
Turing Machine and Decidability
Hsiang-Hsuan (Alison) Liu

1 Formal language framework
An alphabet is a nonempty finite set. The members of the alphabet are called symbols. We usually use
Σ or Γ to denote an alphabet. The following are some examples of alphabets and their symbols.

• Σ1 = {0, 1}

• Σ2 = {a, b, c, · · · , z}

• Γ1 = {0, 1, 2}

• Γ2 = {0, 1, x, y, z}

A string over an alphabet is a finite sequence of symbols from that alphabet. For example:

• 121 is a string over Γ1

• alien is a string over Σ2

We also denote the empty string (that is, a string with length 0) by ε.
A language is a set of strings. For example:

• {1, 01, 001, 0001, · · · , 0∗1}

• {0, 1}∗

• {ak, bk|k ≥ 0}

• {w]w|w ∈ {0, 1}∗}

• {2, 3, 5, 7, 11, · · · } = {prime number}

• {〈G〉|G is a connected graph}

• {〈p〉|p is a polynomial with an integral root}

Here we use the brackets 〈〉 to represent the encoding of the object in the brackets. For example, 〈G〉
is an encoding of the graph G.

Problem and language. The relation between languages and strings can be interpreted as
problems and problem instances. When we are asked if a string w is in the language L, it is equivalent
to asking if a problem instance w satisfied the problem definition L. For example, consider the language
L = {〈G〉|G is a connected graph} and a string w = 〈G〉. Asking if w ∈ L is equivalent to asking if
the instance graph G is connected.

1



2 Turing machine
The Turing machine is an abstract model of computation. It can compute everything that a real
computer can compute.

A Turing machine is equipped with an unlimited tape as its memory, which initially contains only
the input string and is blank everywhere else. There is a read-write head that can move around
on the tape and read or write symbols. The read-write head is controlled by a finite-state control.
Within the finite states of the control, there are two special states, accept and reject. Once the control
state turns to accept (or reject), the Turing machine is in an accepting configuration (or rejecting
configuration). Accepting and rejecting configurations are halting configurations and do not yield
further configurations.

At any time, the configuration of the Turing machine is defined by the state of the control and
what the read-write head reads. According to the current configuration, the Turing machine can decide
what to do next. That is, it writes something in its current position on the tape, moves the read-write
head to the left or to the right, and changes the state of the control.

Running on an input, a Turing machine may accept, reject, or enter an infinite loop.
Turing machines and algorithms. When we are talking about Turing machines, they can be

seen as algorithms. Hence, a Turing machine M run on a string w is equivalent to running an algo-
rithm M on the input instance w.

3 Turing-recognizable languages and Turing-decidable languages
Recall that running on an input, a Turing machine may accept, reject, or enter infinite loop.

Definition 1. A language L is Turing-recognizable if there exists a Turing machine M that accepts
every string w ∈ L and does not accept any string w /∈ L.

Notice that for an input string w /∈ L, where L is a recognizable language, the Turing machine may
reject it or enter an infinite loop.

To show that a language L is recognizable, we have to:

• Design a Turing machine M

• Show that M accepts every string w ∈ L and does not accept any string w /∈ L.

Definition 2. A language L is Turing-decidable if there exists a Turing machine M that accepts every
string w ∈ L and rejects every string w /∈ L.

Notice that the Turing machine M here halts on every input string. We call this kind of Turing
machine a decider.

To show that a language L is decidable, we have to:

• Design a Turing machine M

• Show that M halts on every string correctly. That is, M accepts every string w ∈ L and rejects
every string w /∈ L.

4 Undecidable languages: languages that are not decidable
Definition 3. A language L is undecidable if for all Turing machines M , there exists some string
w ∈ L that M does not accept or there exists some string w /∈ L that M does not reject. That is, for
any Turing machine, it may enter infinite loops on some input w ∈ L or w /∈ L.

Similarly, we can define the languages that are unrecognizable:

Definition 4. A language L is unrecognizable if, for all Turing machines M , there exists some string
w ∈ L that M does not accept.

2



Surprisingly, the undecidable languages and unrecognizable languages are not only hypothetical
but do exist. Consider the problem ATM defined as the following:

ATM = {〈M,w〉 |M is a Turing machine and M accepts the input string w}

The problem ATM can be interpreted as testing how an algorithm (M) reacts on input w. Surpris-
ingly, it is undecidable.
Theorem 1. ATM is undecidable.

Proof. Assume, on the contrary, that ATM is decidable. There exists a Turing machine H that decides
ATM on any input 〈M,w〉. That is, H accepts if M accepts on input w and H rejects if M rejects or
enters a loop on input w.

Now we design another Turing machine P using H as a subroutine and output the opposite of
what H outputs.

P = “On input 〈M〉 :
1. Run H on input 〈M, 〈M〉〉.
2. Accept if H rejects 〈M, 〈M〉〉. Reject if H accepts 〈M, 〈M〉〉.”

In other words, P accepts 〈M〉 if M rejects 〈M〉 and P rejects 〈M〉 if M accepts 〈M〉.
Now, what happens if we run P on input 〈P 〉? By the same arguments, P accepts 〈P 〉 if P

rejects 〈P 〉 and P rejects 〈P 〉 if P accepts 〈P 〉. That is a contradiction. Hence, neither Turing
machine P nor Turing machine H can exist. That completes the proof that ATM is undecidable.

Notice that although ATM is undecidable, it is recognizable. The fact that ATM is undecidable
means that it is impossible to write a program to detect how a program behaves. It may work for
some special (small) programs but does not work for any cases.

Using the fact that ATM is undecidable, we can show that the halting problem is undecidable. That
is, it is impossible to write a program to detect if any program will stop.
Theorem 2. HALTTM is undecidable.

Proof. See document 083 Exercise Turing Decidable Languages and Undecidable Languages, question 2.

5 Unrecognizable languages
According to the definition, for an undecidable language w ∈ L, a Turing machine may enter a loop on
an input string w ∈ L or w /∈ L. If there is a Turing machine that only enters a loop for input strings
w /∈ L, the language L is recognizable (although it is undecidable). Hence, unrecognizable languages
are all undecidable.

Is there any language that is unrecognizable? The answer is yes. By definition, for an unrecognizable
language L, any Turing machine enters a loop for some input string w ∈ L. The undecidable languages
do not only exist conceptually. There is a solid example of undecidable language:

ATM = {〈M,w〉 |M is a Turing machine and M does not accept the input string w}.

The language ATM is the complement of language ATM.
Theorem 3. ATM is unrecognizable.

Proof. We prove by contradiction. Assume that ATM is recognizable. There exists a Turing machine R
that recognizes ATM. If R exists, we can use R to construct another Turing machine H that decides
ATM. That eventually contradicts to the fact that ATM is undecidable.

First, recall that ATM is recognizable. There exists a Turing machine Q that accepts 〈M,w〉 if M
accepts w. Now, we construct Turing machine H:

H = “On input 〈M,w〉 :
1. Run Q and R on input w in parallel.
2. If Q accepts 〈M,w〉, accept. If R accepts 〈M,w〉, reject.

3



Here, running two Turing machines in parallel means that H has two tapes, one for simulating Q and
the other one for simulating R until one of Q orR accepts.

Now we show that H decides ATM. By the definition of ATM, every string 〈M,w〉 is either in ATM
or ATM. Hence, either R or Q must accept 〈M,w〉. Therefore, H always halts on any input 〈M,w〉.
Furthermore, H accepts all strings in ATM and rejects all strings in ATM (that is, strings not in ATM).
So H is a decider for ATM. It contradicts the fact that ATM is undecidable. Therefore, R does not
exist, and it completes the proof that ATM is unrecognizable.

4


	Formal language framework
	Turing machine
	Turing-recognizable languages and Turing-decidable languages
	Undecidable languages: languages that are not decidable
	Unrecognizable languages

