
are all TRUE

≤p

ϕ

⇒

ϕ

⇒ ϕ′

ϕ ϕ′

 (x1 ∨ x2) → (x1 ∨ x2 ∨ x2)

 (x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ ⋯ ∧ (dk−3 ∨ xk−1 ∨ xk)

124

Reduc@on and Hardness
• Reduc@on from problem to problem A B

125

Reduc@on and Hardness
• Reduc@on from problem to problem

• If we can solve ,

A B

B

126

Bw′

Yes

No

Reduc@on and Hardness
• Reduc@on from problem to problem

• If we can solve , we can solve

A B

B A

127

Bw′

Yes

No
No

w

A

f

Yes

Reduc@on and Hardness
• Reduc@on from problem to problem

• If we can solve , we can solve

• It implies that solving is at least as hard as solving

A B

B A

B A

128

Bw′

Yes

No
No

w

A

f

Yes

Reduc@on and Hardness
• Reduc@on from problem to problem

• If we can solve , we can solve

• It implies that solving is at least as hard as solving

• Problem is not harder than problem

A B

B A

B A

A B

129

Bw′

Yes

No
No

w

A

f

Yes

Reduc@on and Hardness
• Reduc@on from problem to problem

• If we can solve , we can solve

• It implies that solving is at least as hard as solving

• Problem is not harder than problem

• Problem is not easier than problem

A B

B A

B A

A B

B A

130

Bw′

Yes

No
No

w

A

f

Yes

NP-Hard

131

NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to
B

B

132

NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B

133

NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B

134

easy hard

NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B

135

easy hard
NP

NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B

136

easy hard
NP

NP-Hard

NP-Complete

137

easy hard
NP

NP-Hard

NP-complete

NP-Complete

138

easy hard
NP

NP-Hard

NP-complete

P

What Happened
• If we can reduce problem to problem , problem is not harder than

• NP-hard problems are those at least as hard as any problem in NP

• NP-complete problems are those “hardest” in NP

• The intersec@on of NP and NP-hard

A B A B

easy hard
NP

NP-Hard

NP-complete

P

139

NP-Completeness Revisit

140

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP NP
P

= NP-Complete
= NP

NP-Completeness Revisit

141

easy hard
NP

NP-Hard

NP-complete

P

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

142

easy hard
NP

NP-Hard

NP-complete

P

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

Bw′

Yes

No

Polynomial-@me

NP-Completeness Revisit

143

easy hard
NP

NP-Hard

NP-complete

P

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

Bw′

Yes

No

Polynomial-@me

NP-Completeness Revisit

144

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

Bw′

Yes

No

Yes

No

w f

Polynomial-@me func@on

Polynomial-@me

NP-Completeness Revisit

145

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

Polynomial-@me

NP-Completeness Revisit

146

easy hard
NP

NP-Hard

NP-complete

P
≤p

Can be solved in polynomial @me

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

Polynomial-@me

NP-Completeness Revisit

147

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

148

easy hard
NP

NP-Hard

NP-complete

P
≤p

Can be solved in polynomial @me

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

149

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

150

easy hard
NP

NP-Hard

NP-complete

P

Can be solved in polynomial @me

≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

151

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

152

easy hard
NP

NP-Hard

NP-complete

P

Can be solved in polynomial @me

≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

153

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

154

easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

NP-Completeness Revisit

155

easy hard
NP

NP-Hard

NP-complete

P

• If an NP-complete problem is shown to be polynomial-@me solvable, every
problem in NP can be solved in polynomial @me

P, NP, NP-Hard, and NP-Complete

156

easy hard
NP

NP-Hard

NP-complete

P

P, NP, NP-Hard, and NP-Complete

157

easy hard
NP

NP-Hard

NP-complete

P

Design a Turing machine and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

P, NP, NP-Hard, and NP-Complete

158

easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

P, NP, NP-Hard, and NP-Complete

159

easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard
if every problem in NP can be polynomial-@me reduced to it

P, NP, NP-Hard, and NP-Complete

160

easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard
if every problem in NP can be polynomial-@me reduced to it

A problem is NP-complete
if it is in NP and NP-hard

How to prove a problem is NP-Hard

161

How to prove a problem is NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to
B

B

162

easy hard
NP

NP-Hard

How to prove a problem is NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• To prove that a problem is NP-hard, we find a NP-complete problem and
reduce to

B
B

B A
A B

163

easy hard
NP

NP-Hard

NP-complete

How to prove a problem is NP-Hard
• Defini@on: A problem is NP-hard if all problems in NP can be polynomial-@me

reduced to

• To prove that a problem is NP-hard, we find a NP-complete problem and
reduce to

• An NP-complete problem is NP-hard and all problems in NP can be reduced to it

B
B

B A
A B

164

easy hard
NP

NP-Hard

NP-complete

How to prove P, NP, NP-Hard, or NP-Complete

165

easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and
show it correctly accepts every

and rejects any
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard
if there exists an NP-complete problem

that can be polynomial-@me reduced to it

A problem is NP-complete
if it is in NP and NP-hard

Tattoo this on your arm

• If you want to prove some problem is NP-hard, reduce some NP-
complete problem to .

Q
Q′ Q

166

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

167

SUBSET-SUM
• SUBSET-SUM and there exists a subset

 such that

• Ex: = 2, 2, 3, 4, 5, 8 , =

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 12

2 3

4

5
8

2

168

SUBSET-SUM
• SUBSET-SUM and there exists a subset

 such that

• Ex: = 2, 2, 3, 4, 5, 8 , =

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 15

2 3

4

5
8

2

Yes-instance

169

SUBSET-SUM
• SUBSET-SUM and there exists a subset

 such that

• Ex: = 2, 2, 3, 4, 5, 8 , =

• Ex: = 2, 2, 3, 4, 5, 8 , =

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 15

S { } t 23

2 3

4

5
8

2

No-instance

Yes-instance

170

SUBSET-SUM
• 3SAT is a sa@sfiable 3-CNF

Boolean formula
= {⟨ϕ⟩ | ϕ

}
• SUBSET-SUM

and there exists a subset
 such that

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

171

SUBSET-SUM
• 3SAT is a sa@sfiable 3-CNF

Boolean formula
 variables , , ,
 clauses , , ,

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM
and there exists a subset

 such that

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

172

SUBSET-SUM
• 3SAT is a sa@sfiable 3-CNF

Boolean formula
 variables , , ,
 clauses , , ,

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM
and there exists a subset

 such that

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1 1 1

1 1
xi

 yi =

 zi =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

For every variable in 3SAT, create two numbers and
in :

• The decimal of is , and all the decimals in the

first decimals of are . The decimal of
is if and only if the clause contains literal .

• The decimal of is , and all the decimals in the

first decimals of are . The decimal of
is if and only if the clause contains literal .

xi yi zi
S

ith yi 1

l yi 0 (ℓ + j)th yi
1 cj xi

ith zi 1

l zi 0 (ℓ + j)th zi
1 cj xi

173

SUBSET-SUM
• 3SAT is a sa@sfiable 3-CNF

Boolean formula
 variables , , ,
 clauses , , ,

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM
and there exists a subset

 such that

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1

1

1

1

xi

 yi =

 zi =

kj

 gj =

 hj =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

For every clause in 3SAT, create two numbers and

in . These two numbers are equal and consist of single

at the decimal and all other decimals are ’s.

cj gj hj

S 1
(ℓ + j)th 0

c1 c2 cj ck

174

SUBSET-SUM
• 3SAT is a sa@sfiable 3-CNF

Boolean formula
 variables , , ,
 clauses , , ,

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM
and there exists a subset

 such that

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1

1

1

1

11 1 1 1 1 31 3 3 3 3 t =

xi

 yi =

 zi =

kj

 gj =

 hj =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

Finally, set the target with ’s followed by ’s. t l 1 k 3

175

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

176

clause 1 clause 2 clause 3 clause 4

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

177

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

If there is a subset with sum , a ’s of the first
decimals must come from a or for some .

t 1 ℓ
yi zi xi

178

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

There are at most three ’s in each column

represen@ng the clause.

1
jth

179

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

If there is a subset with sum , there must be at least
 contributed by the numbers from the variables.

t
1

Only two ’s here1

180

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If is sa@sfiable, there exists an assignment (,
,) such that every clause has at least one .

If , choose as part of the subset. Otherwise,
choose . Further select enough of the and numbers

to bring each of the last decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF

181

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If is sa@sfiable, there exists an assignment (,
,) such that every clause has at least one .

If , choose as part of the subset. Otherwise,
choose . Further select enough of the and numbers

to bring each of the last decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF

182

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If is sa@sfiable, there exists an assignment (,
,) such that every clause has at least one .

If , choose as part of the subset. Otherwise,
choose . Further select enough of the and numbers

to bring each of the last decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF

183

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If is sa@sfiable, there exists an assignment (,
,) such that every clause has at least one .

If , choose as part of the subset. Otherwise,
choose . Further select enough of the and numbers

to bring each of the last decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF

184

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

Since the assignment is feasible, each is either or
 for any , either or is chosen
 for each of the first decimals, the sum is

xi T F
⇒ i yi zi
⇒ ℓ 1

T FF

185

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

186

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

For any , and can contribute at most two, so at least one come

from some or . Therefore, every clause has at least one true literal
(that is, the or).

j gj hj 1
yi zi
yi zi

187

0

SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from

variables

from
clauses

SUBSET-
SUM⟨S, t⟩

Yes (has
a sum- subset)

S
t

No (has
no sum- subset)

S
t

Yes (is sa@sfiable)ϕ

No (is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

Suppose that there is a subset of sums to . We construct a sa@sfying
assignment to : if the subset contains , we assign ; otherwise,
we assign it . Since exactly one among and can be chosen, the
assignment is feasible. For any , and can contribute at most two, so

at least one come from some or . Therefore, every clause has at
least one true literal

S t
ϕ yi xi = T

F yi zi
j gj hj

1 yi zi
188

0

1

SUBSET-SUM

189

• Theorem: SUBSET-SUM is NP-complete

<proof idea> We prove that all languages in NP are polynomial @me reducible to
SUBSET-SUM by reducing the NP-complete language 3SAT to it. Given a 3cnf-formula

 we construct an instance of the SUBSET-SUM problem that contains a
subcollec@on summing to the target if and only if is sa@sfiable.

SUBSET-SUM = {⟨S, t⟩ |S = {x1, x2, ⋯, xn} and for some {y1, ⋯, ym} ⊆ S, we have Σyi = t}

ϕ
k ϕ

• Theorem: SUBSET-SUM is NP-Hard

SUBSET-SUM

190

• Theorem: SUBSET-SUM is NP-complete

<proof> To prove the NP-hardness of SUBSET-SUM, it is sufficient to reduce the NP-
complete problem 3SAT to it. Given a 3cnf-formula with variables and clauses

, we construct an instance of the SUBSET-SUM problem, , contains large
numbers with decimals. For each variable in , there are two numbers in .

• The i-th decimal of is 1, and all the decimals in the first decimals of are 0. The
()-th decimal of is 1 if and only if the clause contains literal .

• The i-th decimal of is 1, and all the decimals in the first decimals of are 0. The
()-th decimal of is 1 if and only if the clause contains literal .

ϕ x1, ⋯, xl
c1, ⋯, ck ⟨S, t⟩

l + k xi ϕ yi, zi S
yi l yi

l + j yi cj xi

zi l yi
l + j zi cj xi

• Theorem: SUBSET-SUM is NP-Hard

SUBSET-SUM

191

Addi@onally, contains one pair of numbers for each clause , These two

numbers are equal and consists of single 1 at the ()-th decimal and all other
decimals are 0s.

Finally, the target number consists of 1s and followed by 3s.

The construc@on for each number in takes @me since every decimal
needs at most @me to check. There are numbers, so the total
construc@on @me is @mes which is polynomial in the size of .

S gj, hj cj

l + j

t l k

S O(k(l + k))
3k 2l + 2k

O((l + k)3) ⟨ϕ⟩

SUBSET-SUM

192

Now we show why this construc@ons works by demonstra@ng that is sa@sfiable if
and only if some subset of sum to .

Suppose is sa@sfiable. We construct a subset of as follows. We select if is
assigned true in the sa@sfying assignment and if is assigned false. For each of
the first decimals, the sum is exactly 1 since the assignment is legal. Furthermore,
each of the last decimals is between 1 to 3 because each of the 3-literal clauses
has at least one true literal. By selec@ng enough of the and numbers to bring
each of the last decimals up to 3, the large target is hit.

ϕ
S t

ϕ S yi xi
zi xi

l
k

g h
k

SUBSET-SUM

193

Suppose that a subset of sums to . We construct a sa@sfying assignment to .
First we observe that no carry into the next decimal is needed since all the decimals
in members of are either 0 or 1 and each decimal altogether contains at most five
1s. Hence, to get a 1 in each of the first decimals, the subset must have either or

 for each , but not both.
Now we make the sa@sfying assignment. If the subset contains , we assign true;
otherwise, we assign it false. Since in each of the final decimals the sum is always
3 and there are at most two 1s coming from or , there is at least one 1 coming
from some or . Hence this assignment sa@sfies .

S t ϕ

S
l yi

zi i
yi xi

k
gi hi

yi zi ϕ

What Happened
• 3SAT SUBSET-SUM

• There may be some clause in the CNF-SAT instance that has fewer than 3
literals

• Duplicate existed literal

• There may be some clause in that has more than 3 literals

• make a chain of 3-clauses in , using dummy variables

• Each clause in is TRUE if and only if the corresponding (chain of) clauses in
are all TRUE

≤p

ϕ

⇒

ϕ

⇒ ϕ′

ϕ ϕ′

194

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

195

CLIQUE
• Clique: a graph in which every pair of ver@ces are adjacent

196

CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum

clique in ?
G

G

197

CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum

clique in ?
G

G

198

CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum

clique in ?

• Decision version? Given a graph , is there a clique of size at least in ?

• An instance of CLIQUE is ,

G
G

G k G

⟨⟨G⟩ k⟩

199

CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum

clique in ?

• Decision version: Given a graph , is there a clique of size at least in ?

• An instance of CLIQUE is ,

G
G

G k G

⟨G k⟩

200

New parameter!

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

201

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

202

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

203

? = ?k

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

204

? = ?k

sa@sfiable

There is a -clique in k G

⇕

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

205

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

For each clause containing three literals ,

there are three ver@ces , , and in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

206

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

For each clause containing three literals ,

there are three ver@ces , , and in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

207

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

For each clause containing three literals ,

there are three ver@ces , , and in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

208

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

For each clause containing three literals ,

there are three ver@ces , , and in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, k⟩ | G
k}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

209

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

For each clause containing three literals ,

there are three ver@ces , , and in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

210

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

If there are clauses in , let be m ϕ k m

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

211

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge in if and only if

• The two ver@ces and come from
different clauses, and

• The corresponding literals of and
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

212

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge in if and only if

• The two ver@ces and come from
different clauses, and

• The corresponding literals of and
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

213

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge in if and only if

• The two ver@ces and come from
different clauses, and

• The corresponding literals of and
are not the nega<on to each other.

(lx, ly) E
lx ly

lx ly

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

214

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge in if and only if

• The two ver<ces and come from
different clauses, and

• The corresponding literals of and
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

215

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge in if and only if

• The two ver@ces and come from
different clauses, and

• The corresponding literals of and
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

216

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

217

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

218

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

Consult the sa@sfying assignment
to construct a solu@on to CLIQUE

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

219

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

There is an edge between each pair of
 corresponding ver@ces in

(They are not in the same clause,
and can be TRUE at the same <me)

m G

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

220

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

⇓

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge between each pair of
 corresponding ver@ces in

(They are not in the same clause,
and can be TRUE at the same <me)

m G

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

221

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

222

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

 is a yes-instance there is a -clique in ⟨G, m⟩ ⇒ m G

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

223

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

Consult the -clique to construct
a truth-assignment to 3SAT:

Set the corresponding variables as TRUE

m

⇑

 is a yes-instance there is a -clique in ⟨G, m⟩ ⇒ m G

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

224

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge between each pair of
the corresponding ver@ces in

 By our construc@on, they are from different
clauses and can be TRUE at the same @me

m G
⇒

CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

225

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

There is an edge between each pair of
the corresponding ver@ces in

 By our construc@on, they are from different
clauses and can be TRUE at the same @me

m G
⇒

The constructed assignment is sa@sfying
since there is at least one TRUE in each clause⇓

CLIQUE

<Proof> Polynomial-@me reduc@on from 3SAT

For any instance of 3SAT, , we generate an instance of
CLIQUE, and , as follows:

For each clause containing three literals , there are three ver@ces in .

ϕ = C1 ∧ C2 ∧ ⋯ ∧ Cm
G = (V, E) k

Ci li1, li2, li3 V

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

226

CLIQUE

<Proof (cont.)> For any pair of ver@ces in there is an edge in if and
only if
• The two ver@ces and come from different clauses, and

• The corresponding literals of and are not the nega@on to each other.

Finally, we let equals to , the number of clauses in .

The construc@on can be done in polynomial @me since and there are

 edges, where each of the edges needs constant @me to check.

lx, ly V, (lx, ly) E

lx ly
lx ly

k m ϕ

|V | = 3m
O(m2)

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

227

CLIQUE

<Proof (cont.)> Now we show that the reduc@on works by showing that there is a
sa@sfying assignment to if and only there is a -clique in .

Suppose that has a sa@sfying assignment, we construct a -clique by selec@ng one
of the ver@ces which are corresponding to a literal with “TRUE” value from each of
the clauses. Since is sa@sfiable, there must be one of such a literal in every clause.
As the sa@sfying assignment is feasible, every variable is assigned to either TRUE or
FALSE but not both. Hence, there must be an edge between two ver@ces picked
from different clauses. Therefore, the picked ver@ces form a -clique.

ϕ k G

ϕ k

ϕ

k

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

228

CLIQUE

<Proof (cont.)> Suppose that has a clique of size . No edges in connect
ver@ces in the same clause, so contains exactly one vertex form each of the
clauses. We assign value TRUE to the corresponding literal. It is a feasible
assignment since there is no edges between literals corresponding to and for
each variable . Hence, each clause has one literal which is assigned TRUE and the
formula is sa@sfied.

G V′ k G
V′ k

x x̄
x

ϕ

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

229

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

230

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable There is a truth assignment
such that there is at least one TRUE in each clause

⇒

Put the corresponding ver@ces in the clique
There is an edge between each pair of

 corresponding ver@ces in
(Because they are not in the same clause,

and can be TRUE at the same @me)

m G

⇓

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa@sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

 (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

231

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

Set the corresponding variables as TRUE
There is at least one TRUE in each clause

If there is a -clique in m G

⇑

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

232

PARTITION
• PARTITION and for some subset ,

we have

•

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

233

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { }

234

1 3

4

5
8

1

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8 = 3, 8

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { }

235

1 3

4

5
8

1

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8 = 3, 8 and = 1, 1, 4, 5

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

236

1 3

4

5
8

1

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8 = 3, 8 and = 1, 1, 4, 5

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

237

11 11

Yes-instance

1 3

4

5
8

1
11 11

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8 = 3, 8 and = 1, 1, 4, 5

• Ex: = 2, 2, 2, 2, 4, 6 No answer

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

S { } ⇒

238

11 11

Yes-instance

2 4
2

6
2 2

PARTITION
• PARTITION and for some subset ,

we have

• Ex: = 1, 1, 3, 4, 5, 8 = 3, 8 and = 1, 1, 4, 5

• Ex: = 2, 2, 2, 2, 4, 6 No answer

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

S { } ⇒

239

11 11

Yes-instance

No-instance

BIN-PACKING
• Given a finite set of items and a ra@onal size for

each item , find a par@@on of into disjoint subsets such
that the sum of the sizes of the items in each is no more than and such that
is as small as possible.

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

240

BIN-PACKING
• Given a finite set of items and a ra@onal size for

each item , find a par@@on of into disjoint subsets such
that the sum of the sizes of the items in each is no more than and such that
is as small as possible.

• What is the decision version of the bin-packing problem?

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

241

BIN-PACKING
• Given a finite set of items and a ra@onal size for

each item , find a par@@on of into disjoint subsets such
that the sum of the sizes of the items in each is no more than and such that
is as small as possible.

• What is the decision version of the bin-packing problem?

• Given a finite set of items, can they be packed into at most bins?

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

U k

242

BIN-PACKING
• Given a finite set of items and a ra@onal size for

each item , find a par@@on of into disjoint subsets such
that the sum of the sizes of the items in each is no more than and such that
is as small as possible.

• What is the decision version of the bin-packing problem?

• Given a finite set of items, can they be packed into at most bins?

• Theorem: BIN-PACKING is NP-complete

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

U k

243

BIN-PACKING
• PARTITION

 and for some subset

 , we have

= {⟨S⟩ |
S = {x1, ⋯, xn} T =

{y1, ⋯, ym}⊂ S ∑
yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

244

Reduce PARTITION to BIN-PACKING

245

BIN-
PACKING⟨U, k⟩

Yes

No

Yes

No

⟨S⟩

PARTITION

f

• PARTITION
 and for some subset

 , we have

= {⟨S⟩ |
S = {x1, ⋯, xn} T =

{y1, ⋯, ym}⊂ S ∑
yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

Reduce PARTITION to BIN-PACKING

246

• PARTITION
 and for some subset

 , we have

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1 1

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

3 4
5

8
S = {1,1,3,4,5,8}

Reduce PARTITION to BIN-PACKING

247

• PARTITION
 and for some subset

 , we have

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1 1

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

3 4
5

8
S = {1,1,3,4,5,8}

Items in with size U s(ui) =
yi

sum of S/2

3/11 4/11
5/11

8/11

1/11 1/11

sum of S
2

=
22
2

= 11

Reduce PARTITION to BIN-PACKING

248

• PARTITION
 and for some subset

 , we have

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1
1

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

3

4

5

8
3/11 4/11

5/11

8/11

1/11 1/11

Items in with size U s(ui) =
yi

sum of S/2

S = {1,1,3,4,5,8}

Reduce PARTITION to BIN-PACKING

249

• PARTITION
 and for some subset

 , we have

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING can be
par@@oned into at most disjoint
subsets such that the total size of the
items in each subset is no more than

= {⟨U, k⟩∣ U
k

1}

3/11

4/11

5/11

8/11

1/11

1/11

If there is a par@@on The items can be packed in bins2

1
1 3

4

5

8

If there is a packing in bins, the items in each bin have the same total size,
and the corresponding numbers form an equal-sum par@@on.

2

If there exists an equal-sum par@@on, the corresponding
items in each part can be packed in one bin.

BIN-PACKING
• BIN-PACKING can be par@@oned into at most disjoint subsets

such that the total size of the items in each subset is no more than

• Theorem: BIN-PACKING is NP-complete

<proof> To prove that BIN-PACKING is in NP, we use a -par@@on of as the
cer@ficate. The verifier should check if this par@@on is a proper par@@on of , and if
each subset has sum no more than . The checking @me is in polynomial of the
number of elements in .

= {⟨U, k⟩ |U k
1}

k U
U

1
U

250

BIN-PACKING
To prove the NP-hardness, we show that PARTITION BIN-PACKING. For any

instance of PARTITION, , we construct an instance of BIN-PACKING, as
follows. For each element , there is a corresponding element in and

, where is half of the sum of all elements in . We set . The

construc@on can be done in polynomial @me.

≤p

S S′ and k
ai ∈ S ui S′

s(ui) =
2 ⋅ ai

X
X S k = 2

251

BIN-PACKING
Now we prove that the reduc@on works. Suppose that there is a par@@on of ,
and . For all elements , the sum is . The sum of corresponding ’s is , so
the corresponding items can be placed in one bin. It also holds for . Hence, the
items can be packed into bins.

For the other direc@on, suppose that the items in can be packed in two bins. Each
of the bin has total size since the total size of all items in is

. The corresponding two subsets of has equal size and form a

par@@on.

S S1
S2 ai ∈ S1 X ui 1

S2
2

S′

1 S′

Σi s(ui) =
Σi ai

X
= 2 S

252

Special Case and Hardness

easy hard

General case
(arbitrary number of bins)

Special case
(bins)2

The special case is not harder than the general case

253

NP-Hard

Special Case and Hardness

easy hard

General case
(arbitrary number of bins)

Special case
(bins)2

≤p

NP-Complete

254

NP

NP-Hard

Special Case and Hardness

easy hard

General case
(arbitrary number of bins)

Special case
(bins)2

≤p

NP-Complete

If the special case is NP-complete,
it does not imply that the general case is also NP-complete

255

NP

NP-Hard

Special Case and Hardness

easy hard

General case
(arbitrary number of bins)

Special case
(bins)2

≤p

NP-Complete

If the general case is NP-complete,
it implies that the special case is also NP-complete

256

P

NP

NP-Hard

Special Case and Hardness

easy hard

General case
(arbitrary number of bins)

Special case
(bins)2

It’s also possible!

257

Special case and general case

258

A

Special case and general case
• is in P: for any instance , it can be decided if or in polynomial

@me
A w w ∈ A w ∉ A

259

A

Special case and general case

260

A special case of is NP-hardA

A

Special case and general case

261

A special case of is NP-hardA

A is NP-hardA

Special case and general case

262

A is NP-hardA

Special case and general case

263

A is NP-hardA

Maybe there is s@ll a special case of that is polynomial @me solvableA

Outline
• NP-Completeness

• NP-hardness: Polynomial @me reduc@on

• CNF-SAT 3SAT

• 3SAT SUBSET-SUM

• 3SAT CLIQUE

• PARTITION BIN-PACKING

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p

264

Cook-Levin Theorem
• The first NP-complete problem: sa<sfiability problem

• Cook-Levin theorem: SAT P iff P = NP
 SAT is NP-complete

SAT = {⟨ϕ⟩ |ϕ is a sa@sfiable Boolean formaula}

∈
↔

265

SAT is NP-complete

266

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

267

Running <me
 f(n) = poly(n)

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □

268

• If language is in NP, there is a non-
determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

nk

nk

SAT is NP-complete

a b c qt d e f

c c g g a qs a g

q0 w1 w2 w3 ⋯ wn □ ⋯ □

269

a b c d e fqt

c c g g a aqs g

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □

270

Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □

271

Start configuration

Accepting configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □

272

Start configuration

Second configuration

Third configuration

Accepting configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

q0 w1 w2 w3 ⋯ wn □ ⋯ □

273

Start configuration

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura<on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

274

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

 ϕcell = ⋀
i,j∈[1,nk] ((⋁

state qs

xi,j,ws) ∧ (⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura<on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

275

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

 ϕcell = ⋀
i,j∈[1,nk] ((⋁

state qs

xi,j,ws) ∧ (⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))

at least one state

at most one state

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star<ng

configura<on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

276

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

 ϕstart = x1,1,q0
∧ x1,2,w1

∧ x1,3,w2
∧ ⋯ ∧ x1,nk,□

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep<ng configura<on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

277

Second configuration

Third configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

 ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

qaccAccepting configuration

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep<ng configura<on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

278

Second configuration

Third configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

 ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

qacc Accepting configuration

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

279

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

q1

• State and read : write , move to the right

• State and read :
• write , enter , move to the leu, or
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a aq1

b a b aq1a a

a b

ba

b

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

280

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

q2

• State and read : write , move to the right

• State and read :
• write , enter , move to the leu, or
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a aq1

b a aq2 b a a a aq3b

a

aa

a

b

c

c

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

281

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a q2

• State and read : write , move to the right

• State and read :
• write , enter , move to the leu, or
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aba

a

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

282

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a q2

• State and read : write , move to the right

• State and read :
• write , enter , move to the leu, or
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aba

a

a b b

a b b

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

283

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a

• State and read : write , move to the right

• State and read :
• write , enter , move to the leu, or
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aa

a

b

bq2

b a b

a b

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura<ons corresponding to

consecu<ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

s

284

Second configuration

Third configuration

Accepting configuration

 if the cell is the symbolxrow, column, symbol = 1 [i, j]
, , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a

a

a

b

bq2

b a b

a b

 ϕmove = ⋁
i,j∈[1,nk]

the (i, j) window is legal

nk

nk s

Second configuration

Third configuration

Accepting configuration

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

SAT is NP-complete
• If language is in NP, there is a non-

determinis@c Turing machine (NTM) that
accepts in steps

• There is a table with size such that
1. Each row in the table is a

configura@on of the NTM
2. The first row is the star@ng

configura@on
3. There is a accep@ng configura@on
4. The configura@ons corresponding to

consecu@ve rows follow the NTM’s
rules

A

w ∈ A O(nk)
nk × nk

285

 ϕcell = ⋀
i,j∈[1,nk] ((⋁

state qs

xi,j,ws) ∧ (⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))

 ϕstart = x1,1,q0
∧ x1,2,w1

∧ x1,3,w2
∧ ⋯ ∧ x1,nk,□

 ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

 ϕmove = ⋁
i,j∈[1,nk]

the (i, j) window is legal

 iff is sa@sfiablew ∈ A ϕcell ∧ ϕstart ∧ ϕaccept ∧ ϕmove
Time for construc@on:

: , , and : ϕstart O(nk) ϕcell ϕaccept ϕmove O(n2k)

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduce to A B

286

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func@on
that transforms every to
in polynomial @me

w w′

