Exercise Solution: NP-Completeness

1. Let DOUBLE-SAT = { $\langle \phi \rangle \mid \phi$ has at least two satisfying assignments}.

Show that DOUBLE-SAT is NP-complete.

We first show that DOUBLE-SAT is in NP. For any yes-instance ϕ of DOUBLE-SAT, there exists an certificate, which is an satisfying assignment to every variable. The assignment needs at most O(n) bits to encode, where n is the number of variables. With this certificate, a verifier can use at most O(n) rounds to scan through the Boolean formula ϕ and replace the truth values of the literals in ϕ . Then, it only takes linear time to scan through the formula and check if it is true. Therefore, it takes polynomial time to verify the yes-instances.

Next, we show that DOUBLE-SAT is NP-hard by reducing from SAT in polynomial time.

For any instance ϕ of SAT, we construct an instance of DOUBLE-SAT $\phi' = \phi \land (d \lor \overline{d})$, where d is a dummy variable. The new instance size is polynomial in the size of ϕ since there are only one new variable and one new clause. Therefore, the construction can be done in polynomial time in the instance size ϕ .

Now, we show that ϕ' is satisfiable if and only if ϕ is satisfiable. First, assume that ϕ is satisfiable. We can construct two satisfying assignments A to ϕ' :

- x_1, x_2, \dots, x_n have the same truth value in A and d = TRUE, and
- x_1, x_2, \dots, x_n have the same truth value in A and d = FALSE.

Therefore, ϕ' is a yes-instance of DOUBLE-SAT.

Next, assume that ϕ' is satisfiable. That is, there exist at least two satisfying assignments to variables x_1, x_2, \dots, x_n, d , where x_i 's are the variables in ϕ . Since the only extra variable d only appears in the extra clause $(d \vee \overline{d})$, the truth values of x_i 's in one of the satisfying assignments satisfy the Boolean formula ϕ . Therefore, ϕ is a yes-instance.

2. Show that PARTITION is NP-complete. (Hint: By reduction from SUBSETSUM.)

SUBSETSUM = { $\langle S, t \rangle$ | There is a subset $T \subseteq S = \{x_1, \dots, x_n\}$ such that the sum of values in T is equal to t}.

PARTITION = { $\langle S \rangle | S = \{x_1, \dots, x_n\}$ can be partitioned into S_1 and S_2 such that the sum of elements in S_1 is equal to the sum of elements in S_2 }.

For reducing SUBSETSUM to PARTITION, we need to transform every input of SUBSETSUM, $\langle S, t \rangle$, to an input of PARTITION, $\langle S' \rangle$. We do this by adding a dummy item d to S' such that there is a subset in S with sum t if and only if $S' = S \cup \{d\}$ can be partitioned into two subsets with equal sums. See the following figure.

To determine if $\langle S, t \rangle$ is in the language SUBSETSUM, let X be the sum of values in S (that is, $X = \sum_i x_i$). We construct S' by adding an extra number |X - 2t| to S. That is, $S' = S \cup \{|X - 2t|\}$. The construction of S' can be done in polynomial time.

There are two cases of the value X - 2t, $X \ge 2t$ or X < 2t. Recall that X is the sum of values in S. If $X \ge 2t$, the sum of values in S' is X + (X - 2t) = 2X - 2t. If X < 2t, the sum of values in S' is X + (2t - X) = 2t. In the following we show that there is a subset in S with sum t if and only if $S' = S \cup \{d\}$ can be partitioned for each case.

Suppose that $X \ge 2t$. The sum of S' is 2X - 2t. If there is a subset $C \subseteq S$ with sum t, there is a partition $C \cup \{|X - 2t|\}$ with sum X - t. Hence, $C \cup \{|X - 2t|\}$ and $S' \setminus (C \cup \{|X - 2t|\})$ form a partition in S'. For the other direction, suppose that there is a partition of S', S'_1 and S'_2 . Without loss of generality, we assume that $|X - 2t| \in S'_1$. Since S'_1 and S'_2 form a partition of S', the sum of S'_1 is X - t since $X \ge 2t$. The sum of the elements in S'_1 excepts |X - 2t| is (X - t) - (X - 2t) = t and the subset $S'_1 \setminus |X - 2t|$ is a subset of S with sum t.

Suppose that $2t \ge X$. The sum of S' is X + (2t - X) = 2t. If there is a subset $C \subseteq S$ with sum t, C and $S' \setminus C$ form a partition in S'. For the other direction, suppose that there is a partition of S', S'_1 and S'_2 . Without loss of generality, we assume that $|X - 2t| \in S'_1$. Since S'_1 and S'_2 form a partition of S', the sum of S'_2 is t. Since $|X - 2t| \in S'_1$ (and not in S'_2), S'_2 is a subset of S with sum t.

3. The language 2WAYPARTITION is defined as $\{\langle S, t \rangle \mid S = \{x_1, x_2, \cdots, x_n\}$ where exists a subset $T \subset S$ such that $\sum_{y_i \in T} y_i = \sum_{y_i \in S \setminus T} y_i$ and $|T| \leq t$ and $|S \setminus T| \leq t\}$. Show that 2WAYPARTITION is NP-hard.

We show the NP-hardness of 2WAYPARTITION by reduction from PARTITION. For any instance of PARTITION, set S, we construct an instance of 2WAYPARTITION, set S' = S, and t = |S'|. This instance transformation can be done in polynomial time.

For any yes-instance (S', t) of 2WAYPARTITION, there exists a subset T of S' such that the sum of elements in T is equal to the sum of elements in $S' \setminus T$, $|T| \leq t$, and $|S' \setminus T| \leq t$. The partition T is also a partition in S. Therefore, the corresponding instance S is a yes-instance of PARTITION.

For any yes-instance S of PARTITION, there exists an equal-sum partition of S. Moreover, each of the two parts T and $S \setminus T$ has cardinality at most |S| = |S'| = t. Therefore, the corresponding instance (S', t) is a yes-instance of 2WAYPARTITION.

4. Given a graph G = (V, E), an *independent set* is a subset U of vertices in V such that there is no edge between any two vertices in U. In the *Maximum Independent Set* problem, we aim to find the maximum independent set in the given graph.

(a) Give the decision version of the Maximum Independent Set, INDEPSET

INDEPSET = Given a graph G, is there an independent set in G with size at least k? (Alternative: INDEPSET = { $\langle G, k \rangle$ | There is an independent set in G with size at least k})

(b) Show that the decision version of the Maximum Independent Set is NP-complete.

First, we prove that INDEPSET is in NP. Let an independent set of size k, c, be a certificate.

A = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k nodes in G.
- 2. Test whether G there is no edge between any pair of vertices in c
- 3. If both 1 and 2 pass, *accept*; otherwise, *reject*."

Step 1 takes at most |c| = k times of scanning through the input. Step 2 takes at most $|c|^2$ times of scanning through the input. Hence, A runs in polynomial time in the input length.

Now, we prove that INDEPSET is NP-hard by polynomial-time reduction from CLIQUE. Given an instance G = (V, E) and k of CLIQUE problem, we construct a graph G' = (V', E') and an integer k' for INDEPSET as follows. We set V' = V and k' = k. That is, For any two vertices u and v, we have $(u, v) \in E'$ if and only if $(u, v) \notin E$. The construction can be done in polynomial time.

Now we show that there is a clique in G with size at least k if and only if there is an independent set with size at least k' in G'. Assume that W' is a subset of V' that is an independent set with size at least k. By the construction, any two vertices in W' are adjacent in G (since they are not adjacent in G'). Thus, the vertices in W' are a clique of G with size at least k.

Assume that W is a subset of V that is a clique with size at least k. By the construction, any two vertices in W are not adjacent in G' (since they are not adjacent in G). Thus, the vertices in W are an independent set of G with size at least k = k'.

- 5. Given a graph G = (V, E), a vertex cover is a subset C of vertices in V such that for any edge $(u, v) \in E$, $\{u, v\} \cap U \ge 1$. In the Minimum Vertex Cover problem, we aim at finding the minimum vertex cover in the given graph.
 - (a) Give the decision version of the Minimum Vertex Cover, VC

VC = Given a graph G, is there a vertex cover in G with size at most k? (Alternative: VC = { $\langle G, k \rangle$ | There is a vertex cover in G with size at most k})

(b) Show that the decision version of the Minimum Vertex Cover, VC, is NP-complete.

Proof. First, we prove that VC is in NP. Let a vertex cover C of size k be the certificate. The verifier first checks if C has less than or equal to k vertices. Next, the verifier checks for every edge to see if it has at least one endpoint in C. The verification takes linear time $(O(\min\{|C|, |V|\}))$ for checking the size of C. For checking if the elements in C are in V, it takes $O(|V|^2)$ time. The final checking takes $O(|E| \cdot |D|)$ time. Hence, the verification can be done in polynomial time in the input length of G = (V, E).

Next, we show that VC is NP-hard by Polynomial time reduction from INDEPSET. Given an instance of the INDEPSET problem, G = (V, E) and integer k, we construct an instance of the VC, G' and integer k' where G' = G and k' = |V| - k. The reduction takes polynomial time since G' is a copy of G, and k' can be calculated in constant time.

Now, we want to show that the reduction works by proving that there is an independent set in G of size at least k if and only if there is a vertex cover in G' of size at most k'.

Suppose that G has an independent set $I \subseteq V$ with $|I| \ge k$. We claim that $V \setminus I$ is a vertex cover in G'. Since I is an independent set in G, for any edge $(u, v) \in E$, the endpoints u

and v cannot be both in I. That is, one of u or v is in $V \setminus I$. Hence, the set of vertices $V \setminus I$ is a vertex cover, which has size $|V| - |I| \le |V| - k$.

Suppose that there is a vertex cover C in G' where $|C| \leq |V| - k$. For all edge $(u, v) \in E'$, at least one of u or v is in C. That is, for any pair of u and v that are not in C, $(u, v) \notin C$. Therefore, the set $V \setminus C$ forms an independent set, which has size $|V| - |C| \geq k$. \Box

6. The weighted vertex cover problem is defined as follows. Given a graph G = (V, E), where each vertex $v \in V$ has a positive weight w_v , find a subset of V with minimum total weight such that this subset forms a vertex cover of G. Show that the weighted vertex cover problem is NP-complete.

(Note that you need to provide formal proof; saying "since its special case vertex cover is NP-hard, it is NP-hard" is insufficient.)