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Since exponential-time algorithms can be very time-consuming, we always want to have some
polynomial-time algorithms for the problems we want to solve. However, there are several problems
that people have tried for decades but have not found a polynomial time algorithm: Maximum Clique,
Minimum Vertex Cover, Partition, Subset Sum... There has been a long-last discussion: for
these problems, which have no polynomial time algorithms (yet), should we try harder to find a
polynomial time algorithm, or is it impossible to have one?

1 Polynomial-time reduction and NP-hardness
Besides solving the problems directly, we can also show that some problems are solvable by reducing
them to other problems. A reduction is a way of converting one problem to another such that a
solution to the second problem can be used to solve the first problem. That is, if problem A reduces
to problem B, we can use a solution to B to solve A.

Definition 1. Language A is polynomial-time reducible to language B, written A ≤P B, if a polynomial-
time computable function f exists, where for every w,

w ∈ A ⇔ f(w) ∈ B.

The function f is called the polynomial-time reduction of A to B.

Reduction and hardness. Intuitively, if problem A reduces to problem B, B is not easier than A.
That is, problem B is as hard as A, or even harder than A.

From the time complexity point of view, if problem A is polynomial-time reducible to problem B
and problem B is polynomial-time solvable, then A can be solved in polynomial-time, too. The
polynomial-time algorithm of A can be constructed as follows:

ALGA = “ On input w :
1. Compute f(w)
2. Run the polynomial-time algorithm ALGB of B on input f(w).
3. If ALGB accepts f(w), accept. Otherwise, reject.

Correctness of reduction. A valid reduction should guarantee that after transforming the input
of problem A, w, to an input of problem B, f(w), w is a yes-instance of A if and only if f(w) is
a yes-instance of B. Not every transformation of the input works. Hence, to show that a reduction
is valid, we have to show that the transformation covers questions about membership testing in A to
membership testing in B correctly.

That is, to show that a polynomial-time reduction from A to B is valid, for any input w to A, we
should prove the following three things:

• The function f can be calculated in polynomial time in the length of w.

• If f(w) is a yes-instance of problem B, w is a yes-instance of problem A.

• If f(w) is a no-instance of problem B, w is a no-instance of problem A.
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Note that by the contrapositive statement, the last item is equivalent to “If w is a yes-instance of
problem A, f(w) is a yes-instance of problem B.”

NP-hardness. Recall that if problem A reduces to problem B, B is at least as hard as A. The
following definition uses this property to define a class of problems that are not easier than any problem
in NP.

Definition 2. A problem is NP-hard if all problems in NP are polynomial-time reducible to it.

2 NP-Completeness
We always want to design a polynomial-time algorithm for the problem we want to solve. However,
there are some problems people have tried for ages, but no polynomial-time algorithm was found. For
these problems, we do not know if we should try harder, or the problem is impossible to be solved in
polynomial-time.

In 1971, Stephen Cook published a paper and proposed that there is a problem SAT such that
if the SAT problem can be solved (by a deterministic Turing machine) in polynomial time, then all
problems in NP can be solve in polynomial time. In 1972, Richard Karp published another paper and
proved that 21 other problems also have the property that if they can be solved in polynomial time,
then P = NP.

These problems in NP whose individual complexity is related to that of the entire NP class are
called NP-complete. More precisely, a problem is NP-complete if it is in NP and NP-hard.

Intuitively, NP-complete problems are the most difficult problems in NP, as every problem in NP
can be reduced to them. If an NP-complete problem is proved to be polynomial-time solvable, all NP
problems are solvable. On the contrary, if there is any problem in NP that needs more than polynomial
time to solve, it must be one of the NP-complete problems.

To theoretical computer scientists, NP-complete problems are interesting as they are the breaking
point for proving P = NP or not. On the practical side, the phenomenon of NP-completeness can
prevent wasting time searching for polynomial-time algorithms.

3 NP-Hardness proofs
3.1 3SAT
The first NP-complete problem is the satisfiability problem (SAT). Variables that can take on the
values TRUE (1) and FALSE (0) are called Boolean variables. The Boolean operations are AND (∧),
OR (∨), and NOT (¬). A Boolean formula is an expression involving Boolean variables and Boolean
operations. For example, ϕ = (x̄ ∧ y) ∨ (x ∨ ¬z) is a Boolean formula.

A Boolean formula is satisfiable if there exists an assignment of TRUEs (1s) and FALSEs (Os) to
the variables that make the formula evaluate to TRUE (1). Let

SAT = {⟨ϕ⟩ | ϕ is a satisfiable Boolean formula.}

The following is Cook-Levin theorem, which proves that SAT is a (first) NP-complete problem
(the proof is very complicated, and we skip it for this course.):

Theorem 1. SAT ∈ P if and only if P = NP.

A Boolean formula is in conjunctive normal form (CNF) if it is in the following form:

ϕ = (x ∨ y ∨ ȳ) ∧ (x̄ ∨ y) ∨ (z)

That is, it consists of clauses that are connected by ANDs, and the literals in each clauses are
connected by ORs. In the example, there are three clauses:
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• (x ∨ y ∨ ȳ)

• (x̄ ∨ y)

• (z)

In the first clause, there are three literals:

• x

• y

• ȳ

In this Boolean formula, there are three variables: x, y, and z. It is satisfiable as there is an
assignment, x = 0, y = 0, and z = 1 such that the whole formula evaluates to 1.

Similar to the SAT problem, we can define the CNF-SAT problem:

CNF-SAT = {⟨ϕ⟩ | ϕ is a satisfiable conjunctive normal form Boolean formula.}
The set of conjunctive normal form Boolean formulas is a subset of the set of (arbitrary) Boolean

formulas. However, the CNF-SAT problem can be proven to be NP-complete by polynomial-time
reduction from SAT.

Next, we further define a more constrained form of Boolean formulas: 3CNF-formula. A Boolean
formula is 3CNF if it is in conjunctive normal form and all the clauses have exactly three literals. For
example,

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x2 ∨ x4).
Let

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3CNF Boolean formula.}.

Now we show that 3SAT is NP-complete. For the NP-hardness part, we prove it by polynomial-time
reduction from CNF-SAT.

Proof Ideas of NP-Hardness. In the input instance of CNF-SAT, a clause may have an arbitrary
number of literals. However, in a legal instance of the 3SAT problem, every clause has exactly three
literals. The key here is to transform any instance of CNF-SAT to one of 3SAT while maintaining
satisfiability. That is, if the original input to CNF-SAT is a satisfiable Boolean formula, the transformed
input to 3SAT should also be a satisfiable Boolean formula. Similarly, if the original input to CNF-SAT
is not satisfiable, the transformed input to 3SAT should also be not satisfiable.

For the clauses with less than 3 literals, the transformation is easier: we only need to duplicate one
of the literals in that clause. The satisfiability of the clause is not changed since the three literals are
connected by ANDs.

For clauses with more than 3 literals, the transformation is trickier. We have to “split” a big clause
into a set of multiple 3-literal clauses. The problem is, in the original big clause, it can be TRUE if
there is (at least) one literal is TRUE, while the set of multiple small clauses is altogether TRUE only
if there is at least one TRUE literal in each of the small clauses. We can resolve this issue by adding
dummy literals in each small clause, letting the dummy literals be TRUE, and leaving the original
literal(s) FALSE. Then there is another issue: how can we prevent the set of small clauses from being
TRUE just because of the dummy literals while the original big clause is FALSE?

Theorem 2. 3SAT is NP-complete.

Proof. First, we prove that 3SAT is in NP. (· · · The proof is in the exercise.)
Next, we prove that 3SAT is NP-hard by reduction from CNF-SAT.
To reduce CNF-SAT to 3SAT, we convert any CNF-formula F into a 3CNF-formula F ′, with F

is satisfiable if and only if F ′ is satisfiable: First, let C1, C2, · · · , Cm be the clauses in F . If F is a
3CNF-formula, we just set F ′ = F . Otherwise, the only reasons why F is not a 3CNF-formula are:

• Some clauses Ci has less than 3 literals, or
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• Some clauses Ci has more than 3 literals.

For each clause that has less than 3 literals, we duplicate one of the literals until the total number
is three.

For each clause that has more than 3 literals, we split it into several clauses and add additional
dummy variables djs to preserve the satisfiability or non-satisfiability of the original clause: each of
the clauses (x1 ∨ x2 ∨ x3 ∨ x4 ∨ · · · ∨ xk−1 ∨ xk can be replaced with the k − 2 clauses:

(x1 ∨ x2 ∨ d1) ∧ (d1 ∨ x3 ∨ d2) ∧ (d2 ∨ x4 ∨ d3) ∧ · · · ∧ (dk−3 ∨ xk−1 ∨ xk).
The conversion can be done in O(n · m · k) time, where n is the number of variables, m is the

number of clauses, and k is the number of literals in the largest clause.
Now, we prove that the satisfiability or non-satisfiability of the 3SAT problem is preserved. That

is, F is satisfiable if and only if F ′ is satisfiable.
If F is satisfiable, there exists a corresponding truth assignment in F ′ such that F ′ = 1 (TRUE).

For each of the clauses with less than or equal to 3 literals in F which is true, the corresponding clause
in F ′ is also true since we only duplicate the literals from the same clause. For each clause with more
than 3 literals in F , since F is satisfiable, there must be at least one literal xt (in the clause) which
has value 1. There exists a corresponding true assignment in F ′: dj = 1 for all j ≤ t − 2, and dj = 0
for all j ≥ t − 1.

If F ′ is satisfiable, the corresponding truth assignment for variables x1, x2, · · · , xn makes F = 1
(TRUE). For each of the clauses with less than or equal to 3 literals in F , all these clauses are TRUE
since duplicating the literals from the same clause does not change the TRUE/FALSE of a clause. For
each clause with more than 3 literals in F , since F ′ is satisfiable, the corresponding clauses in F ′ must
be all TRUE as no truth value of a dummy literal can solely make more than one clause TRUE.

3.2 Subset Sum
In the following, we show an example of NP-completeness proof of SubsetSum. Recall that the
Subset-Sum problem is defined formally as follows:

Subset-Sum = {⟨S, t⟩ | S = {x1, · · · , xn} and for some {y1, · · · , yk} ⊆ {x1, · · · , xn},

we have
∑

i

yi = t.}

That is, given a set of numbers S = {x1, · · · xn} and a target number t, a correct algorithm should
return yes (or accept) if there is a subset of S such that the sum of elements in the subset is equal to
the target number t.

Theorem 3. Subset-Sum is NP-hard.

Proof. We show that SubsetSum is NP-hard by polynomial-time reduction from 3SAT.
For any instance of 3SAT, ϕ with ℓ variables x1, x2, · · · , xℓ and k clauses c1, c2, · · · , ck, we construct

an instance of SubsetSum, set S = y1, y2, · · · yℓ, z1, z2, · · · , zℓ, g1, g2, · · · , gk, h1, h2, · · · , hk and target
t as follows:

• For every variable xi in 3SAT, the two numbers yi and zi in S, which both have ℓ + k decimals.

– The ith decimal of yi is 1, and all other decimals in the first ℓ decimals of yi are 0. The
(ℓ + j)th decimal of yi is 1 if and only if the clause cj contains literal xi.

– The ith decimal of zi is 1, and all other decimals in the first ℓ decimals of zi are 0. The
(ℓ + j)th decimal of zi is 1 if and only if the clause cj contains literal xi.

• For every clause cj in 3SAT, create two numbers gj and hj in S. These two numbers are identical
and consist of a single 1 at the (ℓ + j)th decimal, and all other decimals are 0’s.

• t is set as ℓ 1’s followed by k 3’s.
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The construction can be done in polynomial time in the input size of S as we only have O((ℓ + k)2)
decimals, each needs at most one scanning of the input, while the input size is Ω(ℓ + k).

Next, we show that for any yes-instance of the SubsetSum problem, the corresponding instance of
the 3SAT problem is a yes-instance. Suppose that a subset of S sums to t. We construct a satisfying
assignment to ϕ. First, we observe that no carry into the next decimal is needed since all the decimals
in members of S are either 0 or 1 and each decimal together contains at most five 1’s. Hence, to get a
1 in each of the first ℓ decimals, the subset must have either yi or zi for each i = 1, 2, · · · , ℓ (but not
both).

Now, we make the satisfying assignment. If the subset contains yi, we assign xi TRUE; otherwise,
we assign it FALSE. Since in each of the final k decimals, the sum is always 3, and there are at most
two 1’s coming from gi or hi, there is at least one 1 coming from some yi or zi. Hence, this assignment
satisfies ϕ

Next, we show that for any yes-instance of the Partition problem, the corresponding instance
of the SubsetSum problem is a yes-instance. Suppose ϕ is satisfiable. We construct a subset of S
as follows. We select yi if xi is assigned TRUE in the satisfying assignment and zi if xi is assigned
FALSE. For each of the first ℓ decimals, the sum is exactly 1 since the assignment is legal (that is,
exactly one of yi and zi is true for every i). Furthermore, each of the last k decimals is between 1 to 3
because each of the 3-literal clauses has at least one TRUE literal. By selecting enough of the g and
h numbers to bring each of the last k decimals up to 3, the large target is hit.

3.3 Clique
A clique is a set of vertices where each pair of vertices are adjacent to each other. The maximum clique
problem is: given a graph G, what is the size of the maximum clique in G? The decision version of the
maximum clique problem is:

Clique = {⟨G, k⟩ | There is a clique in G of size at least k.}

We prove that the Clique problem is NP-complete. The NP-hardness is proven by polynomial-time
reduction from 3SAT.

Proof Ideas of NP-Hardness. To reduce 3SAT to Clique, we have to transform any 3CNF
Boolean formula ϕ to a graph G and make sure that ϕ is satisfiable if and only if there is a k-clique
in G.

Theorem 4. Clique is NP-complete.

Proof. First, we show that Clique is in NP. Let string c that encodes a clique with size k in G as a
certificate.

A = “On input ⟨⟨G, k⟩, c⟩ :
1. Test whether c is a set of k nodes in G.

2. Test whether G contains all edges connecting vertices in c

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most |c| = k times of scanning through the input. Step 2 takes at most |c|2 times of
scanning through the input. Hence, A runs in polynomial time in the input length.

Now we show that Clique is NP-hard by polynomial-time reduction from 3SAT. For any instance
of 3SAT, ϕ = C1 ∧ C2 ∧ · · · ∧ Cm, we generate an instance of Clique, G = (V, E) and k, as follows:
For each clause Ci containing three literals, ℓi1 , ℓi2 , and ℓi3 , there are three vertices in V that are
corresponding to the three literals.

For any pair of vertices ℓx and ℓy in V , there is an edge (ℓx, ℓy) in E if and only if

• The two vertices ℓx and ℓy come from different clauses, and

• The corresponding literals of ℓx and ℓy are not the negation to each other.
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Finally, we let k equal to m, the number of clauses in ϕ. The construction can be done in polynomial
time since |V | = 3m and there are O(m2) edges, where each of the edges needs constant time to check.

Now, we show that the reduction works by showing that there is a satisfying assignment to ϕ if
and only there is a k-clique in G. Suppose that ϕ has a satisfying assignment, we construct a k-clique
by selecting one of the vertices which are corresponding to a literal with “TRUE” value from each of
the clauses. Since ϕ is satisfiable, there must be one of such a literal in every clause. As the satisfying
assignment is feasible, every variable is assigned to either TRUE or FALSE but not both. Hence, there
must be an edge between two vertices picked from different clauses. Therefore, the picked vertices
form a k-clique.

Suppose that G has a clique V ′ of size k. No edges in G connect vertices in the same clause, so V ′

contains exactly one vertex from each of the k clauses. We assign the value TRUE to the corresponding
literal. It is a feasible assignment since there is no edges between literals corresponding to x and x
for each variable x. Hence, each clause has one literal, which is assigned TRUE, and the formula ϕ is
satisfied.

3.4 Bin Packing
Recall the (offline) Bin Packing problem, where we aim to pack n items with size within (0, 1] into the
minimum number of capacity-1 bins. The decision version is defined as follows:

BinPacking = {⟨U, k⟩ | The items in U can be partitioned into at most k disjoint subsets such
that the total size of the items in each subset is no more than 1}.

The Bin Packing problem is NP-complete. The NP-hardness can be shown by polynomial-time
reduction from Partition.

Theorem 5. BinPacking is NP-complete.

Proof. To prove that BinPacking is in NP, we use a k-partition of items in U as the certificate. In
detail, the k-partition can be encoded in an |U |-array, where the i-th entry is the index of the part the
i-th item belongs to. The certificate has total size |U | log k, which is polynomial in the input ⟨U, k⟩.
The verifier should check if this partition is a proper partition of U and if each subset has a sum of
size no more than 1. The checking time is in a polynomial of the number of elements in U .

To prove the NP-hardness, we show that Partition ≤P BinPacking. For any instance of Par-
tition, S, we construct an instance of BinPacking, (U, k) as follows. For each element ai ∈ S, there
is a corresponding item ui ∈ U and size(ui) = 2·ai

X , where X is half of the sum of all elements in S.
We set k = 2. The construction can be done in polynomial time.

Now, we prove that the reduction works. Suppose there is a partition of S, S1 and S2. For all
elements ai ∈ S1, the sum is X. The sum of corresponding ui’s is 1, so the corresponding items can
be placed in one bin. It also holds for S2. Hence, the items can be packed into 2 bins.

For the other direction, suppose that the items in U can be packed in two bins. Each of the bin
has total size 1 since the total size of all items in U is Σi size(ui) = Σi ai

X = 2. The corresponding two
subsets of S has equal size and form a partition.

General case, special case, and hardness. Note that in the NP-hardness proof, we reduce the
Partition problem to a special case of BinPacking problem, where the items can be packed into
two bins. Therefore, more precisely, by this reduction, we show that the special case of BinPacking is
NP-hard. Then, how about the general case of BinPacking, where the packed-in-two-bins restriction
is relaxed? Intuitively, the general case is not easier than the special case (recall the “if one can solve
the general case, they can use the algorithm for the general case to solve the special case” argument).
Therefore, the general case is at least NP-hard if the special case is NP-hard. This can be formally
proved by reducing the special case to the general case in polynomial time (if you want).
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