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Turing machine

• An infinitely long tape/memory 

• Ini@ally contains the (finite) input sequence and is blank everywhere else 

• A tape head that can read and write symbols and move around on the tape 

• Finite-state control 

• The Turing machine may end up with an accept state or reject state 

• It accepts the input or rejects the input
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Non-Determinis@c Turing machine

• Like the (determinis@c) Turing machine, but have non-determinis@c behavior 

• If there is a path ends at an accept state, the input is accepted
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Formal Language Framework 
• Following the vein of Turing machine concept,  a language is a set of strings 

• Language  problem 

• String  instance 

• Asking if a string is in a language  
 if the instance sa@sfies the property that the problem asks 

• Given a problem/language, a instance/string is a 

• yes instance: an instance that sa@sfies the property that the problem asks 

• no instance: an instance that does not sa@sfy the property that the problem asks

⇔

⇔

⇔
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Class P and Class NP
• The class P is the class of languages that are accepted or rejected in polynomial 

@me by a determinis-c Turing machine 

• The class NP is the class of languages that are accepted in polynomial @me by a 
non-determinis-c Turing machine.
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Cer@ficate and (Polynomial-@me) Verify
• A language  is verifiable if for any of its yes-instances , there exists a piece of 

hint (cer@ficate)  such that using this hint , one can be convinced that  is 
indeed a yes-instance of  

• Only yes-instances have cer@ficates 

• Polynomial-<me verifiable: the verifica@on can be done in @me of polynomial in 
input length 

• The hint size should also be polynomial 

• It does NOT mean that the hint  should be constructed within polynomial 
@me!

A w
c c w
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Class NP Alterna@ve Defini@on
• The class P is the class of languages that are accepted or rejected in polynomial 

@me by a determinis@c Turing machine 

• The class NP is the class of languages that can be verified in polynomial @me by a 
determinis@c Turing machine.
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Prove NP Membership
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• To show that a problem is in NP, we can show that it is polynomial-@me verifiable 

<Proof Idea>  

1. Show that for any yes instance , there is a cer@ficate . 

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial @me (in the length of )
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Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p
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Cook-Levin Theorem
• In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such 

that if SAT can be solved (by a determinis@c Turing machine) in polynomial @me, then all 
problems in NP can be solve in polynomial @me. 

• That is, SAT can be solved in polynomial @me only if P = NP 

• If someone shows that SAT can be solved in polynomial @me, then (s)he proves that P = 
NP 

• In 1973, Leonid Levin published a paper based on his previous talks and claimed similar 
theories with the one in Cook’s paper 

• In 1972, Richard Karp published another paper and proved that there are other 21 
problems also have the property that if they can be solved in polynomial @me, then P = NP 

• These problems form a class NP-Complete
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and opera@ons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is sa<sfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable Boolean formula}
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NP-Complete
• The NP-complete problems are “the most difficult” ones among all the problems in NP  

• If an NP-complete problem is shown to be polynomial-@me solvable, every problem 
in NP can be solved in polynomial @me 

• A researcher who aiempts to prove that P equals NP only need to find a 
polynomial @me algorithm for an NP-complete problem to achieve this goal 

• If any problem in NP requires more than polynomial @me, an NP-complete one does  

• The phenomenon of NP-completeness may prevent was@ng @me searching for a 
nonexistent polynomial @me algorithm to solve a par@cular problem  

• The problems Maximum Clique, Minimum Vertex Cover, Par@@on, Subset Sum are all 
NP-complete problems
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How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving  directly, we can show that we 
are able to solve  by using an (existed) algorithm for solving another problem 

.
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How do we know if a problem is “difficult”?

• We want to solve problem . Instead of solving  directly, we can show that we 
are able to solve  by using an (existed) algorithm for solving another problem 

. According to the answer to problem , we know the answer to problem . 

• Ex:  

• Problem : Can I travel to New Zealand 

• Problem : Do I earn enough money 

• If I earn enough money, I can travel to New Zealand;  
If I don’t have enough money, I cannot travel to New Zealand. 
(  If I travel to New Zealand, I must have enough money.)
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How do we know if a problem is “difficult”?

• We want to solve problem  

• That is, given any instance , we want to answer yes if    and answer no 
otherwise 

• Instead of solving  directly, we can show that we are able to solve  by using 
an (existed) algorithm for solving another problem  

• The -solver (algorithm for solving ) returns yes if the input    and 
returns no if    

• This -solver might be hypothe@cal
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w′ ∉ B

B
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• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A
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3. Show that for any  

no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A



• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A
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• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on
3. Show that for any  

no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A



• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A
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• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on
3. Show that for any  

no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A

3. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w ∈ A

w′ B



• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A

Polynomial-Time Reduc@on   A ≤p B
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• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w′ ∈ B

w A

3. Show that for any  
no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A

3. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w ∈ A

w′ B

1. Show that there is a func@on  
that transforms every  to   
in polynomial @me

w w′ 



• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A
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• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w′ ∈ B

w A

3. Show that for any  
no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A

3. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w ∈ A

w′ B

1. Show that there is a func@on  
that transforms every  to   
in polynomial @me

w w′ 



Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p
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CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}
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CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}
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CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}
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literals



CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}
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clause



CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}
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Only “or”s in each clause



CNF-SAT
• Conjunc@ve normal form (CNF): 

                           

• Variables:    

• CNF-SAT = 

( x1 ∨ x2 ) ∧ ( x1 ∨ x2 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x2 ∨ x2 )

x1, x2, ⋯, xn

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable conjunc@ve normal form Boolean formula}

66

“and”s between clauses



3SAT
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3SAT
• A Boolean formula is a 3CNF-formula if it is in conjunc@ve normal form and all the 

clauses have exactly three literals. 

• Example:                                

• 3SAT =  is NP-Complete

( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x4 ) ∧ ( x2 ∨ x3 ∨ x5 ) ∧ ( x2 ∨ x2 ∨ x4 )

{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

68

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

 ?  ?  ?    ?  ?  ?    ?  ?  ?   ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ⋯A 3-CNF Boolean formula

Sa@sfiable

Sa@sfiable
⇕↓ Polynomial @me func@on

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

 ?  ?  ?    ?  ?  ?    ?  ?  ?   ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

         ?  ?  ?    ?  ?  ?   ( x1 ∨ x2 ∨ x3 ) ∧ ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p

The clause is true iff the original clause is true



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

         ?  ?  ?    ?  ?  ?   ( x1 ∨ x2 ∨ x3 ) ∧ ( ∨ ∨ ) ∧ ( ∨ ∨ ) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

                 ?  ?  ?   ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x1 ∨ x1 ) ∧ ( ∨ ∨ ) ∧ ⋯A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p

The clause is true iff the original clause is true



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

                 ?  ?  ?    ?  ?  ? ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x1 ∨ x1 ) ∧ ( ∨ ∨ ) ∧ ( ∨ ∨ )A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

                 ?  ?  ?         ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x1 ∨ x1 ) ∧ ( ∨ ∨ ) ∧ ( x1 ∨ x2 ∨ x2 )A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p

The clause is true iff the original clause is true



3SAT

<Proof Idea> Polynomial @me reduc@on from CNF-SAT (since we have known that 
CNF is NP-Complete)
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}

3SAT⟨ϕ′ ⟩
Yes (  is sa@sfiable)ϕ′ 

No (  is NOT sa@sfiable)ϕ′ 

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ
⟨ϕ⟩

CNF-SAT

f

                          ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ) ∧ ( x2 ∨ x3 ∨ x4 ∨ x5 ) ∧ ( x1 ∨ x2 )Any CNF Boolean formula

                 ?  ?  ?         ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x1 ∨ x1 ) ∧ ( ∨ ∨ ) ∧ ( x1 ∨ x2 ∨ x2 )A 3-CNF Boolean formula
↓

• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )

82

• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )

84

• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

Dummy variable: no single dummy variable can make more than one clause TRUE



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

001



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

0010



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 1



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 1 0



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 11 0



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is TRUE, at least one literal is 1

1000 00

1000 0 0
TRUE

00101 1 0 11 0

If the (big) clause is TRUE, there exists an assignment to  such that the sequence of 3-clauses are all TRUE.ϕ′ 



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )

111

• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is FALSE, every literal is 0

0000 00

0000 0 0

If the (big) clause is FALSE, there exists NO assignment to  such that the sequence of 3-clauses are all TRUE 
since no single dummy variable can make more than one clause TRUE

ϕ′ 



3SAT

<Proof Idea>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal (dummy) variables 

For example:                can be replaced with the  
clauses 

                                 .

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk ) k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

If this clause is FALSE, every literal is 0

0000 00

0000 0 0

If the (big) clause is FALSE, there exists NO assignment to  such that the sequence of 3-clauses are all TRUE 
since no single dummy variable can make more than one clause TRUE

ϕ′ 

At most one TRUE At most one TRUE



3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa@sfiable if and only if  is sa@sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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• CNF-SAT  3SAT≤p



3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa@sfiable if and only if  is sa@sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa@sfiable if and only if  is sa@sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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• CNF-SAT  3SAT≤p

3SATw′ 

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF-SAT



3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa<sfiable if and only if  is sa<sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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• CNF-SAT  3SAT≤p

3SATw′ 

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF-SAT



3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa<sfiable if and only if  is sa<sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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• CNF-SAT  3SAT≤p

3SATw′ 

Yes

No

Yes

No

w f

Polynomial-@me func@on

CNF 3SAT

CNF-SAT



3SAT

<Proof> Polynomial @me reduc@on from CNF-SAT (since we have known that CNF is 
NP-Complete). 

To reduce CNF-SAT to 3SAT, we convert any CNF-formula  into a 3CNF-formula , 
with  is sa<sfiable if and only if  is sa<sfiable: 

First, let , , ,  be the clauses in . If  is a 3CNF-formula, we just set  = . 

Otherwise, the only reasons why  is not a 3CNF-formula are: 

1. Some clauses  has less than 3 literals, or 

2. Some clauses  has more than 3 literals.

F F′ 

F F′ 

C1 C2 ⋯ Cm F F F′ F

F

Ci

Ci
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• CNF-SAT  3SAT≤p

3SATw′ 

Yes

No

Yes

No

w

CNF-SAT

f

Polynomial-@me func@on



3SAT

<Proof (cont.)>  

For each clause that has less than 3 literals, we duplicate one of the literals un@l the 
total number is three.
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof (cont.)>  

For each clause that has more than 3 literals, we split it into several clauses and add 
addi@onal variables to preserve the sa<sfiability or non-sa<sfiability of the original 
clause: each of the clauses                can be replaced 
with the  clauses 

                                 . 

The conversion can be done in  @me, where  is the number of variables, 
 is the number of clauses, and  is the number of literals in the largest clause.

( x1 ∨ x2 ∨ x3 ∨ x4 ∨ ⋯ ∨ xk−1 ∨ xk )
k − 2

( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )

O(n⋅m⋅k) n
m k
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



3SAT

<Proof (cont.)>  

Now we prove that the sa<sfiability or non-sa<sfiability of the 3SAT problem is 
preserved.  That is,  is sa@sfiable if and only if  is sa@sfiable. 

If  is sa@sfiable, there exists a corresponding truth assignment in  such that  = 1 
(TRUE). For each of the clauses with less than or equal to 3 literals in  which is true, 
the corresponding clause in  is also true since we only duplicate the literals from 
the same clause. For each clause with more than 3 literals in , since  is sa@sfiable, 
there must be at least one literal  which has value 1. There exists a corresponding 
true assignment in :  = 1 for all , and  = 0 for all .

F F′ 

F F′ F′ 

F
F′ 

F F
xt

F′ di i ≤ t − 2 di i ≥ t − 1
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CNF 3SAT



3SAT

<Proof (cont.)>  

Now we prove that the sa<sfiability or non-sa<sfiability of the 3SAT problem is 
preserved.  That is,  is sa@sfiable if and only if  is sa@sfiable. 

If  is sa@sfiable, there exists a corresponding truth assignment in  such that  = 1 
(TRUE). For each of the clauses with less than or equal to 3 literals in  which is true, 
the corresponding clause in  is also true since we only duplicate the literals from 
the same clause. For each clause with more than 3 literals in , since  is sa@sfiable, 
there must be at least one literal  which has value 1. There exists a corresponding 
true assignment in :  = 1 for all , and  = 0 for all .

F F′ 

F F′ F′ 

F
F′ 

F F
xt

F′ di i ≤ t − 2 di i ≥ t − 1

122

• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p

CNF 3SAT



3SAT

<Proof (cont.)>  

If  is sa@sfiable, the corresponding truth assignment for variables , , ,  
makes  = 1 (TRUE). For each of the clauses with less than or equal to 3 literals in , 
all these clauses are TRUE since duplica@ng the literals from the same clause does 
not change the TRUE/FALSE of a clause. For each clause with more than 3 literals in 

, since  is sa@sfiable, the corresponding clauses in  must be all TRUE as no truth 
value of a dummy literal can solely make more than two clauses TRUE.

F′ x1 x2 ⋯ xn
F F

F F′ F′ 
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• Theorem: 3SAT =  is NP-Hard{⟨ϕ⟩ ∣ ϕ is a sa@sfiable 3-CNF Boolean formula}• CNF-SAT  3SAT≤p



What Happened
• CNF-SAT  3SAT 

• There may be some clause in the CNF-SAT instance  that has fewer than 3 
literals  

•  Duplicate existed literal  

• There may be some clause in  that has more than 3 literals  

•  make a chain of 3-clauses in , using dummy variables 

• Each clause in  is TRUE if and only if the corresponding (chain of) clauses in  
are all TRUE

≤p

ϕ

⇒

ϕ

⇒ ϕ′ 

ϕ ϕ′ 

            ( x1 ∨ x2 ) → ( x1 ∨ x2 ∨ x2 )

                                 ( x1 ∨ x2 ∨ d1 ) ∧ ( d1 ∨ x3 ∨ d2 ) ∧ ( d2 ∨ x4 ∨ d3 ) ∧ ⋯ ∧ ( dk−3 ∨ xk−1 ∨ xk )
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Reduc@on and Hardness
• Reduc@on from problem  to problem A B
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Reduc@on and Hardness
• Reduc@on from problem  to problem  

• If we can solve ,

A B

B
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Bw′ 

Yes

No



Reduc@on and Hardness
• Reduc@on from problem  to problem  

• If we can solve , we can solve 

A B

B A
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Bw′ 

Yes

No
No

w

A

f

Yes



Reduc@on and Hardness
• Reduc@on from problem  to problem  

• If we can solve , we can solve  

• It implies that solving  is at least as hard as solving 

A B

B A

B A
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Bw′ 

Yes

No
No

w

A

f

Yes



Reduc@on and Hardness
• Reduc@on from problem  to problem  

• If we can solve , we can solve  

• It implies that solving  is at least as hard as solving  

• Problem  is not harder than problem 

A B

B A

B A

A B
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Bw′ 

Yes

No
No

w
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Reduc@on and Hardness
• Reduc@on from problem  to problem  

• If we can solve , we can solve  

• It implies that solving  is at least as hard as solving  

• Problem  is not harder than problem  

• Problem  is not easier than problem 

A B

B A

B A

A B

B A
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Bw′ 

Yes

No
No

w

A

f

Yes



NP-Hard
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NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to 
B

B
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NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B
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NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B
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NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B
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NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• That is, an NP-hard problem is at least as hard as any problem in NP

B
B

136

easy hard
NP

NP-Hard



NP-Complete
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easy hard
NP

NP-Hard

NP-complete



NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P



What Happened
• If we can reduce problem  to problem , problem  is not harder than  

• NP-hard problems are those at least as hard as any problem in NP 

• NP-complete problems are those “hardest” in NP 

• The intersec@on of NP and NP-hard

A B A B

easy hard
NP

NP-Hard

NP-complete

P
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NP-Completeness Revisit

140

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

NP  NP       
P 

= NP-Complete 
= NP



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

Bw′ 

Yes

No

Polynomial-@me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

Bw′ 

Yes

No

Polynomial-@me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

Bw′ 

Yes

No

Yes

No

w f

Polynomial-@me func@on

Polynomial-@me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

Polynomial-@me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Can be solved in polynomial @me

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

Polynomial-@me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Can be solved in polynomial @me

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

Can be solved in polynomial @me

≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

Can be solved in polynomial @me

≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P
≤p

Polynomial-@me solvable

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



NP-Completeness Revisit
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easy hard
NP

NP-Hard

NP-complete

P

• If an NP-complete problem is shown to be polynomial-@me solvable, every 
problem in NP can be solved in polynomial @me



P, NP, NP-Hard, and NP-Complete
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easy hard
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NP-Hard

NP-complete
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P, NP, NP-Hard, and NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P

Design a Turing machine and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L



P, NP, NP-Hard, and NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L



P, NP, NP-Hard, and NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard 
if every problem in NP can be polynomial-@me reduced to it



P, NP, NP-Hard, and NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard 
if every problem in NP can be polynomial-@me reduced to it

A problem is NP-complete 
if it is in NP and NP-hard



How to prove a problem is NP-Hard
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How to prove a problem is NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to 
B

B

162
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NP-Hard



How to prove a problem is NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• To prove that a problem  is NP-hard, we find a NP-complete problem  and 
reduce  to 

B
B

B A
A B
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easy hard
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NP-Hard

NP-complete



How to prove a problem is NP-Hard
• Defini@on: A problem  is NP-hard if all problems in NP can be polynomial-@me 

reduced to  

• To prove that a problem  is NP-hard, we find a NP-complete problem  and 
reduce  to  

• An NP-complete problem is NP-hard and all problems in NP can be reduced to it

B
B

B A
A B
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NP-Hard

NP-complete



How to prove P, NP, NP-Hard, or NP-Complete
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easy hard
NP

NP-Hard

NP-complete

P

Design a verifier with a cer@ficate and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

Design a Turing machine and  
show it correctly accepts every   

and rejects any   
in polynomial @me

w ∈ L
w ∉ L

A problem is NP-hard 
if there exists an NP-complete problem 

that can be polynomial-@me reduced to it

A problem is NP-complete 
if it is in NP and NP-hard



Tattoo this on your arm

• If you want to prove some problem  is NP-hard, reduce some NP-
complete problem  to .

Q
Q′ Q
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Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p
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SUBSET-SUM
• SUBSET-SUM    and there exists a subset  

   such that    

• Ex:  = 2, 2, 3, 4, 5, 8 ,  = 

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 12

2 3

4

5
8

2
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SUBSET-SUM
• SUBSET-SUM    and there exists a subset  

   such that    

• Ex:  = 2, 2, 3, 4, 5, 8 ,  = 

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 15

2 3

4

5
8

2

Yes-instance
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SUBSET-SUM
• SUBSET-SUM    and there exists a subset  

   such that    

• Ex:  = 2, 2, 3, 4, 5, 8 ,  =  

• Ex:  = 2, 2, 3, 4, 5, 8 ,  = 

= {⟨S, t⟩ | S = {x1, ⋯, xk} T =
{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

S { } t 15

S { } t 23

2 3

4

5
8

2

No-instance

Yes-instance
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SUBSET-SUM
• 3SAT    is a sa@sfiable 3-CNF 

Boolean formula  
= {⟨ϕ⟩ | ϕ

}
• SUBSET-SUM    

and there exists a subset  
   such that   

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}
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SUBSET-SUM
• 3SAT    is a sa@sfiable 3-CNF 

Boolean formula  
 variables , , ,  
 clauses , , , 

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM    
and there exists a subset  

   such that   

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}
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SUBSET-SUM
• 3SAT    is a sa@sfiable 3-CNF 

Boolean formula  
 variables , , ,  
 clauses , , , 

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM    
and there exists a subset  

   such that   

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1 1 1

1 1
xi

 yi =

 zi =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

For every variable  in 3SAT, create two numbers  and  
in : 

• The  decimal of  is , and all the decimals in the 

first  decimals of  are . The  decimal of  
is  if and only if the clause  contains literal .  

• The  decimal of  is , and all the decimals in the 

first  decimals of  are . The  decimal of  
is  if and only if the clause  contains literal . 

xi yi zi
S

ith yi 1

l yi 0 (ℓ + j)th yi
1 cj xi

ith zi 1

l zi 0 (ℓ + j)th zi
1 cj xi
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SUBSET-SUM
• 3SAT    is a sa@sfiable 3-CNF 

Boolean formula  
 variables , , ,  
 clauses , , , 

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM    
and there exists a subset  

   such that   

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1

1

1

1

xi

 yi =

 zi =

kj

 gj =

 hj =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

For every clause  in 3SAT, create two numbers  and  

in . These two numbers are equal and consist of single  

at the  decimal and all other decimals are ’s.

cj gj hj

S 1
(ℓ + j)th 0

c1 c2 cj ck
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SUBSET-SUM
• 3SAT    is a sa@sfiable 3-CNF 

Boolean formula  
 variables , , ,  
 clauses , , , 

= {⟨ϕ⟩ | ϕ
}

ℓ x1 x2 ⋯ xℓ
k c1 c2 ⋯ ck

• SUBSET-SUM    
and there exists a subset  

   such that   

= {⟨S, t⟩ | S = {x1, ⋯, xk}
T =

{y1, ⋯, ym} ⊂ S Σyi∈Tyi = t}

1

1

1

1

11 1 1 1 1 31 3 3 3 3 t =

xi

 yi =

 zi =

kj

 gj =

 hj =

i1 2 3 ℓ 1 k2
ℓ+ ℓ+ ℓ+

j
ℓ+

Finally, set the target  with  ’s followed by  ’s. t l 1 k 3
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

176
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0



SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

If there is a subset with sum , a ’s of the first  
decimals must come from a  or  for some .

t 1 ℓ
yi zi xi
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

There are at most three ’s in each column 

represen@ng the  clause.

1
jth
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

If there is a subset with sum , there must be at least 
 contributed by the numbers from the variables.

t
1

Only two ’s here1
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If  is sa@sfiable, there exists an assignment ( , 
, ) such that every clause has at least one . 

If , choose  as part of the subset. Otherwise, 
choose . Further select enough of the  and  numbers 

to bring each of the last  decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If  is sa@sfiable, there exists an assignment ( , 
, ) such that every clause has at least one . 

If , choose  as part of the subset. Otherwise, 
choose . Further select enough of the  and  numbers 

to bring each of the last  decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF
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SUBSET-SUM

0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If  is sa@sfiable, there exists an assignment ( , 
, ) such that every clause has at least one . 

If , choose  as part of the subset. Otherwise, 
choose . Further select enough of the  and  numbers 

to bring each of the last  decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF
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0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

If  is sa@sfiable, there exists an assignment ( , 
, ) such that every clause has at least one . 

If , choose  as part of the subset. Otherwise, 
choose . Further select enough of the  and  numbers 

to bring each of the last  decimals up to 3.

ϕ x1 = T
x2 = F ⋯ T

xi = T yi
zi gj hj

k

T FF
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0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

Since the assignment is feasible, each  is either  or  
 for any , either  or  is chosen 
 for each of the first  decimals, the sum is 

xi T F
⇒ i yi zi
⇒ ℓ 1

T FF
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0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f
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0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0 1
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

For any ,  and  can contribute at most two, so at least one  come 

from some  or . Therefore, every clause has at least one true literal 
(that is, the  or ).

j gj hj 1
yi zi
yi zi
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0 1 10 0 1 0

0 0 10 0 0 0

0 1 00 0 1 1

0 0 10 0 0 0

1 1 31 3 3 3 t =

 y1 =
 z1 =

 g1 =
 h1 =

1 0 10 1 0 1
1 0 00 1 0 0

1 3 1 42
ℓ+ ℓ+ ℓ+

3
ℓ+

2

0 0 11 1 0
0 0 01 0 1 0

0 0 00 1 0 0
0 0 00 1 0 0
0 0 00 0 1 0
0 0 00 0 1 0
0 0 00 0 0
0 0 00 0 0 1

 y2 =

 z3 =

 z2 =
 y3 =

 g2 =
 h2 =
 g3 =
 h3 =
 g4 =
 h4 =

      (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄1 ∨ x3) ∧ (x2 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x1 ∨ x̄2)
from 

variables

from 
clauses

SUBSET-
SUM⟨S, t⟩

Yes (  has  
a sum-  subset)

S
t

No (  has  
no sum-  subset)

S
t

Yes (  is sa@sfiable)ϕ

No (  is NOT sa@sfiable)ϕ

⟨ϕ⟩

3SAT

f

Suppose that there is a subset of  sums to . We construct a sa@sfying 
assignment to : if the subset contains , we assign   ; otherwise, 
we assign it . Since exactly one among  and  can be chosen, the 
assignment is feasible. For any ,  and  can contribute at most two, so 

at least one  come from some  or . Therefore, every clause has at 
least one true literal

S t
ϕ yi xi = T

F yi zi
j gj hj

1 yi zi
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• Theorem: SUBSET-SUM is NP-complete
 

<proof idea> We prove that all languages in NP are polynomial @me reducible to 
SUBSET-SUM by reducing the NP-complete language 3SAT to it. Given a 3cnf-formula 

 we construct an instance of the SUBSET-SUM problem that contains a 
subcollec@on summing to the target  if and only if  is sa@sfiable.  

SUBSET-SUM = {⟨S, t⟩ |S = {x1, x2, ⋯, xn} and for some {y1, ⋯, ym} ⊆ S, we have Σyi = t}

ϕ
k ϕ

• Theorem: SUBSET-SUM is NP-Hard
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• Theorem: SUBSET-SUM is NP-complete 

<proof> To prove the NP-hardness of SUBSET-SUM, it is sufficient to reduce the NP-
complete problem 3SAT to it. Given a 3cnf-formula  with variables  and clauses 

, we construct an instance of the SUBSET-SUM problem, , contains large 
numbers with  decimals. For each variable  in ,  there are two numbers  in .  

• The i-th decimal of  is 1, and all the decimals in the first  decimals of  are 0. The 
( )-th decimal of  is 1 if and only if the clause  contains literal .  

• The i-th decimal of  is 1, and all the decimals in the first  decimals of  are 0. The 
( )-th decimal of  is 1 if and only if the clause  contains literal . 

ϕ x1, ⋯, xl
c1, ⋯, ck ⟨S, t⟩

l + k xi ϕ yi, zi S
yi l yi

l + j yi cj xi

zi l yi
l + j zi cj xi

• Theorem: SUBSET-SUM is NP-Hard
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Addi@onally,  contains one pair of numbers  for each clause , These two 

numbers are equal and consists of single 1 at the ( )-th decimal and all other 
decimals are 0s. 

Finally, the target number  consists of  1s and followed by  3s.  

The construc@on for each number in  takes  @me since every decimal 
needs at most  @me to check. There are  numbers, so the total 
construc@on @me is  @mes which is polynomial in the size of .

S gj, hj cj

l + j

t l k

S O(k(l + k))
3k 2l + 2k

O((l + k)3) ⟨ϕ⟩
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Now we show why this construc@ons works by demonstra@ng that  is sa@sfiable if 
and only if some subset of  sum to . 

Suppose  is sa@sfiable. We construct a subset of  as follows. We select  if  is 
assigned true in the sa@sfying assignment and  if  is assigned false. For each of 
the first  decimals, the sum is exactly 1 since the assignment is legal. Furthermore, 
each of the last  decimals is between 1 to 3 because each of the 3-literal clauses 
has at least one true literal. By selec@ng enough of the  and  numbers to bring 
each of the last  decimals up to 3, the large target is hit. 

ϕ
S t

ϕ S yi xi
zi xi

l
k

g h
k
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Suppose that a subset of  sums to . We construct a sa@sfying assignment to . 
First we observe that no carry into the next decimal is needed since all the decimals 
in members of  are either 0 or 1 and each decimal altogether contains at most five 
1s. Hence, to get a 1 in each of the first  decimals, the subset must have either  or 

 for each , but not both.  
Now we make the sa@sfying assignment. If the subset contains , we assign  true; 
otherwise, we assign it false. Since in each of the final  decimals the sum is always 
3 and there are at most two 1s coming from  or , there is at least one 1 coming 
from some  or . Hence this assignment sa@sfies . 

S t ϕ

S
l yi

zi i
yi xi

k
gi hi

yi zi ϕ



What Happened
• 3SAT  SUBSET-SUM 

• There may be some clause in the CNF-SAT instance  that has fewer than 3 
literals  

•  Duplicate existed literal  

• There may be some clause in  that has more than 3 literals  

•  make a chain of 3-clauses in , using dummy variables 

• Each clause in  is TRUE if and only if the corresponding (chain of) clauses in  
are all TRUE

≤p

ϕ

⇒

ϕ

⇒ ϕ′ 

ϕ ϕ′ 
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Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p
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CLIQUE
• Clique: a graph in which every pair of ver@ces are adjacent

196



CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum 

clique in ?
G

G
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CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum 

clique in ?
G

G
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CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum 

clique in ? 

• Decision version? Given a graph , is there a clique of size at least  in ? 

• An instance of CLIQUE is , 

G
G

G k G

⟨⟨G⟩ k⟩
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CLIQUE
• Maximum clique problem: Given a graph , what is the size of the maximum 

clique in ? 

• Decision version: Given a graph , is there a clique of size at least  in ? 

• An instance of CLIQUE is , 

G
G

G k G

⟨G k⟩

200
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CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

201

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )

202

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )

203

?  = ?k

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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sa@sfiable

There is a -clique in k G

⇕

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

For each clause  containing three literals ,  

there are three ver@ces , , and  in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

For each clause  containing three literals ,  

there are three ver@ces , , and  in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

For each clause  containing three literals ,  

there are three ver@ces , , and  in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

For each clause  containing three literals ,  

there are three ver@ces , , and  in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, k⟩ | G
k}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

For each clause  containing three literals ,  

there are three ver@ces , , and  in .

Ci li1, li2, li3
vℓi1

vℓi2
vℓi3

V



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

If there are  clauses in , let  be m ϕ k m
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge  in  if and only if  

• The two ver@ces  and  come from 
different clauses, and 

• The corresponding literals of  and  
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge  in  if and only if  

• The two ver@ces  and  come from 
different clauses, and 

• The corresponding literals of  and  
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge  in  if and only if  

• The two ver@ces  and  come from 
different clauses, and 

• The corresponding literals of  and  
are not the nega<on to each other.

(lx, ly) E
lx ly

lx ly



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge  in  if and only if  

• The two ver<ces  and  come from 
different clauses, and 

• The corresponding literals of  and  
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge  in  if and only if  

• The two ver@ces  and  come from 
different clauses, and 

• The corresponding literals of  and  
are not the nega@on to each other.

(lx, ly) E
lx ly

lx ly



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

Consult the sa@sfying assignment  
to construct a solu@on to CLIQUE



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

There is an edge between each pair of  
 corresponding ver@ces in  

(They are not in the same clause,  
and can be TRUE at the same <me)

m G

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

⇓

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge between each pair of  
 corresponding ver@ces in  

(They are not in the same clause,  
and can be TRUE at the same <me)

m G



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

 is a yes-instance  there is a -clique in ⟨G, m⟩ ⇒ m G



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

Consult the -clique to construct  
a truth-assignment to 3SAT: 

Set the corresponding variables as TRUE

m

⇑

 is a yes-instance  there is a -clique in ⟨G, m⟩ ⇒ m G



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge between each pair of  
the  corresponding ver@ces in  

 By our construc@on, they are from different  
clauses and can be TRUE at the same @me

m G
⇒



CLIQUE

<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

There is an edge between each pair of  
the  corresponding ver@ces in  

 By our construc@on, they are from different  
clauses and can be TRUE at the same @me

m G
⇒

The constructed assignment is sa@sfying 
since there is at least one TRUE in each clause⇓



CLIQUE

<Proof> Polynomial-@me reduc@on from 3SAT 

For any instance of 3SAT, , we generate an instance of 
CLIQUE,  and , as follows: 

For each clause  containing three literals , there are three ver@ces in .  

ϕ = C1 ∧ C2 ∧ ⋯ ∧ Cm
G = (V, E) k

Ci li1, li2, li3 V

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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CLIQUE

<Proof (cont.)> For any pair of ver@ces  in there is an edge  in  if and 
only if  
• The two ver@ces  and  come from different clauses, and 

• The corresponding literals of  and  are not the nega@on to each other. 

Finally, we let  equals to , the number of clauses in . 

The construc@on can be done in polynomial @me since  and there are 

 edges, where each of the edges needs constant @me to check.

lx, ly V, (lx, ly) E

lx ly
lx ly

k m ϕ

|V | = 3m
O(m2)

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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CLIQUE

<Proof (cont.)> Now we show that the reduc@on works by showing that there is a 
sa@sfying assignment to  if and only there is a -clique in .  

Suppose that  has a sa@sfying assignment, we construct a -clique by selec@ng one 
of the ver@ces which are corresponding to a literal with “TRUE” value from each of 
the clauses. Since  is sa@sfiable, there must be one of such a literal in every clause. 
As the sa@sfying assignment is feasible, every variable is assigned to either TRUE or 
FALSE but not both. Hence, there must be an edge between two ver@ces picked 
from different clauses. Therefore, the picked ver@ces form a -clique.

ϕ k G

ϕ k

ϕ

k

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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CLIQUE

<Proof (cont.)> Suppose that  has a clique  of size . No edges in  connect 
ver@ces in the same clause, so  contains exactly one vertex form each of the  
clauses. We assign value TRUE to the corresponding literal. It is a feasible 
assignment since there is no edges between literals corresponding to  and  for 
each variable . Hence, each clause has one literal which is assigned TRUE and the 
formula  is sa@sfied. 

G V′ k G
V′ k

x x̄
x

ϕ

• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}
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<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

sa@sfiable  There is a truth assignment 
such that there is at least one TRUE in each clause

⇒

Put the corresponding ver@ces in the clique 
There is an edge between each pair of  

 corresponding ver@ces in  
(Because they are not in the same clause,  

and can be TRUE at the same @me)

m G

⇓

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



<Proof Idea> Polynomial-@me reduc@on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa@sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}

                              ( x1 ∨ x1 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x2 ) ∧ ( x1 ∨ x2 ∨ x3 )
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

x1 x1 x2

x1

x2

x3

x1 x2 x2

x1

x2

x3

Set the corresponding variables as TRUE 
There is at least one TRUE in each clause

If there is a -clique in m G

⇑

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}



Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p
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PARTITION
• PARTITION    and for some subset  , 

we have    

•

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}
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PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { }
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PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8    = 3, 8

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { }

235

1 3

4

5
8

1



PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8    = 3, 8  and  = 1, 1, 4, 5

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }
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PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8    = 3, 8  and  = 1, 1, 4, 5

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }
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PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8    = 3, 8  and  = 1, 1, 4, 5  

• Ex:  = 2, 2, 2, 2, 4, 6   No answer

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

S { } ⇒
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PARTITION
• PARTITION    and for some subset  , 

we have    

• Ex:  = 1, 1, 3, 4, 5, 8    = 3, 8  and  = 1, 1, 4, 5  

• Ex:  = 2, 2, 2, 2, 4, 6   No answer

= {⟨S⟩ | S = {x1, ⋯, xk} T = {y1, ⋯, ym}⊂ S
Σyi∈Tyi = Σzi∈S∖Tzi}

S { } ⇒ T { } S∖T { }

S { } ⇒
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BIN-PACKING
• Given a finite set  of items and a ra@onal size  for 

each item , find a par@@on of  into disjoint subsets  such 
that the sum of the sizes of the items in each  is no more than  and such that  
is as small as possible. 

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k
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BIN-PACKING
• Given a finite set  of items and a ra@onal size  for 

each item , find a par@@on of  into disjoint subsets  such 
that the sum of the sizes of the items in each  is no more than  and such that  
is as small as possible.  

• What is the decision version of the bin-packing problem?

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k
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BIN-PACKING
• Given a finite set  of items and a ra@onal size  for 

each item , find a par@@on of  into disjoint subsets  such 
that the sum of the sizes of the items in each  is no more than  and such that  
is as small as possible.  

• What is the decision version of the bin-packing problem? 

• Given a finite set  of items, can they be packed into at most  bins?

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

U k
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BIN-PACKING
• Given a finite set  of items and a ra@onal size  for 

each item , find a par@@on of  into disjoint subsets  such 
that the sum of the sizes of the items in each  is no more than  and such that  
is as small as possible.  

• What is the decision version of the bin-packing problem? 

• Given a finite set  of items, can they be packed into at most  bins? 

• Theorem: BIN-PACKING is NP-complete

U = {u1, u2, ⋯, un} s(ui) ∈ [0,1]
ui ∈ U U U1, U2, ⋯, Uk

Ui 1 k

U k
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BIN-PACKING
• PARTITION   

 and for some subset   

 , we have   

= {⟨S⟩ |
S = {x1, ⋯, xn} T =

{y1, ⋯, ym}⊂ S ∑
yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}
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Reduce PARTITION to BIN-PACKING

245

BIN-
PACKING⟨U, k⟩

Yes

No

Yes

No

⟨S⟩

PARTITION

f

• PARTITION   
 and for some subset   

 , we have   

= {⟨S⟩ |
S = {x1, ⋯, xn} T =

{y1, ⋯, ym}⊂ S ∑
yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}



Reduce PARTITION to BIN-PACKING
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• PARTITION   
 and for some subset   

 , we have   

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1 1

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}

3 4
5

8
S = {1,1,3,4,5,8}



Reduce PARTITION to BIN-PACKING
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• PARTITION   
 and for some subset   

 , we have   

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1 1

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}

3 4
5

8
S = {1,1,3,4,5,8}

Items in  with size   U s(ui) =
yi

sum of S/2

3/11 4/11
5/11

8/11

1/11 1/11

sum of S
2

=
22
2

= 11
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• PARTITION   
 and for some subset   

 , we have   

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

1
1

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}

3

4

5

8
3/11 4/11

5/11

8/11

1/11 1/11

Items in  with size   U s(ui) =
yi

sum of S/2

S = {1,1,3,4,5,8}
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• PARTITION   
 and for some subset   

 , we have   

= {⟨S⟩ |
S = {1,1,3,4,5,8} T =
{y1, ⋯, ym}⊂ S ∑

yi∈T

yi = ∑
zi∈S∖T

zi}

• BIN-PACKING   can be 
par@@oned into at most  disjoint 
subsets such that the total size of the 
items in each subset is no more than  

= {⟨U, k⟩∣ U
k

1}

3/11

4/11

5/11

8/11

1/11

1/11

If there is a par@@on The items can be packed in  bins2

1
1 3

4

5

8

If there is a packing in  bins, the items  in each bin have the same total size,  
and the corresponding numbers form an equal-sum par@@on.

2

If there exists an equal-sum par@@on, the corresponding  
items in each part can be packed in one bin.



BIN-PACKING
• BIN-PACKING  can be par@@oned into at most  disjoint subsets 

such that the total size of the items in each subset is no more than   

• Theorem: BIN-PACKING is NP-complete 

<proof> To prove that BIN-PACKING is in NP, we use a -par@@on of  as the 
cer@ficate. The verifier should check if this par@@on is a proper par@@on of , and if 
each subset has sum no more than . The checking @me is in polynomial of the 
number of elements in .

= {⟨U, k⟩ |U k
1}

k U
U

1
U
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BIN-PACKING
To prove the NP-hardness, we show that PARTITION  BIN-PACKING. For any 

instance of PARTITION, , we construct an instance of BIN-PACKING,  as 
follows. For each element , there is a corresponding element  in  and 

, where  is half of the sum of all elements in . We set . The 

construc@on can be done in polynomial @me. 

≤p

S S′  and k
ai ∈ S ui S′ 

s(ui) =
2 ⋅ ai

X
X S k = 2
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BIN-PACKING
Now we prove that the reduc@on works. Suppose that there is a par@@on of ,  
and . For all elements , the sum is . The sum of corresponding ’s is , so 
the corresponding items can be placed in one bin. It also holds for . Hence, the 
items can be packed into  bins. 

For the other direc@on, suppose that the items in  can be packed in two bins. Each 
of the bin has total size  since the total size of all items in  is 

. The corresponding two subsets of  has equal size and form a 

par@@on. 

S S1
S2 ai ∈ S1 X ui 1

S2
2

S′ 

1 S′ 

Σi s(ui) =
Σi ai

X
= 2 S
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Special Case and Hardness

easy hard

General case 
(arbitrary number of bins)

Special case 
(  bins)2

The special case is not harder than the general case
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NP-Hard

Special Case and Hardness

easy hard

General case 
(arbitrary number of bins)

Special case 
(  bins)2

≤p

NP-Complete
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NP

NP-Hard

Special Case and Hardness

easy hard

General case 
(arbitrary number of bins)

Special case 
(  bins)2

≤p

NP-Complete

If the special case is NP-complete, 
it does not imply that the general case is also NP-complete
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NP

NP-Hard

Special Case and Hardness

easy hard

General case 
(arbitrary number of bins)

Special case 
(  bins)2

≤p

NP-Complete

If the general case is NP-complete, 
it implies that the special case is also NP-complete
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P

NP

NP-Hard

Special Case and Hardness

easy hard

General case 
(arbitrary number of bins)

Special case 
(  bins)2

It’s also possible!
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Special case and general case

258

A



Special case and general case
•  is in P: for any instance , it can be decided if  or  in polynomial 

@me
A w w ∈ A w ∉ A
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A



Special case and general case
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A special case of  is NP-hardA

A



Special case and general case
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A special case of  is NP-hardA

A is NP-hardA



Special case and general case
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A is NP-hardA



Special case and general case
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A is NP-hardA

Maybe there is s@ll a special case of  that is polynomial @me solvableA



Outline
• NP-Completeness 

• NP-hardness: Polynomial @me reduc@on 

• CNF-SAT  3SAT 

• 3SAT  SUBSET-SUM 

• 3SAT  CLIQUE 

• PARTITION  BIN-PACKING 

• Cook-Leven Theorem: SAT is NP-complete

≤p

≤p

≤p

≤p
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Cook-Levin Theorem
• The first NP-complete problem: sa<sfiability problem

 

• Cook-Levin theorem: SAT  P iff P = NP 
 SAT is NP-complete

SAT = {⟨ϕ⟩ |ϕ is a sa@sfiable Boolean formaula}

∈
↔
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SAT is NP-complete
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

267

Running <me
  f(n) = poly(n)



nk

nk

SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □
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• If language  is in NP, there is a non-
determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

nk

nk

SAT is NP-complete

a b c qt d e f

c c g g a qs a g

q0 w1 w2 w3 ⋯ wn □ ⋯ □

269

a b c d e fqt

c c g g a aqs g
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □

270

Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □
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Start configuration

Accepting configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

q0 w1 w2 w3 ⋯ wn □ ⋯ □
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Start configuration

Second configuration

Third configuration

Accepting configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s

q0 w1 w2 w3 ⋯ wn □ ⋯ □
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Start configuration

Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura<on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

 ϕcell = ⋀
i,j∈[1,nk] (( ⋁

state qs

xi,j,ws) ∧ ( ⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura<on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

 ϕcell = ⋀
i,j∈[1,nk] (( ⋁

state qs

xi,j,ws) ∧ ( ⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))

at least one state

at most one state
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star<ng 

configura<on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j
q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

  ϕstart = x1,1,q0
∧ x1,2,w1

∧ x1,3,w2
∧ ⋯ ∧ x1,nk,□



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

nk

nk

SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep<ng configura<on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

  ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

qaccAccepting configuration



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep<ng configura<on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

  ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

qacc Accepting configuration



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

q1

• State  and read : write , move to the right 

• State  and read :  
• write , enter , move to the leu, or 
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a aq1

b a b aq1a a

a b

ba

b



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

q2

• State  and read : write , move to the right 

• State  and read :  
• write , enter , move to the leu, or 
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a aq1

b a aq2 b a a a aq3b

a

aa

a

b

c

c



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a q2

• State  and read : write , move to the right 

• State  and read :  
• write , enter , move to the leu, or 
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aba

a



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a q2

• State  and read : write , move to the right 

• State  and read :  
• write , enter , move to the leu, or 
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aba

a

a b b

a b b



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a

• State  and read : write , move to the right 

• State  and read :  
• write , enter , move to the leu, or 
• write , enter , move to the right

q1 a b
q1 b

c q2
a q3

b a a aq1

b a a c aq2 b a a aq3

b

aa

a

b

bq2

b a b

a b



q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration
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SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura<ons corresponding to 

consecu<ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk

s
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Second configuration

Third configuration

Accepting configuration

  if the cell  is the symbolxrow, column, symbol = 1 [i, j]
,  , x1,2,w1

= 1 xi,j,s = 1 x1,1,q1
= 0

i

j

q1

a

a

a

b

bq2

b a b

a b

  ϕmove = ⋁
i,j∈[1,nk]

the (i, j) window is legal



nk

nk s

Second configuration

Third configuration

Accepting configuration

q0 w1 w2 w3 ⋯ wn □ ⋯ □Start configuration

SAT is NP-complete
• If language  is in NP, there is a non-

determinis@c Turing machine (NTM) that 
accepts    in  steps 

• There is a table with size  such that  
1. Each row in the table is a 

configura@on of the NTM 
2. The first row is the star@ng 

configura@on 
3. There is a accep@ng configura@on 
4. The configura@ons corresponding to 

consecu@ve rows follow the NTM’s 
rules

A

w ∈ A O(nk)
nk × nk
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 ϕcell = ⋀
i,j∈[1,nk] (( ⋁

state qs

xi,j,ws) ∧ ( ⋀
states qs≠qt

(xi,j,qs
∧ xi,j,qt))

  ϕstart = x1,1,q0
∧ x1,2,w1

∧ x1,3,w2
∧ ⋯ ∧ x1,nk,□

  ϕaccept = ⋁
i,j∈[1,nk]

xi,j,qaccept

  ϕmove = ⋁
i,j∈[1,nk]

the (i, j) window is legal

   iff        is sa@sfiablew ∈ A ϕcell ∧ ϕstart ∧ ϕaccept ∧ ϕmove
Time for construc@on:  

:  , , and : ϕstart O(nk) ϕcell ϕaccept ϕmove O(n2k)



• Problem  with input  

• Return yes if    

• Return no if   

A w

w ∈ A

w ∉ A

Polynomial-Time Reduce  to A B

286

• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-@me func@on

2. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w′ ∈ B

w A

3. Show that for any  
no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A

3. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w ∈ A

w′ B

1. Show that there is a func@on  
that transforms every  to   
in polynomial @me

w w′ 


