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Turing machine

control

® An infinitely long tape/memory

® |nitially contains the (finite) and is blank everywhere else
® A tape head that can read and write symbols and move around on the tape
® Finite-state control O OO‘

® The Turing machine may end up with an accept state or reject state

® |t accepts the input or rejects the input
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Non-Deterministic Turing machine

control

® |ike the (deterministic) Turing machine, but have non-deterministic behavior

® |f there is a path ends at an accept state, the input is accepted /O\
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Formal Language Framework

e Following the vein of Turing machine concept, a language is a set of strings
® |anguage < problem

e String < Instance

® Asking if a string is in a language
< if the instance satisfies the property that the problem asks

® Given a problem/language, a instance/string is a
® yes instance: an instance that satisfies the property that the problem asks

® no instance: an instance that does not satisfy the property that the problem asks
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Class P and Class NP

® The class P is the class of languages that are accepted or rejected in polynomial
time by a deterministic Turing machine

® The class NP is the class of languages that are accepted in polynomial time by a

non-deterministic Turing machine.
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Running time
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Certificate and (Polynomial-time) Verify

e Alanguage A is verifiable if for any of its ves-instances w, there exists a piece of
hint (certificate) ¢ such that using this hint ¢, one can be convinced that w is
indeed a yes-instance of A

® Only yes-instances have certificates

® Polynomial-time verifiable: the verification can be done in time of polynomial in
input length

® The hint size should also be polynomial

® |t does NOT mean that the hint ¢ should be constructed within polynomial
time!
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Class NP Alternative Definition

® The class P is the class of languages that are accepted or rejected in polynomial
time by a deterministic Turing machine

® The class NP is the class of languages that can be verified in polynomial time by a

deterministic Turing machine.

Running time

Y I I i i[5 [ 53 f(n) = poly(n)
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Prove NP Membership

® To show that a problem is in NP, we can show that it is polynomial-time verifiable

<Proof Idea>

1. Show that for any yes instance w, there is a certificate
2. Design a on input (w, ) thatacceptsallw € A and all w &

3. Show that V/ runs in polynomial time (in the length of )



Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete



Cook-Levin Theorem
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e h=XAVAZ x = FALSE, y = TRUE, z = TRUE @ yes-instance
* )=XAY)V(XAZ) no-instance

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

® A Boolean formula is satisfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

o SAT={(¢@) | ¢ is a satisfiable Boolean formula}
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Cook-Levin Theorem

e |[n 1971, Stephen Cook published a paper and proposed that there is a problem SAT such
that if SAT can be solved (by a deterministic Turing machine) in polynomial time, then all
problems in NP can be solve in polynomial time.
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Cook-Levin Theorem

e |[n 1971, Stephen Cook published a paper and proposed that there is a problem SAT such
that if SAT can be solved (by a deterministic Turing machine) in polynomial time, then all
problems in NP can be solve in polynomial time.

® That is, SAT can be solved in polynomial time only if P = NP
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e |n 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper
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Cook-Levin Theorem

e |[n 1971, Stephen Cook published a paper and proposed that there is a problem SAT such
that if SAT can be solved (by a deterministic Turing machine) in polynomial time, then all
problems in NP can be solve in polynomial time.

® That is, SAT can be solved in polynomial time only if P = NP

¢ |f someone shows that SAT can be solved in polynomial time, then (s)he proves that P =
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theories with the one in Cook’s paper

® |[n 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial time, then P = NP
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Cook-Levin Theorem

e |[n 1971, Stephen Cook published a paper and proposed that there is a problem SAT such
that if SAT can be solved (by a deterministic Turing machine) in polynomial time, then all
problems in NP can be solve in polynomial time.

® That is, SAT can be solved in polynomial time only if P = NP

¢ |f someone shows that SAT can be solved in polynomial time, then (s)he proves that P =
NP

e |n 1973, Leonid Levin published a paper based on his previous talks and claimed similar
theories with the one in Cook’s paper

® |[n 1972, Richard Karp published another paper and proved that there are other 21
problems also have the property that if they can be solved in polynomial time, then P = NP

® These problems form a class NP-Complete
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NP-Complete




NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

» difficult

P NP NP-Complete
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

» difficult

P NP NP-Complete
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

» difficult

P
= NP-Complete
= NP
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

® A researcher who attempts to prove that P equals NP only need to find a
polynomial time algorithm for an NP-complete problem to achieve this goal

» difficult

P NP NP-Complete
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

® A researcher who attempts to prove that P equals NP only need to find a
polynomial time algorithm for an NP-complete problem to achieve this goal

® |f any problem in NP requires more than polynomial time, an NP-complete one does

» difficult

P NP NP-Complete
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

® A researcher who attempts to prove that P equals NP only need to find a
polynomial time algorithm for an NP-complete problem to achieve this goal

® |f any problem in NP requires more than polynomial time, an NP-complete one does

® The phenomenon of NP-completeness may prevent wasting time searching for a
nonexistent polynomial time algorithm to solve a particular problem

P NP NP-Complete
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NP-Complete

® The NP-complete problems are “the most difficult” ones among all the problems in NP

® |f an NP-complete problem is shown to be polynomial-time solvable, every problem
in NP can be solved in polynomial time

® A researcher who attempts to prove that P equals NP only need to find a
polynomial time algorithm for an NP-complete problem to achieve this goal

® |f any problem in NP requires more than polynomial time, an NP-complete one does

® The phenomenon of NP-completeness may prevent wasting time searching for a
nonexistent polynomial time algorithm to solve a particular problem

® The problems Maximum Clique, Minimum Vertex Cover, Partition, Subset Sum are all
NP-complete problems
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How do we know if a problem is “difficult™?



How do we know if a problem is “difficult™?
Reduction



How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
. According to the answer to problem /7, we know the answer to problem A.
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
. According to the answer to problem /7, we know the answer to problem A.

® Ex:

e Problem A: Can | travel to New Zealand
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
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How do we know if a problem is “difficult™?

Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
. According to the answer to problem /7, we know the answer to problem A.

® Ex:
e Problem A: Can | travel to New Zealand

® Problem

o |f | can travel to New Zealand:;

<

36



How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
. According to the answer to problem /7, we know the answer to problem A.

® Ex:
e Problem A: Can | travel to New Zealand

® Problem

o |f | can travel to New Zealand:;
|t | cannot travel to New Zealand.
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A. Instead of solving A directly, we can show that we
are able to solve A by using an (existed) algorithm for solving another problem
. According to the answer to problem /7, we know the answer to problem A.

® Ex:

e Problem A: Can | travel to New Zealand

® Problem

o |f | can travel to New Zealand:;
|t , | cannot travel to New Zealand.
(< If | travel to New Zealand, )
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A

e |nstead of solving A directly, we can show that we are able to solve A by using
an (existed) algorithm for solving another problem
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A

e That is, given any instance w, we want to answer yes if w € A and answer no
otherwise

e |nstead of solving A directly, we can show that we are able to solve A by using
an (existed) algorithm for solving another problem
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A

e That is, given any instance w, we want to answer yes if w € A and answer no
otherwise

e |nstead of solving A directly, we can show that we are able to solve A by using
an (existed) algorithm for solving another problem

® The (algorithm for solving ) returns yes if the input w’' € 55 and
returns no if w' &

/
w—— B
~~
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How do we know if a problem is “difficult™?
Reduction

e \We want to solve problem A

e That is, given any instance w, we want to answer yes if w € A and answer no
otherwise

e |nstead of solving A directly, we can show that we are able to solve A by using
an (existed) algorithm for solving another problem

® The (algorithm for solving ) returns yes if the input w’' € 55 and
returns no if w' &

® This might be hypothetical
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Reduction

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &

® Returnnoifw & A ® Returnnoif w' &
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Reduction

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &
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Reduction

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &
. 4
W W' —> B
~—
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Reduction

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &
v
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Reduction

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &
/Yes
—

w——> f —w'— B
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Reduction

e Problem A with input w e Problem 5 with input w’
® Returnyesifw e A ® Returnyesifw € B
® Returnnoifw &A ® Returnnoifw' & ~5

Yes

No
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Polynomial-Time Reduction A <, B

e Problem A with input w e Problem 5 with input w’
® Returnyesifw e A ® Returnyesifw € B
® Returnnoifw &A ® Returnnoifw' & ~5

Yes

No

Polynomial-time function
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Polynomial-Time Reduction A <,

® Problem A with input w e The sunrises in the east on day w
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

Yes

No

Polynomial-time function
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Polynomial-Time Reduction A <,

® Problem A with input w e The sun risex | gast on day w

® Returnyesifw €A ® Return ves | \

® Returnnoifw & A e Return o if w' &

Yes

No

Polynomial-time function

51



Polynomial-Time Reduction A <,

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

1. Show that there is a function

that transforms every w to w’

. L Yes
in polynomial time

No

Polynomial-time function
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Polynomial-Time Reduction A <,

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

2. Show that for any

yes-instance w' € B,

Yes

No

Polynomial-time function
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Polynomial-Time Reduction A <,

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

2. Show that for any

yes-instance w' € B,
the corresponding instance

Yes .
w is also a yes-instance of A

No

Polynomial-time function
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Polynomial-Time Reduction A <,

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

Yes

No

3. Show that for any

Polynomial-time function

no-instance w' & B,
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Polynomial-Time Reduction A

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

Yes

No

3. Show that for any
Polynomial-tlme function no-instance w' & B,

the corresponding instance
56 w is also a no-instance of A



Polynomial-Time Reduction A <,

® Problem A with input w ® Problem 5 with input w’
® Returnyesifw €A ® Returnyesif w' &
® Returnnoifw & A e Return noif w’ &

Yes
1‘ No
o 3. Show that for any 3. Show that for any
Polynomial-time function yes-instance w € A, no-instance w’ & B,
the corresponding instance the corresponding instance

57 w'is also a yes-instance of w is also a no-instance of A



Polynomial-Time Reduction A <,

® Problem A with input w

® Returnvyesifw e A

e Returnnoifw & A

1. Show that there is a function

that transforms every w to w’

in polynomial time

Polynomial-time function

® Problem 5 with input w’

® Returnyesif w’ &

e Return noif w' &

3. Show that for any

yes-instance w € A,
the corresponding instance

58 Ww'is also a yes-instance of

Yes

No

Show that for any

yes-instance w' € B,
the corresponding instance

w is also a yes-instance of A

Show that for any

no-instance w' & B,
the corresponding instance

w is also a no-instance of A



Polynomial-Time Reduction A <,

® Problem A with input w

® Returnyesifw &

e Return no if w &

1. Show that there is a function

that transforms every w to w’

in polynomial time

Polynomial-time function
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® Problem with input
® Returnyesif €&

e Returnnoif €&

Show that for any 3.

ves-instance w € A,
the corresponding instance

Is also a yes-instance of

Show that for any

yes-instance &
the corresponding instance

w is also a yes-instance of

Show that for any

no-instance &
the corresponding instance

w is also a no-instance of



Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete
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CNF-SAT

® Conjunctive normal form (CNF):

(X, VX )A(XSVH)IA(XH VXV VX)A(X VX, )
1 VA2 1 VA 2 VA3V Xy V X5 2 VX

e Variables: x{, x,, .-+, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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CNF-SAT

® Conjunctive normal form (CNF):

(X, VX )A(XSVH)IA(XH VXV VX)A(X VX, )
1 VA2 1 VA 2 VA3V Xy V X5 2 VX

1 T 1

o \ariables: xy, Xy, ++-, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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CNF-SAT

® Conjunctive normal form (CNF):

(X, VX )A(XSVH)IA(XH VXV VX)A(X VX, )
1 VA2 1 VA 2 VA3V Xy V X5 2 VX

T Y A N N A A

literals

e Variables: x{, x,, .-+, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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CNF-SAT

® Conjunctive normal form (CNF): clause

e

— — Y —
(X{ VX )A(GVIH)A(X VX3V VX )A(XV X,)

e Variables: x{, x,, .-+, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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CNF-SAT

® Conjunctive normal form (CNF):

(X{ VX)A(XVX)A (X VX3 VX VX5 )A(X VX))

Only “or”s in each clause

e Variables: x{, x,, .-+, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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CNF-SAT

® Conjunctive normal form (CNF):

(X, VX )A(XVH)A(X VXV VX )A (X VX, )
1 VA2 1 VA 2 VA3V Xy V X5 2 VX

“and”s between clauses

e Variables: x{, x,, .-+, X,

e CNF-SAT = {(¢) | ¢ is a satisfiable conjunctive normal form Boolean formula}
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3SAT

sat




3SAT

® A Boolean formula is a 3CNF-formula if it is in conjunctive normal form and all the
clauses have exactly three literals.

o Example: (Xx; VX VI3 )A(X{VX VX ) A(X VX3V Xs)A(X VX VX

o CNF-5AT <) 35AT
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3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(¢))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula (X VX, VX3 )A(X[)A(XH VI3V VXs)A(X VX)) Satisfiable
| Polynomial time function (>
A 3-CNF Boolean formula (?PV?V?2)A(PV?2V?2)A(?V?2V?2)A -
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3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(p))—>  3sAT
No (¢ is NOT satisfiable)

Any CNF Boolean formula (X1V)72\/x3)/\(371)/\(x2Vx3 \/x4Vx5)/\(x1Vx2)

d
A 3-CNF Boolean formula (PV?2V?2)A(?PV?2V?2)IA(?2V2V?2)A -

70



3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(p))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula (X1V)72\/x3)/\(371)/\(x2Vx3 \/x4Vx5)/\(x1Vx2)

!
A 3-CNF Boolean formula (X{VIHLVX)A(?V?2V?2)A(?PV2V?)A -

The clause is true iff the original clause is true .



3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(p))—>  3sAT
No (¢ is NOT satisfiable)

Any CNF Boolean formula AXTIAN(X VXV VXs)A(X VX))

)
A 3-CNF Boolean formula A(?V?V?2)IA(?PV?2V?)A -
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3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(¢))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula AXTIAN(X VXV VXs)A(X VX))
!
A 3-CNF Boolean formula ATV VX )A(2V2V?)A -

The clause is true iff the original clause is true -,



3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(p))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula AN ViV, Vs ) A(x VX))

!
A 3-CNF Boolean formula AXIVX VI )A(?V?2V?2)A(?V?2V?)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(¢))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula AN ViV, Vs ) A(x VX))
!
A 3-CNF Boolean formula AXIV VI )A(?V?2V?2)A(X; VX VX))

- The clause is true iff the original clause is true



3SAT

o CNF-5AT <), 35AT

<Proof Idea> Polynomial time reduction from CNF-SAT (since we have known that
CNF is NP-Complete)

CNF-SAT

Yes (¢ is satisfiable)

(D) f —{(¢))—>  3sAT
No (@ is NOT satisfiable)

Any CNF Boolean formula A(XH VX3V VXs)A

!
A 3-CNF Boolean formula YA(?PV?V?)A
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (Xx; VX, VX3 VX, V- Vx,_; Vx,)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; VX, VX3 VX, V -+ V X,_; V X, ) can be replaced with the kK — 2
clauses
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; VX, VX3 VX, V -+ V X,_; V X, ) can be replaced with the kK — 2
clauses
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V1, VX3 VX, V -+ VX,_; VX, )can be replaced with the k — 2

clauses
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V1, VX3 VX, V -+ VX,_; VX, )can be replaced with the k — 2
clauses

(x;V,Vd)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V1, VX3 VX, V -+ VX,_; VX, ) can be replaced with the k — 2
clauses

(x;V,Vd)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V1, VX3 VX, V -+ VX,_; VX, ) can be replaced with the k — 2
clauses

(x, Vo, Vd))A(d; Vx3Vd,)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., VX3 VX, V -+ VX,_; VX, ) can be replaced with the kK — 2
clauses

(x, Vo, Vd))A(d; Vx3Vd,)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., VX3 VX, V -+ VX,_; VX, ) can be replaced with the kK — 2
clauses

(x; Vo, VA )AN(dViaVd,)A(dyV x,Vdy)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x; Vo, VA )AN(dViaVd,)A(dyV x,Vdy)
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA ))AN(d Vi, VA, A(dy Vi Vdi ) A A (dy_3Vx,_ VX))
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with thelk — 2
clauses

(x;, Vo VA ))AN(d Vi, VA, A(dy Vi Vdi ) A A (dy_3Vx,_ VX))

83



3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi, VA, ) A(dy Vi Vdi) A A (dy_sVx,_ VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi VA, ) A(dy VI Vdi) A AN (dy_sVx,_ VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )AN(d Vi VA ) AN(d VI Vdi ) A A (di_sVx,_ VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi VA )AN(d VI Vd) A AN (d_sVx,_ VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d_ sV X, VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))

Dummy variable
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2
clauses

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))

Dummy variable: no single dummy variable can make more than one clause TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add
additional (dummy) variables

For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

1
For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; V., Vs Vx, V === Vx,_; VX, ) can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA AN Vi Vd, ) )A(d, Vx, V)N A ( Vi, V).
0 O 0 1 0 0
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 O 0 1 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 O 0 0 1 0 0 0

TRUE

101



3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 O 0 1 0 1 0 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 O 0o 0 1 0 1 0 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 0 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 0|1 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 0|1 0 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 0|1 01 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 O01]1 010 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1

(x; Vo, VA ) AN(d Vi Vd,)A(d, vV, Vo)A A ( Vi, V).
0 0 1 0o 0 1 0 1 010101 0 0

TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 1 0 0
For example: (x; V0, VX3 Vi, V - ka 1V x;. ) can be replaced with the k — 2

clauses If this clause is TRUE, at least one literal is 1
(le le)/\(dlv.X3Vd2)/\(d2v.X4 k 3VXk1ka)
1 O 10 1
TRUE

If the (big) clause is TRUE, there exists an assignment to ¢’ such that the sequence of 3-clauses are all TRUE.
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 0 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is FALSE, every literal is O

(x; Vo, VA AN Vi Vd, ) )A(d, Vx, V)N A ( Vi, V).
0 O 0 0 0 0

If the (big) clause is FALSE, there exists NO assignment to ¢’ such that the sequence of 3-clauses are all TRUE
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3SAT

o CNF-5AT <), 35AT

<Proof Idea>

For each clause that has more than 3 literals, we split it into several clauses and add

additional (dummy) variables

0 0 0 0 0 0
For example: (x; Vx, VX3 VX, V -+ Vx,_; V., )can be replaced with the k — 2

clauses If this clause is FALSE, every literal is O

(x;, Vo VA )YAN(d Vi VA )AN(d VI VA )N A (d 2 Vx,_ VX))

0 O AN AN 0 0 0

At most one TRUE At most one TRUE

If the (big) clause is FALSE, there exists NO assignment to ¢’ such that the sequence of 3-clauses are all TRUE

since no single dummy variable can make more than one clause TRUE
112



3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).
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3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula F'into a 3CNF-formula F,
with F'is satisfiable if and only if I’ is satisfiable:
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3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula F'into a 3CNF-formula F/,
with F'is satisfiable if and only if I’ is satisfiable:

CNF-SAT

|
Polynomial-time function
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3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula F'into a 3CNF-formula F/,
with F'is satisfiable if and only if /" is satisfiable:

CNF-SAT

Yes
= 4 "
w W' = SSAT‘
* No

|
Polynomial-time function
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3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula F'into a 3CNF-formula F/,
with F'is satisfiable if and only if /" is satisfiable:

CNF-SAT

|
Polynomial-time function
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3SAT

o CNF-5AT <), 35AT

<Proof> Polynomial time reduction from CNF-SAT (since we have known that CNF is
NP-Complete).

To reduce CNF-SAT to 3SAT, we convert any CNF-formula F'into a 3CNF-formula F/,
with F'is satisfiable if and only if /" is satisfiable:

First, let C,, C,, ---, C_ be the clauses in F. If F'is a 3CNF-formula, we just set /"= F.

Otherwise, the only reasons why [ is not a 3CNF-formula are:  CNF-SAT

Yes
1. Some clauses C; has less than 3 literals, or s
W w'=» 3SAT
- >
2. Some clauses C; has more than 3 literals. , No

|
Polynomial-time function
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3SAT
o ONFSATS, 34T

<Proof (cont.)>

For each clause that has less than 3 literals, we duplicate one of the literals until the
total number is three.
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3SAT

o CNF-5AT <), 35AT

<Proof (cont.)>

For each clause that has more than 3 literals, we split it into several clauses and add
additional variables to preserve the satisfiability or non-satisfiability of the original

clause: each of the clauses (x; V.x, VX3 VX, V --- Vx,_; VX, ) can be replaced

with the k — 2 clauses
(x; Vo, VA )A(d, Vs Vd ) )AN(d, VgV ) A A ( Vo, V).

The conversion can be done in O(n-m-k) time, where n is the number of variables,
m is the number of clauses, and k is the number of literals in the largest clause.
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3SAT

Now we prove that the satisfiability or non-satisfiability of the 3SAT problem is
preserved. That is, F'is satisfiable if and only if /" is satisfiable.

o CNF-5AT <), 35AT

<Proof (cont.)>
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3SAT .

Now we prove that the satisfiability or non-satisfiability of the 3SAT problem is
preserved. That is, F'is satisfiable if and only if /" is satisfiable.

o CNF-5AT <), 35AT

<Proof (cont.)>

If F'is satisfiable, there exists a corresponding truth assignment in F’such that F'=1
(TRUE). For each of the clauses with less than or equal to 3 literals in /~ which is true,

the corresponding clause in /" is also true since we only duplicate the literals from
the same clause. For each clause with more than 3 literals in F, since F'is satisfiable,
there must be at least one literal x, which has value 1. There exists a corresponding

true assignmentin F:d;=1foralli <t—72,andd,=0foralli > ¢ — 1.
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s (&) (0

If F"is satisfiable, the corresponding truth assignment for variables x;, x,, ---, x,

makes /' =1 (TRUE). For each of the clauses with less than or equal to 3 literals in F,
all these clauses are TRUE since duplicating the literals from the same clause does
not change the TRUE/FALSE of a clause. For each clause with more than 3 literals in
F, since F'is satisfiable, the corresponding clauses in /" must be all TRUE as no truth
value of a dummy literal can solely make more than two clauses TRUE.

o CNF-5AT <), 35AT

<Proof (cont.)>
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What Happened

Sp

e There may be some clause in the instance ¢ that has fewer than 3
literals

® = Duplicate existed literal —

e There may be some clause in ¢) that has more than 3 literals

e = make a chain of 3-clauses in @', using dummy variables
(5, V. VA )IAN(d Vi VAIYN(DLNVIGVY YA A ( V Vo)

o is TRUE if and only if
are all TRUE
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Reduction and Hardness

e Reduction from problem A to problem



Reduction and Hardness

e Reduction from problem A to problem

® |f we can solve /7,

/R
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Reduction and Hardness

e Reduction from problem A to problem

e |f we can solve /5, we can solve A

Yes

No
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Reduction and Hardness

e Reduction from problem A to problem
e |f we can solve /5, we can solve A

e |t implies that solving /7 is at least as hard as solving A

Yes

No
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Reduction and Hardness

e Reduction from problem A to problem
e |f we can solve /5, we can solve A
e |t implies that solving /7 is at least as hard as solving A

® Problem A is not harder than problem

Yes

No
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Reduction and Hardness

e Reduction from problem A to problem
e |f we can solve /5, we can solve A
e |t implies that solving /7 is at least as hard as solving A
® Problem A is not harder than problem

® Problem/ is not easier than problem A

Yes

No
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NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B
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NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

® Thatis, an NP-hard problem is at least as hard as any problem in NP
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NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

® Thatis, an NP-hard problem is at least as hard as any problem in NP

eaQsy m 8 ™ ——— hard
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NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

® Thatis, an NP-hard problem is at least as hard as any problem in NP

L ard
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NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

® Thatis, an NP-hard problem is at least as hard as any problem in NP

L ard

NP-Hard
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NP-Complete

easy
l NP-Hard

{

NP-complete

hard
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NP-Complete

easy
p l NP-Hard

{

NP-complete

hard

133



What Happened

e |f we can reduce problem A to problem , problem A is not harder than
® NP-hard problems are those at least as hard as any problem in NP
® NP-complete problems are those “hardest” in NP

® The intersection of NP and NP-hard

eaQsy mmM — ——————— hard

P NP-Hard
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

P
= NP-Complete
= NP

140



NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

hard

easy
p l NP-Hard

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

hard

easy —
p ' NP-Hard
Polynomial-time

NP-complete v

, > 4
w= B
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

hard

easy — U
p ' NP-Hard
Polynomial-time

NP-complete v

, > 4
w= B
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

iR
NP
easy — O hard
P v' NP-Hard
SP Polynomial-time
NP-complete v _y Vs

4
w w'=9 B
~Sh
; > \o

i
Polynomial-time function
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NP-Completeness Revisit

e |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

NP
P v' NP-Hard
SP

A Polynomial-time

Yes
Yes"
W w’
NO g No

easy hard

NP-complete

i
Polynomial-time function
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NP-Completeness Revisit

e |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

NP
P v' NP-Hard
SP

A Polynomial-time

easy hard

NP-complete

Yes"YeS
w w'
Can be solved in polynomial time =6

i
Polynomial-time function
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

easy hard

NP-Hard

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

easy hard

NP-Hard

NP-complete

Can be solved in polynomial time
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

easy hard

NP-Hard

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

easy hard

NP-Hard

NP-complete

Can be solved in polynomial time
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

hard

easy —O-
p 'I NP-Hard
Sp

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

hard

easy —O-
p 'I NP-Hard
Sp

P-complete

Can be solved in polynomial time
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

hard

easy -O-
p " NP-Hard
—pD

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

Polynomial-time solvable

easy hard

p m NP-Hard

[

NP-complete
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NP-Completeness Revisit

® |f an NP-complete problem is shown to be polynomial-time solvable, every
problem in NP can be solved in polynomial time

easy hard

NP-Hard

NP-complete
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P NP, NP-Hard, and NP-Complete

easy hard
p l NP-Hard

NP-complete
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P NP, NP-Hard, and NP-Complete

easy hard
p l NP-Hard

NP-complete

Design a Turing machine and
show it correctly accepts everyw € L

and rejects any w & L
in polynomial time

157



P NP, NP-Hard, and NP-Complete

Design a verifier with a certificate and
show it correctly accepts everyw € L

and rejects any w & L
in polynomial time

easy hard
p l NP-Hard

NP-complete

Design a Turing machine and
show it correctly accepts everyw € L

and rejects any w & L
in polynomial time
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P NP, NP-Hard, and NP-Complete

Design a verifier with a certificate and
show it correctly accepts every w € L

and rejects any w & L
in polynomial time

easy hard
p l NP-Hard
NP-complete
Design a Turing machine and
show it correctly accepts everyw € L A problem is NP-hard
and rejects any w & L it every problem in NP can be polynomial-time reduced to it

in polynomial time
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P NP, NP-Hard, and NP-Complete

Design a verifier with a certificate and
show it correctly accepts every w € L

and rejects any w & L A.fp.ro.bloerrlll:as NIZ?\T |;n : Ie;e
in polynomial time Tren T en —

easy hard
NP-Hard
NP-complete
Design a Turing machine and
show it correctly accepts everyw € L A problem is NP-hard
and rejects any w & L it every problem in NP can be polynomial-time reduced to it

in polynomial time

160



How to prove a problem is NP-Hard



How to prove a problem is NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

L ard

NP-Hard
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How to prove a problem is NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

e To prove that a problem /5 is NP-hard, we find a NP-complete problem A and
reduce A to

hard

easy
l NP-Hard

NP-complete
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How to prove a problem is NP-Hard

e Definition: A problem B is NP-hard if all problems in NP can be polynomial-time
reduced to B

e To prove that a problem /5 is NP-hard, we find a NP-complete problem A and
reduce A to

® An NP-complete problem is NP-hard and all problems in NP can be reduced to it
-

NP

easy hard
l NP-Hard

NP-complete
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How to prove P, NP, NP-Hard, or NP-Complete

Design a verifier with a certificate and
show it correctly everyw € L

and rejects any w & L
in polynomial time

A problem is NP-complete
if itisin NP and NP-hard

eaQsy o,/ m —  ————— hard

P NP-Hard

Design a Turing machine and
show it correctly every w € L

and rejects any w & L
in polynomial time

A problem is NP-hard
if there exists an NP-complete problem
that can be polynomial-time reduced to it
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o If you want to prove some problem Q is NP-hard, reduce some NP-
complete problem Q' to Q.



Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete
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SUBSET-SUM

e SUBSET-SUM = {(S5,7) | S = {x;, -+, x; } and there exists a subset T'=
{15 s Vit ©Ssuchthat 2 o7y, =7}

e Ex:5=1{2,2,3,4,58}, =12
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SUBSET-SUM

e SUBSET-SUM = {(S5,7) | S = {x;, -+, x; } and there exists a subset T'=
{15 s Vit ©Ssuchthat 2 o7y, =7}

e Ex:5=1{2,2,3,4,5,8},1=15 @ Yes-instance

169



SUBSET-SUM

e SUBSET-SUM = {(S5,7) | S = {x;, -+, x; } and there exists a subset T'=
{15 s Vit ©Ssuchthat 2 o7y, =7}

e Ex:5=1{2,2,3,4,5,8},1=15 @ Yes-instance

e Ex:5=1{2,2,3,4,5,8},1=23 No-instance
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SUBSET-SUM

o 3SAT = {(¢@) | @ is asatisfiable 3-CNF o = {(S,0) | S = {x{, -+, x5}
Boolean formula} and there exists a subset 7' =
{¥1s s ¥} C Ssuchthat X .y, =1}
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SUBSET-SUM

o 3SAT = {(¢@) | @ is asatisfiable 3-CNF o = {(S,0) | S = {x{, -+, x5}
Boolean formula} and there exists a subset 7' =
£ variables xy, x5, **+, X, W1s %> Yt C S such that Zy,ETyi =1}

k clauses ¢y, ¢,, **+, C,
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SUBSET-SUM

o 3SAT = {(¢@) | @ is asatisfiable 3-CNF o = {(S,0) | S = {x{, -+, x5}
Boolean formula} and there exists a subset 7' =
£ variables xy, x5, **+, X, W15 Yt €S such that ZylETyi =1}

k clauses ¢y, ¢y, *++, C;

C+ £+ C+ z,”+
1 2 3 l 1 2

For every variable x; in 3SAT, create two numbers y; and z; : ............

inS: .
o The it decimal of y.is 1, and all the decimals in the ' .. . . ... . ..

first [ decimals of y. are 0. The (¢ +j)th decimal of y.

is 1 if and only if the clause ¢; contains literal x;.

The it decimal of z;is 1, and all the decimals in the

first [ decimals of z; are 0. The (£ +j)th decimal of z,

is 1 if and only if the clause ¢; contains literal X.
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SUBSET-SUM

o 3SAT = {(¢@) | @ is asatisfiable 3-CNF o = {(S,0) | S = {x{, -+, x;}
Boolean formula} and there exists a subset 7' =
£ variables xy, x5, **+, X, W15 Yt €S such that ZylETyi =1}

k clauses ¢y, ¢y, *++, C;
| £+ O+ O+ f+
1 2 3 l 1 2

For every clause ¢; in 35A1, create two numbers g; and hj

in 5. These two numbers are equal and consist of single 1

at the (¢ +j)th decimal and all other decimals are O’s.
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SUBSET-SUM

o 3SAT = {(¢@) | @ is a satisfiable 3-CNF o = {(S,0) | S = {x{, -+, x;}
Boolean formula} and there exists a subset 7'=
¢ variables xi, x,, -, X, W15 Yt €S such that ZylETyi =1}

k clauses ¢y, ¢y, *++, C;
C+ £+ £+ O+

1 2 3 l 1 2 k

- [EEELEEEEEEEE
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SUBSET-SUM , , .75 44

clause 1 clause 2 clause 3 clause 4
= |1]ojof1]1]oj1

X VX VX)) AV V)AL VLVIR)AMXVVE) zp= [1]ojojo]ijojo
Y= |0]1]ofj1jof1]o
= |0]1jojojoj1]1
y3= |0]oj1f1j1fojo
zz= |0]Joja1jojojijo

|
gi= |ojojojijojojo ‘
|
|

s
|

from
variables

g = |0jojojoj1ijojo
hy= [o]ojojofJ1]ojo
g;= |0jojojojoj1jo
hy= |o]Jojojojoj1ijo
g4= |0]Jojojojojoj1
hy= |ojojojojojof1

176 [ = HBHH

from
clauses



SUBSET-SUM , , .75 44

= [1]ojoj1f1]oj1
X VX VX)) AV V)AL VLVIR)AMXVVE) zp= [1]ojojo]ijojo

s
|

= |0]j1]oj1jojijo from
= |of1jojojoj1|1| ( variables
Yes (¢ is satisfiable) V3 = ojojijajijojo
;3= |0joj1jojoj1jo
SUBSET.—¥ @ SUM-t subset) hy= (0]ojoj1]jojojo
P> oS o= [o]o[o[o[1o[0
o ohes h,= [0]oJoJo]zJo]o] | from

clauses

no sum-f subset) g;= [oJoJo[ofo[1]o
hy= [0jojojojoj1]o

No (¢ is NOT satisfiable) g, = [ofJoJojofofo]z1

hy= [ojojojojojoj1

177 r= |1J1]1]3]3]3]3

3SAT Yes (S has g1= [0]Jojoj1jojojo ]



£+ C+ €+ O+
1231 2 34

SUBSET-SUM

yi= gijojojijijof1
XV VI)AXVEVI)AX VLV AN VIV 1= ’;‘fﬂﬂﬂﬂﬂ ]
y»=gof1joj1joj1jo from
= Eﬂﬂn variables
y;= qodojijijijojo ‘
= {ofol1]o]o]1]0
If there is a subset with sum 7, a 1’s of the first £ $1= [E10[0]1]0]0[0
decimals must come from a y; or z; for some Xx;. h=olojoj1]o]olo
T | g= [0jojojoj1jojo
h,= [0]jojojoj1jojo from
g3= [0jojojojoj1jof ( clauses
hy= [0jojojojoj1]o
g4= |0]ojojojojoj1 ‘
hy= [ojojojojojoj1

' lase.

<
. 4 0
v § .
K K
L avie g
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SUBSET-SUM |, ., .v5 44

vi= [1]oJof¥1]o]1
(X VI VX)) A VE V) A VB VE)A(G VY V) z= |[1]ojofogijojo ]
y,= |0]J1]of1foj1jo from
= |0J1]ofofof1|1| ( variables
v;= |oJoj1g1Jifojo ‘
{3 = ﬂﬂh'ﬂﬂ
There are at most three 1’s in each column 1= |0jojojTjojojo
| +h hy= |0jojojijofojo
representing the j*' clause. ¢, = [oJoJoJo[1]o[o
hy= |ojojojoj1jojo from
g;= [0]jojojojoj1jo] [ clauses
hy= |ojojojojoj1jo
g4= [(0]jojojojojo|1
hy= |ojojojojofoj1
[1]2]1]3]3]3]3]

179 [ = BBHH



SUBSET-SUM |, ., .v5 44

5

vi= [1]oJofi¥1jo]1
(VR VI)A@ VEVR)AXGVYLVE)AMNX VY VY 7= [1]o]ofofi]oe]o
v,= [o]i]oF1fo]1]o] | from
= n.ﬂﬂﬂ.. variables
V3 = ﬂﬂl_ﬂﬂ
— m!
If there is a subset with sum 7, there must be at least ol nnu nnn
| contributed by the numbers from the variables. i f nnnﬁnnn
52 = ﬂﬂﬂﬂlﬂﬂ
h,= [o]o]ofofiJoJo] \ from
Som ununﬂ.u clauses
hy= [o]oJo}oFoJ1]o
Only two 1’s here 54 nnuﬂnn.
hy = ﬂﬂﬂ;@ﬂﬂl

. . "
_ enwiw e
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SUBSET-SUM , , .75 44
0)=

T F F 1jojoj1jijof1
X VX VX)) A VEVXR)AMXVELEVEB)AMX VY VE) 7= [1jojojo]1jo]o
Yes (¢ is satisfiable) y,= |0f1]of1joj1]0 from
= (ojJ1]ojojoj1|1| ( variables
3SAT Yes (S has ;= [oJoJ1]1]1]ofo
SURSET.—¥ 3 SUM-t subset) = |ojoj1jojoj1ifo
() "<Sat>_> SUM =, (S has g = [0]ojojijojojo
no sum-f subset) hy = ojofojijojofo
g = |0jojojoj1jojo
-~ P[e[o[o[i[o]o] | fom
No (¢ is NOT satisfiable) 2_ nnnn.n |
g3= |0jojojojojijo ( clauses
If ¢ is satisfiable, there exists an assignment (x, = T, h3 — nnnnn n
X, = I, ---) such that every clause has at least one 1. — _
If x, = T, choose y; as part of the subset. Otherwise, }34 o n nnn n n.
choose z.. 4 nnnmnn

161 r= |1J1]1]3]3]3]3



SUBSET-SUM
T F F Q=

X VH V) AXVEE V)AL VR)AX VX VX)) 7=
Yes (¢ is satisfiable) Yy, =

3SAT Yes (S has V3=
SUBSET.—> @ SUM-f subset)
No (S has

no sum-f subset) o
2=
h2 —
No (¢ is NOT satisfiable) g, =
If ¢ is satisfiable, there exists an assignment (x; = 7, h3 —
X, = F, ---) such that every clause has at least one 7. g, =
If x, = T, choose y; as part of the subset. Otherwise, =
choose z,. Further select enough of the g; and /;; numbers 47

to bring each of the last k decimals up to 3. 80 f =

£+ 0+ + 0+
1 231 2 3 4

1jojoj1j1joj1
1jojojojijojo
0j1joj1jojijo
oj1jojojojij1
ojoj1jijijojo
ojojijojojijo
ojojojajojojo
ojojojajojojo
ojojojojijojo
ojojojojijojo
ojojojojojijo
ojojojojojijo

ojojojojojoj1
ojojojojojoj1

1j21]1]3)3)3]3

|
|
|
|

from
variables

from
clauses



SUBSET-SUM
T F F Q=

X VH V) AXVEE V)AL VR)AX VX VX)) 7=
Yes (¢ is satisfiable) Yy, =

3SAT Yes (S has V3=

() ‘»(S, t)—»SUS?JSI\fT'/'a sum-z subset) ;
T Slo (S has

no sum-f subset) —

82 =

h, =

No (¢ is NOT satisfiable) =

If ¢ is satisfiable, there exists an assignment (x; = 7, h3 =
X, = F, ---) such that every clause has at least one 7. g, =

If x, = T, choose y; as part of the subset. Otherwise, h
4=

choose z,. Further select enough of the g; and /;; numbers

to bring each of the last k decimals up to 3. 83 T

£+ 0+ + 0+
1 231 2 3 4

1jojoj1j1joj1
1jojojojijojo
0j1joj1jojijo
oj1jojojojij1
ojoj1jijijojo
ojojijojojijo
ojojojajojojo
ojojojajojojo
ojojojojijojo
ojojojojijojo
ojojojojojijo
ojojojojojijo

ojojojojojoj1
ojojojojojoj1

1j21]1]3)3)3]3

|
|
|
|

from
variables

from
clauses



SUBSET-SUM
T F F Q=

X VH V) AXVEE V)AL VR)AX VX VX)) 7=
Yes (¢ is satisfiable) Yy, =

3SAT Yes (S has V3=

SUBSET.— ° sum-f subset) —
<¢> ‘><S’ t>_> SUM = —

No (S has
no sum-f subset)

No (¢ is NOT satisfiable) z

If ¢ is satisfiable, there exists an assignment (x; = 7, h3 =
X, = F, ---) such that every clause has at least one 7. —

If x, = T, choose y; as part of the subset. Otherwise, h, =
4 =

choose z,. Further select enough of the g; and /;; numbers

to bring each of the last & decimals up to 3. 84 T

£+ 0+ + 0+
1 231 2 3 4

1jojoj1j1joj1
1jojojojijojo
0j1joj1jojijo
oj1jojojojij1
ojoj1jijijojo
ojojijojojijo
ojojojajojojo
ojojojajojojo
ojojojojijojo
ojojojojijojo
ojojojojojijo
ojojojojojijo

ojojojojojo
ojojojojojoj1

1j21]1]3)3)3]3

|
|
|
|

from
variables

from
clauses



SUBSET-SUM
T F F Q=

X VH V) AXVEE V)AL VR)AX VX VX)) 7=
Yes (¢ is satisfiable) Yy, =

SSAT Yes (S has V3 =
() ‘><S £y SUBSET-— © sum-Z subset) -
PR —0 (S has =

no sum-f subset)

No (¢ is NOT satisfiable) z

h3=

h4:

185 [ =

£+ 0+ + 0+
1 231 2 3 4

1jojoj1j1joj1
1jojojojijojo
0j1joj1jojijo
oj1jojojojij1
ojoj1jijijojo
ojojijojojijo
ojojojajojojo
ojojojajojojo
ojojojojijojo
ojojojojijojo
ojojojojojijo
ojojojojojijo

ojojojojojo
ojojojojojoj1

1j21]1]3)3)3]3

|
|
|
|

from
variables

from
clauses



SUBSET-SUM , , .75 44

= [1]ofoj1j1jof1
= [1]ojojojJ1jojo

N
_—
|

(X VX VIR)AX VX VI)AG VLV IG)AM VXV X

Yes (¢ is satisfiable) y,= |oj1joj1jofj1]o0 from
= |of1jojojoj1|1| ( variables
3SAT Yes (S has ;= [oJoJ1]1]1]ofo
_@SlM- subset) = [0]Jojijojojifo
<¢> ‘(S, t>_>SUBSET-

no sum-f subset) hy = ojofojijojofo
g>= |0]ojojojijofo

hy= |0jojojoj1jojo] \ from

clauses

No (¢ is NOT satisfiable) g;= [ofo[ofoJo[1]o
hiy= [o]ojojojoj1]o
g,= |0]ojojojojoj1
hy= |o]ojojojojof1

186 [ = HBHH

SN = g o= [[o[o[i[e]o]0 ]



SUBSET-SUM

Y11=
VRV A VE VR AXGVLVE)AX VY V) @)=
Yes (¢ is satisfiable) Yy, =

3SAT Yes (S has —
<¢> ‘><S t>_>SUBSET./Va §tm-7 subset) 3=
| S No (S has =

no sum-f subset)

No (¢ is NOT satisfiable)

For any J, g;and hj can contribute at most two, so at least one 1 come

from some y, or z;,. Therefore, every clause has at least one true literal

(that is, the y. or 7).

187 [ =

(+ O+ O+ C+
1 231 2 3 4

1jojoj1j1joj1
1jojojojijojo
0j1joj1jojijo
oj1jojojojij1
ojoj1jij1jojo
ojojijojojijo
ojojojijojojo
ojojojijojojo
ojojojoj1jojo

ojojojojijojo
ojojojojojijo

= |o0jojojojoj1jo
= |0jojojojojoj1

ojojojojojoj1
1j21]1]3)3)3]3

|
|
|
|

from
variables

from
clauses



SUBSET-SUM , , .75 44

at least one 1 come from some y. or z,. Therefore, every clause has at

least one true literal 188 [ = H B B H

yi= [1]ojoj1j1joj1
(VR V) A VE V) AR VS VER) AN VY VE @)= [L]o]o]e]1]o]o

Yes (¢ is satisfiable) y,= |0f1]of1joj1]0 from

= |oj1jojojoj1|1| ( variables
3SAT Yes (S has = [ofjof1f1]1]ofo
SlBeET. s @#SU-1 subset) = [0]oJ1jojof1jo
() "<Sat>_> SUM - (S has = |0jojoj1jojojo
_ = [0jojoj1jojojo
no sum-f subset)

ojojojojijojo

No (@ is NOT satisfiable) ofololojt]ole from

Suppose that there is a subset of § sums to 1. We construct a satisfying n n n n n n clauses

assignment to ¢: if the subset contains y;, we assign x; = T; otherwise, — ﬂ n n n n ﬂ
we assign it F. Since exactly one among y. and z; can be chosen, the — n n n n n n
assignment is feasible. For any j, g; and /;; can contribute at most two, so n n n m n n



SUBSET-SUM

® Theorem: SUBSET-SUM is NP-Hard

<proof idea> We prove that all languages in NP are polynomial time reducible to
SUBSET-SUM by reducing the NP-complete language 3SAT to it. Given a 3cnf-formula

@ we construct an instance of the SUBSET-SUM problem that contains a
subcollection summing to the target k if and only if ¢ is satisfiable.
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SUBSET-SUM

® Theorem: SUBSET-SUM is NP-Hard

<proof> To prove the NP-hardness of SUBSET-SUM, it is sufficient to reduce the NP-
complete problem 3SAT to it. Given a 3cnf-formula ¢ with variables x;, ---, x; and clauses

Cy, ***, Ct, We construct an instance of the SUBSET-SUM problem, (S, 7), contains large

numbers with [ + k decimals. For each variable x; in ¢, there are two numbers y;, z;in S.

e The i-th decimal of y, is 1, and all the decimals in the first / decimals of y; are 0. The

([ + j)-th decimal of y; is 1 if and only if the clause c; contains literal x;.

e The i-th decimal of z;is 1, and all the decimals in the first [ decimals of y; are 0. The

([ + j)-th decimal of z; is 1 if and only if the clause C; contains literal X;.
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SUBSET-SUM

Additionally, § contains one pair of numbers gi» hj for each clause C; These two

numbers are equal and consists of single 1 at the (/ + j)-th decimal and all other

decimals are Os.

Finally, the target number ¢ consists of / 1s and followed by k 3s.

The construction for each number in S takes O(k(/ + k)) time since every decimal
needs at most 3k time to check. There are 2/ + 2k numbers, so the total

construction time is O((/ + k)°) times which is polynomial in the size of (¢).
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SUBSET-SUM

Now we show why this constructions works by demonstrating that ¢ is satisfiable if
and only if some subset of S sum to 1.

Suppose ¢ is satisfiable. We construct a subset of S as follows. We select y; if x; is
assigned true in the satistying assighnment and z; if x; is assigned false. For each of

the first / decimals, the sum is exactly 1 since the assighment is legal. Furthermore,
each of the last k decimals is between 1 to 3 because each of the 3-literal clauses
has at least one true literal. By selecting enough of the g and 4 numbers to bring

each of the last kK decimals up to 3, the large target is hit.
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SUBSET-SUM

Suppose that a subset of S sums to 7. We construct a satisfying assignment to ¢.
First we observe that no carry into the next decimal is needed since all the decimals

in members of § are either 0 or 1 and each decimal altogether contains at most five
1s. Hence, to get a 1 in each of the first [ decimals, the subset must have either y, or

z; for each 1, but not both.

Now we make the satisfying assignment. If the subset contains y;, we assign x; true;
otherwise, we assign it false. Since in each of the final k decimals the sum is always
3 and there are at most two 1s coming from g. or /1, there is at least one 1 coming

from some y, or z.. Hence this assignment satisfies ¢.
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What Happened

Sp

e There may be some clause in the instance ¢ that has fewer than 3
literals

® = Duplicate existed literal

e There may be some clause in ¢) that has more than 3 literals

e = make a chain of 3-clauses in @', using dummy variables

o is TRUE if and only if
are all TRUE
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Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete
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® Clique: a graph in which every pair of vertices are adjacent




CLIQUE

e Maximum clique problem: Given a graph G, what is the size of the maximum
—

197

cliqgue in G?



CLIQUE

e Maximum clique problem: Given a graph G, what is the size of the maximum
—
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cliqgue in G?



CLIQUE

e Maximum clique problem: Given a graph G, what is the size of the maximum
clique in G?

® Decision version?

199



CLIQUE

e Maximum clique problem: Given a graph G, what is the size of the maximum
clique in G?

e Decision version: Given a graph G, is there a clique of size at least kin G?

e An instance of CLIQUE is (G, k)

X

New parameter!
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

% -
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

satisfiable

/ \
k=7 U
\%/\
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

For each clause C; containing three literals ; , [; , ;,

there are .V, ,and inV.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

For each clause C; containing three literals ; , [; , ;,

there are .V, ,and inV.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

For each clause C; containing three literals ; , [; , ;,

there are ,V, ,and in V. X,
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

For each clause C; containing three literals ; , [; , ;, 1
there are ,V, ,and in V. X,
X3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G, k) | G has a clique of
Boolean formula} size at least £}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

For each clause C, containing three literals ll-l, ll-z, lig, A X1
there are ,V,,and v, inV. X, X,
X3 X3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

] ]
If there are m clauses in @, let k be m =

27 2

X3 X3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

X1 X1 X

There is an edge in £ if and only if

e The two vertices /, and [, come from i .
different clauses, and Xy X

e The corresponding literals of [, and ly - .

are not the negation to each other.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

A )
There is an edge in £ if and only if \
: X X
e The two vertices /. and [, come from . .
different clauses, and X X
A3

e The corresponding literals of [, and ly

are not the negation to each other.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

There is an edge in £ if and only if e

e The two vertices /, and [, come from i g
different clauses, and Xy %%)

e The corresponding literals of /. and /| - .

are not the negation to each other.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

There is an edge in £ if and only if .

e The two vertices /. and [, come from X1 .
different clauses, and X, X,

e The corresponding literals of [, and ly - N

are not the negation to each other.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard
<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢@) | ¢ is a satisfiable 3-CNF
Boolean formula}

= {(G,m) | G has a clique of
size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

There is an edge in £ if and only if

e The two vertices /, and [, come from

different clauses, and
e The corresponding literals of [, and ly

are not the negation to each other.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

/ X| X X
| S lesc2

satisfiable = There is a truth assignment y\,
—_— *\
such that there is at least one TRUE in each clause M /“9“’;\ "
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX, VXH)A(XGVSEVRE)A(XKIVEH VG )A(X VSV X))
1 VAL VXA ] VX VA3 1 VA2V X | VX VA3

/ X| X X
| S lesc2

satisfiable = There is a truth assignment y\,
—_— *\
such that there is at least one TRUE in each clause M /“9“’;\ "
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction f

rom 3SAT

o 3SAT = {(¢@) | ¢ is a satisfiable 3-CNF
Boolean formula}

. = {(G,m) | G has a clique of
size at least m1}

(X VX VX)) A(X VIV X3)

7

satisfiable = There is a truth assignment
such that there is at least one TRUE in each clause

RN
DN
Consult the satisfying assignment 5 l/“é} \'Y X,

to construct to

A(XIVXVIL)A(X VXV X))

Ve ‘41 \A '},0
X3 \ ‘ “' X3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX, VXH)A(XGVSEVRE)A(XKIVEH VG )A(X VSV X))
1 VAL VXA ] VX VA3 1 VA2V X | VX VA3

/ xl X X2
. . . . 5 ‘\‘ll
satisfiable = There is a truth assienment X/ V‘\
g g "%&6&\' X

such that there is at least one TRUE in each clause

NG
= sl
m G X3 ‘( “'1 X3
(They are not in the same clause, \_ o

and can be TRUE at the same time) 219



CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX, VXH)A(XGVSEVRE)A(XKIVEH VG )A(X VSV X))
1 VAL VXA ] VX VA3 1 VA2V X | VX VA3

/ Xy X L X

satisfiable = There is a truth assignment ,"
such that there is at least one TRUE in each clause

/
! uil
m G X3 ‘( ‘ X3
(They are not in the same clause, N
and can be TRUE at the same time) 220




CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )IA(XGV LV XR)A(XKIVEH VG )A(X VSV X))
1 VXL VX ] VA VA3 1 VA2V X ] VA VA3

I G \ \\\\\

222

(G, m) is a yes-instance = there is a



CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢@) | @ is a satisfiable 3-CNF |/ e
Boolean formula}

= {(G,m) | G has a clique of
size at least m1}

(X VX VHO)A(XVEVIG)A(XIVHOVG)A(X VXY X))

Consult the to construct
a truth-assighnment to 3SAT:
Set the corresponding variables as TRUE

)

(G, m) is a yes-instance = there is a in G
223




CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢) | ¢ is a satisfiable 3-CNF||e = {(G,m) | G has a clique of
Boolean formula} size at least m1}

(X, VX,V )OA(XSGVSVRE)A(XKVHLEVE)A(X VSV X))
1 VXL VXA ] VX VA3 1 VA2V X ] VA VA3

X{ ~ X1 < %
_ TN
& ’ AS =
There is an between each pair of . @" \\\\)C2
in G X " ir\ X3
= By our construction, they are from different N \\\\_

clauses and can be TRUE at the same time 004



CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof Idea> Polynomial-time reduction from 3SAT

o 3SAT = {(¢@) | ¢ is a satisfiable 3-CNF
Boolean formula}

= {(G,m) | G has a clique of
size at least m1}

(X, VX,V )OA(XSGVSVRE)A(XKVHLEVE)A(X VSV X))
1 VXL VXA ] VX VA3 1 VA2V X ] VA VA3

7

The constructed assignment is satisfying
since there is at least one TRUE in each clause

)

There is an between each pair of

in &

= By our construction, they are from different
clauses and can be TRUE at the same time
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof> Polynomial-time reduction from 3SAT

For any instance of 3SAT, ¢ = C; A G, A --- A C,, we generate an instance of
CLIQUE, G = (V, E) and k, as follows:

For each clause C; containing three literals /; , [; , [; , there are three vertices in V.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof (cont.)> For any pair of vertices [, ly in V, there is an edge ([, ly) in £ if and

only if
e The two vertices [, and [, come from different clauses, and

o The corresponding literals of /. and [, are not the negation to each other.

Finally, we let k equals to m, the number of clauses in ¢.

The construction can be done in polynomial time since | V| = 3m and there are

O(mz) edges, where each of the edges needs constant time to check.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof (cont.)> Now we show that the reduction works by showing that there is a
satisfying assignment to ¢ if and only there is a k-clique in G.

Suppose that ¢ has a satisfying assignment, we construct a k-clique by selecting one
of the vertices which are corresponding to a literal with “TRUE” value from each of
the clauses. Since ¢ is satisfiable, there must be one of such a literal in every clause.

As the satisfying assignment is feasible, every variable is assigned to either TRUE or
FALSE but not both. Hence, there must be an edge between two vertices picked

from different clauses. Therefore, the picked vertices form a k-clique.
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CLIQUE

e Theorem: CLIQUE = {{G, k) | There is a clique in G with size at least k} is NP-Hard

<Proof (cont.)> Suppose that G has a clique V' of size k. No edges in G connect

vertices in the same clause, so V' contains exactly one vertex form each of the k
clauses. We assign value TRUE to the corresponding literal. It is a feasible
assignment since there is no edges between literals corresponding to x and x for
each variable x. Hence, each clause has one literal which is assigned TRUE and the

formula @ is satisfied.
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Show that for any

yes-instance w’ € B,
the corresponding instance

(W) nd w is also a yes-instance of /

. . Show that for any
1. Show that there is a function no-instance w' & B,

that transforms every w to w’ the corresponding instance
in polynomial time w is also a no-instance of A

edge
m corresponding vertices




Show that for any

yes-instance w’ € B,
the corresponding instance

(W) d w is also a yes-instance of /

. . Show that for any
1. Show that there is a function no-instance w' & B,

that transforms every w to w’ the corresponding instance
in polynomial time w is also a no-instance of A

m-clique




Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete
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PARTITION

e PARTITION = {(S)|S = {x;, -, x;} and for some subset T'= {y,, ---,y, } C S,

we have ZyieTy,- = Zz,-eS\TZi}
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PARTITION

e PARTITION = {(S)|S = {x;, -, x;} and for some subset T'= {y,, ---,y, } C S,

we have ZyieTy,- = Zz,-eS\TZi}

e Ex:S=1{1,1,3,4,5,8)
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PARTITION

e PARTITION = {(S)|S = {x;, -+, x; } and for some subset
we have = 2, e\7%i}

e Ex:5=1{1,1,3,4,58}=>17=1{3, 8}

235
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PARTITION

e PARTITION = {(S)|S = {x;, -+, x; } and for some subset
we have = 2, e\7%i}

e Ex:5={1,1,3,4,5,8}=>7={3,8}and S\T={1,1,4,5}

230
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PARTITION

e PARTITION = {(S)|S = {x, -+, x;} and for some subset C S,
we have = 2, e\7%i}

o Ex:5={1,1,3,4,5,8} =>7={3,8}andS\T={1,1,4,5} @ Yes-instance

a1 R

11
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PARTITION

e PARTITION = {(S)|S = {x;, -, x;} and for some subset T'= {y,, ---,y, } C S,

we have ZyieTy,- = Zz,-eS\TZi}

o Ex:5={1,1,3,4,5,8} =>T=1{3,8}andS\T={1,1,4,5} @ Yes-instance

—— e e —
11 11

e Ex:5=1{2,2,2,2,4,6} = No answer
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PARTITION

e PARTITION = {(S)|S = {x;, -, x;} and for some subset T'= {y,, ---,y, } C S,

we have ZyieTy,- = Zz,-eS\TZi}

o Ex:5={1,1,3,4,5,8} =>T=1{3,8}andS\T={1,1,4,5} @ Yes-instance

— — e —
11 11

e Ex:5=1{2,2,2,2,4,6} = No answer No-instance
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BIN-PACKING

e Given afiniteset U = {uy, u,, ---,u,} of items and a rational size s(u;) € [0,1] for
each item u; € U, find a partition of U into disjoint subsets U, U,, ---, U, such

that the sum of the sizes of the items in each U’ is no more than 1 and such that k
is as small as possible.
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BIN-PACKING

e Given afiniteset U = {uy, u,, ---,u,} of items and a rational size s(u;) € [0,1] for
each item u; € U, find a partition of U into disjoint subsets U, U,, ---, U, such

that the sum of the sizes of the items in each U’ is no more than 1 and such that k
is as small as possible.

® \What is the decision version of the bin-packing problem?
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BIN-PACKING

e Given afiniteset U = {uy, u,, ---,u,} of items and a rational size s(u;) € [0,1] for
each item u; € U, find a partition of U into disjoint subsets U, U,, ---, U, such

that the sum of the sizes of the items in each U’ is no more than 1 and such that k
is as small as possible.

® \What is the decision version of the bin-packing problem?

e Given a finite set U of items, can they be packed into at most &k bins?
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BIN-PACKING

e Given afiniteset U = {uy, u,, ---,u,} of items and a rational size s(u;) € [0,1] for
each item u; € U, find a partition of U into disjoint subsets U, U,, ---, U, such

that the sum of the sizes of the items in each U’ is no more than 1 and such that £
is as small as possible.

® \What is the decision version of the bin-packing problem?

e Given a finite set U of items, can they be packed into at most &k bins?

® Theorem: BIN-PACKING is NP-complete
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BIN-PACKING

e PARTITION = {{S) | o = {(U, k)| U can be
5 = {x}, =+, X, } and for some subset 7" = partitioned into at most k disjoint

{y{, -, y,}C S, we have Z y; = Z z;}  subsets such that the total size of the
vel  zeS\T items in each subset is no more than 1}
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Reduce PARTITION to BIN-PACKING

e PARTITION = {{S) | o = {(U, k)| U can be
5 = {Xy, -+, X, 1 and for some subset 7' = partitioned into at most k disjoint
{1, -+, v, }C S, we have 2 y, = Z z;}  subsets such that the total size of the
vel  zeS\T items in each subset is no more than 1}

PARTITION Yes

BIN- ~—

PACKING

f — (U, k)y—>

~
No
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Reduce PARTITION to BIN-PACKING

e PARTITION = {{S) | o = {(U, k)| U can be
5 =11,1,3,4,5,8} and for some subset T"= partitioned into at most £ disjoint
Vi =+ ¥, 1 C S, we have Z Y, = Z z:} subsets such that the total size of the
vET ZES\T items in each subset is no more than 1}

S=1{1,1,3,4,5,3}
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Reduce PARTITION to BIN-PACKING

e PARTITION = {(S) | o = {(U, k)| U can be
5 =11,1,3,4,5,8} and for some subset T'= partitioned into at most £ disjoint
Wi = Y, 1 C S, we have Z y; = Z z:} subsets such that the total size of the
€T ZES\T items in each subset is no more than 1}
ltems in U with size = )i
sum of S/2
S=1{1,1,3,4,5,8}
8/11
sumof5 22 5/11
> =5 =11 311 411

1/111/11
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Reduce PARTITION to BIN-PACKING

e PARTITION = {(S) | o = {(U, k)| U can be

5 =11,1,3,4,5,8} and for some subset T"= partitioned into at most £ disjoint

Vi =+ ¥, 1 C S, we have Z Y, = Z z:} subsets such that the total size of the
€T ZES\T items in each subset is no more than 1}
Items in U with size = )i
sum of S/2
S=1{1,1,3,4,5,8}

8/11

5/11

3/114/11

1/111/11
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Reduce PARTITION to BIN-PACKING

e PARTITION = {{S) | o = {(U, k)| U can be
5 =11,1,3,4,5,8} and for some subset T"= partitioned into at most k disjoint
Vi =+ ¥, 1 C S, we have Z Y, = 2 z:} subsets such that the total size of the
vET ZES\T items in each subset is no more than 1}

If there is a packing in 2 bins, the items in each bin have the same total size, 1/11
and the corresponding numbers form an equal-sum partition. 1/11  3/11

¥\

If there is a partition The items can be packed in 2 bins

A

If there exists an equal-sum partition, the corresponding 5/11
items in each part can be packed in one bin.

4/11

8/11
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BIN-PACKING

e BIN-PACKING = {(U, k)| U can be partitioned into at most k disjoint subsets
such that the total size of the items in each subset is no more than 1}

® Theorem: BIN-PACKING is NP-complete

<proof> To prove that BIN-PACKING is in NP, we use a k-partition of U as the
certificate. The verifier should check if this partition is a proper partition of U, and if

each subset has sum no more than 1. The checking time is in polynomial of the
number of elements in U.
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BIN-PACKING

To prove the NP-hardness, we show that PARTITION Sp BIN-PACKING. For any

instance of PARTITION, S, we construct an instance of BIN-PACKING, S and £ as
follows. For each element a; € §, there is a corresponding element u; in $" and

7 - a.
s(u;) = Y = where X is half of the sum of all elements in S. We set k = 2. The

construction can be done in polynomial time.
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BIN-PACKING

Now we prove that the reduction works. Suppose that there is a partition of §,
and S,. For all elements a; € §;, the sum is X. The sum of corresponding /s is 1, so
the corresponding items can be placed in one bin. It also holds for §,. Hence, the
items can be packed into 2 bins.

For the other direction, suppose that the items in $' can be packed in two bins. Each

of the bin has total size 1 since the total size of all items in S’ is

Y. a.
>. s(u.) = —— = 2. The corresponding two subsets of S has equal size and form a
l l X

partition.
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Special Case and Hardness

General case
(arbitrary number of bins)

easy ——— M OQ———— @ ————— hard

The is not harder than the general case
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Special Case and Hardness

General case

NP-Complete (arbitrary number of bins)
easy hard
NP-Hard
<

—P
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Special Case and Hardness

NP ase General case

) (arbitrary number of bins)
easy ‘

O hard

NP-Hard

|

If the special case is NP-complete,
it does not imply that the general case is also NP-complete
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Special Case and Hardness

case
ver of bins)

hard

easy

N

If the general case is NP-complete,
it implies that the special case is also NP-complete
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Special Case and Hardness

case
er of bins)

easy hard

It’s also possible!
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Special case and general case

258



Special case and general case

e A isin P:for anyinstance w, it can be decided if w € A orw & A in polynomial
time
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Special case and general case

A special case of A is NP-hard
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Special case and general case

A special case of A is NP-hard

A is NP-hard
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Special case and general case

A is NP-hard
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Special case and general case

A is NP-hard

Maybe there is still a special case of A that is polynomial time solvable
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Outline

® NP-Completeness

® NP-hardness: Polynomial time reduction

o CNF-SAT Sp 3SAT
o 35AT Sp SUBSET-SUM
o 35AT Sp CLIQUE

e PARTITION Sp BIN-PACKING

® Cook-Leven Theorem: SAT is NP-complete

2064



Cook-Levin Theorem

® The first NP-complete problem: satisfiability problem
SAT = {{(¢) | ¢ is a satisfiable Boolean formaula}

® Cook-Levin theorem:SAT € P iff P=NP
<> SAT is NP-complete
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SAT is NP-complete



SAT is NP-complete

e |f l[anguage A isin NP, there is a non-
deterministic Turing machine (NTM) that

/O\h accepts w € A in O(n") steps
Running time &\

f(n) = poly(n)

° 4
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SAT is NP-complete

o wifwa|ws| | |w O] | |O

nk

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size 7% X n* such that
1. Each row in the tableis a
configuration of the NTM
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SAT is NP-complete

o wifwa|ws| | |w O] | |O

alblcl@dlelr] | || |

clelelslalalale| | | |

nk

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size 7% X n* such that
1. Each row in the tableis a
configuration of the NTM

Mooanan

q/E;ﬂ;Ehﬂ
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SAT is NP-complete

nk

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that
1. Each row in the table is a
configuration of the NTM
2. The first row is the starting
configuration
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SAT is NP-complete

nk

271

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that
1. Each row in the table is a
configuration of the NTM
2. The first row is the starting
configuration
3. There is a accepting configuration



SAT is NP-complete

nk

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

1. Each row in the table is a
configuration of the NTM

2. The first row is the starting
configuration

3. There is a accepting configuration

4. The configurations corresponding to
consecutive rows follow the NTM’s
rules
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SAT is NP-complete

HEEEEEEEEEE

nk

e |f language A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

1. Each row in the table is a
configuration of the NTM

2. The first row is the starting
configuration

3. There is a accepting configuration

4. The configurations corresponding to
consecutive rows follow the NTM’s

rules

Xrow. column, symbol = Lif the cell[Z, j] is the symbol

xl’Z,wl — 1,X° :

1,],S — llxl,l,ql =0
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SAT is NP-complete
9 | ™1 W e If language A is in NP, there is a non-

deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that
1. Each row in the tableis a

configuration of the NTM
Peell = /\ ( \/ xi,j,m) A ( /\ (xi,j,qs /\xi,j,qt)) 2. The first row is the starting
i,j€[1,n"] state ¢, states ¢,#q, conﬁguration

3. There is a accepting configuration
4. The configurations corresponding to
consecutive rows follow the NTM'’s

rules

X lif the cell|z, j] is the symbol

row, column, symbol —

. Xiow, = LiXijy = L x4 =0



SAT is NP-complete
9 | ™1 W e If language A is in NP, there is a non-

deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that
1. Each row in the tableis a

at least one state

f_/\_\

configuration of the NTM
Peell = /\ ( \/ xi,j,m) A ( /\ (xi,j,qs /\xi,j,qt)) 2. The first row is the starting
i,j€[1,n¥] state g, states g.#q, : :
configuration
3. There is a accepting configuration

at most one state

=

The configurations corresponding to
consecutive rows follow the NTM'’s

rules

X lif the cell|z, j] is the symbol

row, column, symbol —

- Xiow, = LiXijy = L x4 =0



SAT is NP-complete
9 | ™1 W e If language A is in NP, there is a non-

deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

1. Each row in the table is a

configuration of the NTM
Dstart = X1,1,g, N X120, AN X130, A 7 A XDt 2. The first row is the starting

configuration

3. There is a accepting configuration

4. The configurations corresponding to
consecutive rows follow the NTM'’s

rules

X lif the cell|z, j] is the symbol

row, column, symbol —

. Xiow, = LiXijy = L x4 =0



SAT is NP-complete

e |f l[anguage A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

1. Each row in the tableis a
& _ \/ Y. configuration of the NTM
accept A “4accept 2. The first row is the starting
WA configuration
3. There is a accepting configuration
4. The configurations corresponding to

Accepting configuration o consecutive rows follow the NTM’s

rules
lif the cell|z, j] is the symbol

xrow, column, symbol —

- Xiow, = LiXije = LX 14 =0



SAT is NP-complete

X: -
\/ LJ-daccept

i,j€[1,n"]

Accepting configuration

e |f l[anguage A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

1. Each row in the tableis a
configuration of the NTM

2. The first row is the starting
configuration

3. There is a accepting configuration

4. The configurations corresponding to
consecutive rows follow the NTM'’s

rules
lif the cell|z, j] is the symbol

xrow, column, symbol —

. Xiow, = LiXijy = L x4 =0



SAT is NP-complete

e State g, and read a: write b, move to the right

e State g; and read b:
e write ¢, enter g,, move to the left, or

e write amto the right
qdi b | al  a|b|a

RN
g anne

4. The configurations corresponding to
consecutive rows follow the NTM'’s
rules

X lif the cell|z, j] is the symbol

row, column, symbol —

. Xiow, = LiXijy = L x4 =0



SAT is NP-complete

e State g, and read a: write b, move to the right

e State g; and read b:
e write ¢, enter g,, move to the left, or

e write aWhe right

b | a

/\ TS

A

4. The conﬁguratlons corresponding to
consecutive rows follow the NTM’s

rules

Xrow, column., symbol = 11f the cell[z, j] is the symbol

280 'x12w1 = 1 xl]S — 1’x1919Q1 — O



SAT is NP-complete

e State g, and read a: write b, move to the right

e State g; and read b:
e write ¢, enter g,, move to the left, or

e write aWhe right
| b | a

/\ /

A

4. The conﬁguratlons correspondlng to
consecutive rows follow the NTM’s

rules

Xrow, column., symbol = 11f the cell[z, j] is the symbol

281 'x12w1 = 1 xl]S — 1’x1919Q1 — O



A

q1

b

A

A

SAT is NP-complete

e State g, and read a: write b, move to the right

e State g; and read b:

e write ¢, enter g,, move to the left, or

e write aWhe right

91
b i b 9> bla|a]|c

A

blalal bl a

5 blal|alala

b b 4. The configurations corresponding to
consecutive rows follow the NTM'’s

rules

xmw, column, symbol —

e X100 = 1 X

lif the cell|z, j] is the symbol

— 1,x1,1,q1 —_ O



A

q1

b

A

A

SAT is NP-complete

e State g, and read a: write b, move to the right

e State g; and read b:

e write ¢, enter g,, move to the left, or

e write aWhe right

91
b | b 9> bla|a]|c

A

blalal bl a

5 blal|alala

b | b 4. The configurations corresponding to
consecutive rows follow the NTM'’s

rules

xmw, column, symbol —

. Xt = 1 X s

lif the cell|z, j] is the symbol

— 1,x1,1,q1 —_ O



SAT is NP-complete

e |f l[anguage A isin NP, there is a non-
deterministic Turing machine (NTM) that

accepts w € A in O(n") steps

e There is a table with size n* X n* such that

Drmove = \/ the (1, j) window is legal 1. Eachrow in the tableis a
i.je[1,n"] configuration of the NTM
2. The first row is the starting

configuration

aiafolalb]?b 3. There is a accepting configuration

a:a|q|a|b|b 4. The configurations corresponding to
consecutive rows follow the NTM'’s
rules

X

row, column, symbol = lif the CE||[i,j] is the SymbOI

. Xiow, = LiXijy = L x4 =0



SAT is NP-complete
Pcell = /\ (( \/ xi,j,ws>/\< /\ (xi,j,qs/\xi,j,q)) If language A is in NP, there is a non-

i,j€[1.n'] \ “state g states g,7#q, deterministic Turing machine (NTM) that

accepts w € A in O(n") steps
= X110 AKX 200 AX| 300 A AX . L
Pstart = X114 N X1, 200, N X1 30, Lnf, e There is a table with size n* X n* such that
1. Each row in the tableis a

¢accept _ \/ X dccent conﬁguration.of the NTM
iellaf P 2. The first row is the starting
configuration
3. There is a accepting configuration
Drmove = \/ the (i, j) window is legal 4. The configurations corresponding to
i,jel1,n"] consecutive rows follow the NTM'’s

rules

Time Ipr copstriicion: w € Aiff Pcell A Dstart A Paccept A Pmove is satisfiable

. k : 2k
Gstart: O(N°) Peell, ¢acceptf and Pmove: O(n) .



Polynomial-Time Reduce

® Problem A with input w

® Returnyesifw &

e Return no if w &

1. Show that there is a function

that transforms every w to w’

in polynomial time

Polynomial-time function

® Problem with input

280

® Returnyesif €&

e Returnnoif €&

Show that for any

ves-instance w € A,
the corresponding instance

Is also a yes-instance of

o

Show that for any

yes-instance &
the corresponding instance

W is also a yes-instance of

Show that for any

no-instance &
the corresponding instance

w is also a no-instance of



