
Algorithms for Decision Support

NP-Completeness (1/3)
Turing Machine, P, and NP

1

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

2

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

3

Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous

talk at the InternaEonal Congress of MathemaEcians in Paris

• He idenEfied 23 math problems which he thinks are
important in the coming century

• Hilbert’s 10th problem conceded algorithms:
Given a mulE-variable polynomial with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operaEons whether has
integral roots.

• (,)

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0

4

Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous

talk at the InternaEonal Congress of MathemaEcians in Paris

• He idenEfied 23 math problems which he thinks are
important in the coming century

• Hilbert’s 10th problem conceded algorithms:
Given a mulE-variable polynomial with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operaEons whether has
integral roots.

• (,)

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0

5

Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous

talk at the InternaEonal Congress of MathemaEcians in Paris

• He idenEfied 23 math problems which he thinks are
important in the coming century

• Hilbert’s 10th problem conceded algorithms:
Given a mulE-variable polynomial with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operaEons whether has
integral roots.

• (,)

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0

6

Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous

talk at the InternaEonal Congress of MathemaEcians in Paris

• He idenEfied 23 math problems which he thinks are
important in the coming century

• Hilbert’s 10th problem conceded algorithms:
Given a mulE-variable polynomial with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operaEons whether has
integral roots.

• (,)

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0

7

Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous

talk at the InternaEonal Congress of MathemaEcians in Paris

• He idenEfied 23 math problems which he thinks are
important in the coming century

• Hilbert’s 10th problem conceded algorithms:
Given a mulE-variable polynomial with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operaEons whether has
integral roots.

• (,)

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0

8

What is an algorithm/computer?

9

Turing Machine
• Proposed by Alan Turing in 1936

• A model of a general purpose computer: a Turing machine can do every thing that
a real computer con do

10

Alan Turing 1912~1954

Turing Machine
• Proposed by Alan Turing in 1936

• A model of a general purpose computer:
a Turing machine can do every thing that a real computer
can do

11

Alan Turing 1912~1954

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

12

…………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

13
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

14
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

15
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

16
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

17
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

18
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

19
0 11 1 1 10 # 00 1 …………

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

20
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

21
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

22
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

23
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

24
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

25
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

26
0 11 1 1 10 # 00 1control ……

Turing Machine
• Proposed by Alan Turing in 1936

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is
blank everywhere else

• A tape head that can read and write symbols and move
around on the tape

• Finite-state control

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

27
0 11 1 1 10 # 00 1control ……

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its le^ or right

28
0 11 1 1 10 # 00 1control ……

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its le^ or right

0 11 1 1 10 # 00 1control ……
29

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its le^ or right

30
0 11 1 1 10 # 00 1control ……

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its le^ or right

31
0 11 X 1 10 # 00 1control ……

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its le^ or right

32
0 11 X 1 10 # 00 1control ……

Turing Machine
• A Turing machine’s configura-on:

• Its current state

• what the read-write head reads

• By its current configuraEon, a Turing machine

• decides the tape symbol to write on the tape,

• switches to the next state, and

• moves the tape head to its leD or right

33
0 11 X 1 10 # 00 1control ……

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

34
0 11 1 1 10 # 00 1control ……

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

35
0 11 1 1 10 # 00 1control ……

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

36
0 11 1 1 10 # 00 1control ……

accept

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

37
0 11 1 1 10 # 00 1control ……

reject

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

38
0 11 1 1 10 # 00 1control ……

Turing Machine
• Output: accept or reject (both halEng configuraEons)

• Obtained by entering designated accepEng and rejecEng states

• When a Turing machine enters the accept state, it accepts the input
immediately; when a Turing machine enters the reject state, it rejects the input
immediately

• If it does not enter the accept or reject states, TM will run forever (loop), and
never halt

•

39
0 11 1 1 10 # 00 1control ……

Turing Machine
• We can use Turing machines to solve problems!

• Does 1100010000000010 contains 0s for some integer ?

• Is 15 a prime number?

• Is a graph connected?

•

2k k

G

40
0 11 1 1 10 # 00 1control ……

Turing Machine
• We can use Turing machines to solve problems!

• Does 1100010000000010 contains 0s for some integer ?

• Is 15 a prime number?

• Is a graph connected?

•

2k k

G

41
0 11 1 1 10 # 00 1control ……

Turing Machine
• We can use Turing machines to solve problems!

• Does 1100010000000010 contains 0s for some integer ?

• Is 15 a prime number?

• Is a graph connected?

•

2k k

G

42
0 11 1 1 10 # 00 1control ……

Turing Machine
• We can use Turing machines to solve problems!

• Does 1100010000000010 contains 0s for some integer ?

• Is 15 a prime number?

• Is a graph connected?

•

2k k

G

43
0 11 1 1 10 # 00 1control ……

Turing Machine Example
• There is a Turing machine that decides if an input string has 0’s: 2k

44

Turing Machine Example
• There is a Turing machine that decides if an input string has 0’s:

 = “On input string :

1. Sweep le^ to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was
odd, reject.

4. Return the head to the le^-hand end of the tape.

5. Go to stage 1.”

2k

M w

45

Turing Machine Example
• There is a Turing machine that decides if an input string has 0’s:

 = “On input string :

1. Sweep le^ to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was
odd, reject.

4. Return the head to the le^-hand end of the tape.

5. Go to stage 1.”

2k

M w

46

Turing machine

• An infinitely long tape/memory

• IniEally contains the (finite) input sequence and is blank everywhere else

• A tape head that can read and write symbols and move around on the tape

• Finite-state control

• The Turing machine may end up with an accept state or reject state

• It accepts the input or rejects the input

47

0 11 1 1 10 # 00 1

control

…………

NondeterminisEc Turing Machine

48

NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control

• For an input , we can describe all possible computaEons
of nondeterminisEc Turing machine by a computa-on tree

w

49

0 11 1 1 10 # 00 1

control

…………

NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control

• For an input , we can describe all possible computaEons
of nondeterminisEc Turing machine by a computa-on tree

w

50

0 11 1 1 10 # 00 1

control

…………

NondeterminisEc Turing Machine

51

DeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

52

DeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon
The symbol read by the head

NondeterminisEc Turing Machine

53

DeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon
The symbol read by the head

NondeterminisEc Turing Machine

54

DeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon
The symbol read by the head

NondeterminisEc Turing Machine

55

accept/reject

DeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

56

accept/reject

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

57

accept/reject

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

The symbol read by the head

NondeterminisEc Turing Machine

58

accept/reject

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

The symbol read by the head

NondeterminisEc Turing Machine

59

accept/reject

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

60

accept/reject

accept

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

61

accept/reject

accept

reject

DeterminisEc NondeterminisEc

: ConfiguraEon

(The current control state and
what the read-write head reads

Root: iniEal configuraEon

NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control

• The nondeterminisEc Turing machine accepts the input
if some branch of computaEon (i.e., a path from root to
some node) leads to the accept state

w

62

0 11 1 1 10 # 00 1

control

…………

accept

reject

NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control

• Given an state and read a symbol, the non-determinisEc
Turing machine may enter different states

• The nondeterminisEc Turing machine accepts the input
if some branch of computaEon (i.e., a path from root to
some node) leads to the accept state

w

63

0 11 1 1 10 # 00 1

control

…………

accept

reject

NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control

• Given an state and read a symbol, the non-determinisEc
Turing machine may enter different states

• The nondeterminisEc Turing machine accepts the input
if some branch of computaEon (i.e., a path from root to
some node) leads to the accept state

w

64

0 11 1 1 10 # 00 1

control

…………

accept

reject

Non-DeterminisEc Turing machine

• Like the (determinisEc) Turing machine, but have non-determinisEc behavior

• If there is a path ends at an accept state, the input is accepted

65

0 11 1 1 10 # 00 1

control

…………

accept

reject

What is an algorithm/computer?

66

Church-Turing Thesis [1936]

Real world computaEon = Turing machine computaEon

67

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

68

• IniEally, there is a string of symbols on the Turing machine tape

A Formal Language Framework for Problems

69

0 11 1 1 10 # 00 1

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

70

Example: 010, 0, 1, 11111, ϕ, ⋯

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

71

Example: aabb, ab, ϕ, aaaaabbbbb

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

72

Example: # , # , , 01 01 1001 1001 ϕ ⋯

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

73

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

We use to represent an encoding of ⟨ ⋅ ⟩ ⋅

74

(binary!)

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• , , , , , …,

• ,

•

•

• prime numbers = , , , , , , , , …

• is connected graph

• is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

We use to represent an encoding of ⟨ ⋅ ⟩ ⋅

75

(binary!)

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = , , , , , …, and a string = , is
 in ?

⇔

⇔

L {1 01 001 0001 00001 0*1} w 10110
w L

76

all possible strings

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = , , , , , …, and a string = , is
 in ?

⇔

⇔

L {1 01 001 0001 00001 0*1} w 10110
w L

77

all possible strings

L

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = , , , , , …, and a string = , is
 in ?

⇔

⇔

L {1 01 001 0001 00001 0*1} w 10110
w L

78

all possible strings

L 10110
10110
?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

⇔

⇔

79

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = prime number and a string = , is in ?

⇔

⇔

L { } w 15 w L

80

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = prime number and a string = , is in ?

⇔

⇔

L { } w 15 w L

81

all possible numbers
all prime numbers

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = prime number and a string = , is in ?

⇔

⇔

L { } w 15 w L

82

all possible numbers
all prime numbers 15

15 ?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = prime number and a string = , is in ?

 Is a prime number?

⇔

⇔

L { } w 15 w L

⇔ w

83

all possible numbers
all prime numbers 15

15 ?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is connected graph and a string = , is in
?

⇔

⇔

L {⟨G⟩| G } w ⟨H⟩ w
L

84

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is connected graph and a string = , is in
?

⇔

⇔

L {⟨G⟩| G } w ⟨H⟩ w
L

85

all possible graphs
all connected graphs H

H
?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is connected graph and a string = , is in
?

 Is a connected graph?

⇔

⇔

L {⟨G⟩| G } w ⟨H⟩ w
L

⇔ H

86

all possible graphs
all connected graphs H

H
?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is a polynomial with an integral root and a string
= , is in ?

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

87

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is a polynomial with an integral root and a string
= , is in ?

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

88

all possible polynomials

all polynomials
with an integral root

f
f

?

A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints)

• Language problem

• String instance

• Given a language = is a polynomial with an integral root and a string
= , is in ?

 Is a polynomial with an integral root?

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

⇔ f

89

all possible polynomials

all polynomials
with an integral root

f
f

?

Yes-Instance and No-Instance
• Consider a language . For any instance , either or .

• If , we call a yes-instance (that is, a correct algorithm should return
accept or yes)

• If , we call a no-instance (that is, a correct algorithm should return
reject or no)

A w w ∈ A w ∉ A

w ∈ A w

w ∉ A w

90

Yes-Instance and No-Instance
• Consider a language . For any instance , either or .

• If , we call a yes-instance (that is, a correct algorithm should return
accept or yes)

• If , we call a no-instance (that is, a correct algorithm should return
reject or no)

A w w ∈ A w ∉ A

w ∈ A w

w ∉ A w

91

yes-instance

no-instance

What Happened
• Following the vein of Turing machine concept, a language is a set of strings

• Language problem

• String instance

• Asking if a string is in a language
 if the instance saEsfies the property that the problem asks

• Given a problem/language, a instance/string is a

• yes-instance: an instance that saEsfies the property that the problem asks

• no-instance: an instance that does not saEsfy the property that the problem asks

⇔

⇔

⇔

92

Turing-Decidable Language

93

Turing-Decidable Language
• A language is (Turing-)decidable if some Turing machine decides it

• The Turing machine accepts all strings in and rejects all strings not in

L

L L

94

Turing-Decidable Language
• A language is (Turing-)decidable if some Turing machine decides it

• The Turing machine accepts all strings in and rejects all strings not in

• Ex: = prime number

L

L L

L { }

95

All natural numbers that > 1

: all prime numbersL

1129

1457

1456

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

96

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

97

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

98

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

99

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

• Feasible solution: a solution that satisfies the requirement but probably not the
best

100

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

• Feasible solution: a solution that satisfies the requirement but probably not the
best

• A subgraph which is a clique is not necessary the one that contains minimum
number of vertices

101

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

• Feasible solution: a solution that satisfies the requirement but probably not the
best

• A subgraph which is a clique is not necessary the one that contains minimum
number of vertices

• Minimization or maximization

102

Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

• Ex: Partition problem

• Optimization problems: finding the best solution among all feasible solutions

• Feasible solution: a solution that satisfies the requirement but probably not the
best

• A subgraph which is a clique is not necessary the one that contains minimum
number of vertices

• Minimization or maximization

• Ex: Minimum vertex cover or Maximum independent set

103

Optimization? An Equivalent Decision Problem

104

Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify
optimization problems?

105

Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify
optimization problems?

• We can recast an optimization problem as a decision problem that is no harder!

106

Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify
optimization problems?

• We can recast an optimization problem as a decision problem that is no harder!

• Optimization problem: we want to minimize/maximize…

107

Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify
optimization problems?

• We can recast an optimization problem as a decision problem that is no harder!

• Optimization problem: we want to minimize/maximize…

• Equivalent decision version problem: we want to find a solution with cost at
most/least k

108

Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify
optimization problems?

• We can recast an optimization problem as a decision problem that is no harder!

• Optimization problem: we want to minimize/maximize…

• Equivalent decision version problem: we want to find a solution with cost at
most/least

• is an additional parameter

k

k

109

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

110

Time Complexity

111

Time Complexity
• DefiniEon: Let be a determinisEc Turing machine that accepts or rejects all

inputs. The running $me or $me complexity of is the funcEon ,
where is the maximum number of steps that uses on any input of length .

• If is the running Eme of , we say that is an -me Turing machine

M
M f : 𝒩→𝒩

f(n) M n

f(n) M M f(n)

112

Time Complexity
• DefiniEon: Let be a determinisEc Turing machine that accepts or rejects all

inputs. The running $me or $me complexity of is the funcEon ,
where is the maximum number of steps that uses on any input of length .

• Ex:

• Ex:

M
M f : 𝒩→𝒩

f(n) M n

f(n) = O(n2)

f(n) = O(2n)

113
accept/reject

Running Emecontrol 0 11 1 1 10 # 00 1…

Input length n

…

The number of Emes checking trough this tape

Input Size
• PARTITION can be parEEoned into two equal-sum

subsets : a string encoding the elements in

• Input size: bits

• : number of items in the set

• : maximum value of the items in . That is, for all ,
 .

={⟨S = {a1, a2, ⋯, an}⟩| S
} w S

O(n log amax)

n S
amax S 1 ≤ i ≤ n
ai ≤ amax

 bitsO(n ⋅ log amax)
a1 a2 a3 an…

 bitsO(log a1) bitsO(log a2) bitsO(log an)

114

Input Size
• CONNECT = is connected graph : a string encoding a graph

• Input size: using binary encoding to encode verEces and edges in

• Use an adjacency array, the input size is
bits

• Use an adjacency list, the input size is

 bits
• The bits are for encoding the vertex ID

{⟨G⟩| G } w G

G
O(|V | log |V |+ |V |2) = O(|V |2)

O(|V | log |V |+ |E | ⋅ 2 log |V |) = O(
|V |2 log |V |)

O(log |V |)

O(|V | log |V |) O(|E | ⋅ 2 log |V |)
e1 = (vi1, vj1), e2 = (vi2, vj2), ⋯, em = (vim, vjm)v1, v2, v3, ⋯, vn

115

Input Size
• PRIME = prime number : a string represenEng number

• Input size?

{ } w n

116

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

117

The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in

polynomial Eme by a determinisEc single-tape Turing machine.

• P is invariant for all models of computaEon that are polynomially equivalent to
the determinisEc single-tape Turing machine, and

• P roughly corresponds to the class of problems that are realisEcally solvable on
a computer

118
accept/reject

Running Emecontrol 0 11 1 1 10 # 00 1…

Input length n

…
 f(n) = poly(n)

The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in

polynomial Eme by a determinisEc single-tape Turing machine.

• Ex:

• P roughly corresponds to the class of problems that are realisEcally solvable on
a computer

O(n2), O(n log n), O(n425), ⋯

119
accept/reject

Running Emecontrol 0 11 1 1 10 # 00 1…

Input length n

…
 f(n) = poly(n)

Check trough this tape for EmesO(n2), O(n log n), O(n425), ⋯

The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in

polynomial Eme by a determinisEc single-tape Turing machine.

• Ex:

• P roughly corresponds to the class of problems that are realisEcally solvable on
a computer

O(n2), O(n log n), O(n425), ⋯

120
accept/reject

Running Emecontrol 0 11 1 1 10 # 00 1…

Input length n

…
 f(n) = poly(n)

Check trough this tape for polynomial Emes

The Class NP

121

The Class NP

122

The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
 f(n) = poly(n)

123

The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine

• DefiniEon: NP is the class of languages that are accepted in polynomial Eme by a
nondeterminisEc Turing machine.

N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
 f(n) = poly(n)

124

The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine

• DefiniEon: NP is the class of languages that are accepted in polynomial Eme by a
nondeterminisEc Turing machine.

N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
 f(n) = poly(n)

125

There exists a way to get accepted
by checking trough this tape for polynomial Emes

What Happened
• The class P is the class of languages that are accepted or rejected in polynomial

Eme by a determinis-c Turing machine

• The class NP is the class of languages that are accepted in polynomial Eme by a
non-determinis-c Turing machine.

126

accept

reject

Running Eme
 f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n

…

Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc

• Formal language framework: string and language

• Time complexity

• Input size

• Classes P and NP

• Polynomial Eme verificaEon

127

Verify

128

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

129

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

130

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

131

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

132

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

133

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

134

accept

reject

Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much

easier

• For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

• It seems difficult to find the answer

• But if we are told that one of the divisor of 63187 is 353…

• We can verify that 63187 is indeed a composite number by simple
arithmeEcs.

135

accept

reject

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

A V

A = {w | V ⟨w, c⟩ c}

136

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

A V

A = {w | V ⟨w, c⟩ c}

137

hint

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

A V

A = {w | V ⟨w, c⟩ c}

138

hint

0 11 1 1 10 # 00 1… …

w
Is in ?w A

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

A V

A = {w | V ⟨w, c⟩ c}

139

hint

0 11 1 1 10 # 00 1… …

w
Is in ?w A

0 11 1 1 10 # 00 1… …

cerEficate

w c

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• Just assume there is an angel that can provide you any you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c

140

hint

0 11 1 1 10 # 00 1… …Is in ?w A

0 11 1 1 10 # 00 1… …

cerEficate

w

w c

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• You don’t need to worry about the Eme complexity for coming up with

• Just assume there is an angel that can provide you any you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c

c

141

hint

0 11 1 1 10 # 00 1… …Is in ?w A

0 11 1 1 10 # 00 1… …

cerEficate

w

w c

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• You don’t need to worry about the Eme complexity for coming up with

• Just assume there is an angel that can provide you any you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c

c

142

hint

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• COMPOSITES , for integers ,

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}

143

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• COMPOSITES , for integers ,

• A devisor of the number can be a good cerEficate

•

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}

p x

c = p

144

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• COMPOSITES , for integers ,

• A devisor of the number can be a good cerEficate

• is

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}

p x

c p

145

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }

146

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }

147

A set of verEces with edge
between every pair of verEces

k

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,3⟩ | G 3 }

148

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,3⟩ | G 3 }

149

 is a yes-instance⟨G,3⟩

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,3⟩ | G 3 }

150

 is a no-instance⟨G,3⟩

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }

151

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

• A string that encodes a clique with size in is a good cerEficate

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }

c k G

152

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }

153

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }

154

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• CLIQUE is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }

155

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

156

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

• Ex: and

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

157

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

• Ex: and

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

158

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

• Ex: and

• Ex: and No answer

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

S = {4,2,8,5,7} t = 25 ⇒

159

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

• Ex: and

• Ex: and No answer

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

S = {4,2,8,5,7} t = 25 ⇒

160

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify that
the string is a member of

• SUBSET-SUM and for some
, we have

• A string that encodes a subset of with sum is a good cerEficate

• Ex: and

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

c S t

S = {4,2,8,5,7} t = 17 ⇒ c = {2,8,7}

161

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

A V

A = {w | V ⟨w, c⟩ c}

c
w A

162

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• An algorithm verifies a language if for any yes-instance , there is a
cerEficate that can use to prove that

• For any no-instance , there must be no cerEficate proving that

A V

A = {w | V ⟨w, c⟩ c}

c
w A

V A w ∈ A
c V w ∈ A

w ∉ A w ∈ A

163

Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• is called a cerEficate or proof, which is an addiEonal informaEon to verify
that the string is a member of

• An algorithm verifies a language if for any yes-instance , there is a
cerEficate that can use to prove that

• For any no-instance , there must be no cerEficate proving that

A V

A = {w | V ⟨w, c⟩ c}

c
w A

V A w ∈ A
c V w ∈ A

w ∉ A w ∈ A

164

yes-instance no-instance

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

165

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

A V

A = {w | V ⟨w, c⟩ c}

w

w

166

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

167

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

168

0 11 1 1 10 # 00 1…

Input length n

…

cerEficate size should also be poly(n)

w c

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

169

0 11 1 1 10 # 00 1…

The instance number

…

a divisor that is at most the instance

w c
COMPOSITE

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

170

0 11 1 1 10 # 00 1…

The input graph

…

verEces edgesw c
CLIQUE

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

171

0 11 1 1 10 # 00 1…

The input graph

…

verEces edgesw c
CLIQUE

subset of verEcesk

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

0 11 1 1 10 # 00 1…

Instance

…

c
SUBSET-SUM

the numbers target172

Polynomial Time Verifier
• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

• A polynomial $me verifier runs in polynomial Eme in the length of

• We measure the Eme of a verifiers only in terms of the length of

• A language is polynomial-$me verifiable if it has a polynomial Eme verifier

• For polynomial verifiers, the cerEficate needs to have polynomial length (in
the length of)

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

0 11 1 1 10 # 00 1…

Instance

…

a subset of the numbers

c
SUBSET-SUM

the numbers target173

What Happened
• A language is verifiable if for any of its yes-instances , there exists a piece of

hint (cerEficate) such that using this hint , one can be convinced that is
indeed a yes-instance of

• Only yes-instances have cerEficates

• Polynomial-Eme verifiable: the verificaEon can be done in Eme of polynomial in
input length

• The hint size should also be polynomial

• It does NOT mean that the hint should be constructed within polynomial
Eme!

A w
c c w

A

c

174

0 11 1 1 10 # 00 1…

Input length n

…

cerEficate size should also be poly(n)

The Class NP — AlternaEve DefiniEon

175

accept

reject

Running Eme

• DefiniEon: NP is the class of languages that are accepted or rejected in
polynomial Eme by a nondeterminisEc Turing machine.

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

176

accept

reject

Running Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

177

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

178

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

179

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

180

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

181

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

182

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

183

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

184

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

185

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a

determinisEc Turing machine.

186

accept

reject

Running Eme

• Any non-determinisEc Turing machine
can be simulated by a determinisEc
Turing machine

• It needs more than polynomial Eme

• But if we know some hint, we know
the path to an accept state with
polynomial length

What Happened
• The class P is the class of languages that are accepted or rejected in polynomial

Eme by a determinisEc Turing machine

• The class NP is the class of languages that can be verified in polynomial Eme by a
determinisEc Turing machine.

187

accept

reject

Running Eme
 f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n

…

Prove Language is in PL
• To prove that a language is in P, we need to:

• Design a Turing machine

• Show that correctly accepts or rejects all input

• Show that runs in polynomial Eme

L

M

M

M

188

To prove that a language is in P, we need to:

Design an algorithm

Correctness proof

Time complexity analysis

L

Prove Language is in PL
• To prove that a language is in P, we need to:

• Design a Turing machine

• Show that correctly accepts or rejects all input

• Show that runs in polynomial Eme

L

M

M

M

189

To prove that a language is in P, we need to:

Design an algorithm

Correctness proof

Time complexity analysis

L

Prove Language is in PL
• To prove that a language is in P, we need to:

• Design a Turing machine

• Show that correctly accepts or rejects all input

• Show that runs in polynomial Eme

L

M

M

M

190

design a Turing machine design an algorithm≡

Use Polynomial Time Verifier to Prove that is in NPA

• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

Prove is in NP Design a polynomial Eme verifier to decide (with help from some)

<Proof Idea>

1. Assume that there is a cerEficate .

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

c

V ⟨w, c⟩ w ∈ A w ∉ A

V w

191

Use Polynomial Time Verifier to Prove that is in NPA

• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

Prove is in NP Design a polynomial Eme verifier to decide (with help from some)

<Proof Idea>

1. Assume that there is a cerEficate with size polynomial in the length of

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

c w

V ⟨w, c⟩ w ∈ A w ∉ A

V w

192

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

• A string that encodes a clique with size in is a good cerEficate

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with
help from some)

<Proof Idea>

1. Assume that there is a cerEficate that encodes a clique with size in .

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

= {⟨G, k⟩ | G k }

c k G

⇔
c

c k G

V ⟨w, c⟩ w ∈ A w ∉ A

V w

193

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

194

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

195

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

196

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

197

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

198

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

199

Use Polynomial Time Verifier to Prove that is in NPA

• DefiniEon: A verifier for a language is an algorithm , where

 accepts for some string .

Prove is in NP Design a polynomial Eme verifier to decide (with help from some)

<Proof Idea>

1. Show that for any yes instance , there is a polynomial-size cerEficate .

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

w c

V ⟨w, c⟩ w ∈ A w ∉ A

V w

200

CLIQUE is in NP
• CLIQUE is an undirected graph with a -clique

Prove CLIQUE is in NP Design a polynomial Eme verifier to decide CLIQUE (with help from some)

<Proof>

Let string that encodes a clique with size in as a cerEficate

 = “On input , :

1. Test whether is a set of nodes in

2. Test whether contains all edges connecEng nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most Emes of scanning through the input. Step 2 takes at most Emes
of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V

201

SUBSET-SUM is in NP
• SUBSET-SUM and for some

, we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide
CLIQUE (with help from some)

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

202

SUBSET-SUM is in NP
• SUBSET-SUM and for some

, we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide
CLIQUE (with help from some)

<Proof Idea>

1. Assume that there is a cerEficate with size polynomial in the length of

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c w

V ⟨w, c⟩ w ∈ A w ∉ A

V w

203

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V

204

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V

205

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V

206

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c |

207

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c |

208

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c |

209

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most Eme of scanning through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V

210

SUBSET-SUM is in NP
• SUBSET-SUM and for some , we have

• Prove SUBSET-SUM is in NP Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string that encodes a subset of with sum as a cerEficate

 = “On input , :

1. Test whether

2. Test whether is a collecEon of numbers that sum to

3. Test whether contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most linear Eme to scan through the input. Step 2 takes summaEons. Step 3 takes at
most Emes of scanning through the input. Hence, runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

|c | < |S |
|c | V

211

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
212

literals

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
213

0 1 1

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
214

x = TRUE, y = TRUE, z = TRUE

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
215

x = TRUE, y = TRUE, z = TRUE
0 1 1

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
216

x = TRUE, y = TRUE, z = TRUE
0 1 1

= FALSE

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
217

x = TRUE, y = TRUE, z = FALSE

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
218

x = TRUE, y = TRUE, z = FALSE
0 1 1 1

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
219

x = TRUE, y = TRUE, z = FALSE
0 1 1

= FALSE
1

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
220

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
221

x = FALSE, y = TRUE, z = TRUE

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
222

x = FALSE, y = TRUE, z = TRUE

Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons

• Example:

•

•

• (Boolean) variables: , ,

• The Boolean variables can take on the values TRUE () and FALSE ()

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

• SAT =

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
223

x = FALSE, y = TRUE, z = TRUE yes-instance

no-instance

SAT is in NP
• SAT is a saEsfiable Boolean formula

• Prove SAT is in NP Design a polynomial Eme verifier to decide SAT (with help from some)

<Proof>

Let string that encodes a truth assignment of variables in as a cerEficate

 = “On input , :

1. Replace the literals in by the truth assignments in

2. Test whether the resulEng is true

3. If 2 pass, accept; otherwise, reject.”

For each replacement in Step 1, it takes at most linear Eme of scanning through the input. In total, it
scan through the input Emes, where is the number of literals in . Step 2 can be done in one scan
through the input. Hence, runs in polynomial Eme in the input length.

= {⟨ϕ⟩ | ϕ }

⇔ c

c ϕ

V ⟨⟨ϕ⟩ c⟩

ϕ c

ϕ

ℓ ℓ ϕ
V

224

D-HAM-PATH

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

226

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

227

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

228

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

229

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

230

t

s

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

231

t

s

D-HAM-PATH
• A Hamiltonian path of a graph is a simple path that contains each

vertex in .

• D-HAM-PATH is a directed graph with a Hamiltonian path from
to

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}

232

s

t

D-HAM-PATH is in NP
• D-HAM-PATH is a directed graph with a Hamiltonian path from to

• Prove D-HAM-PATH is in NP Design a polynomial Eme verifier to decide D-HAM-PATH (with help from some)

<Proof>

Let string that encodes a permutaEon of verEces in that forms a Hamiltonian walk starEng from and end at
as a cerEficate

 = “On input , :

1. Check if is indeed a permutaEon of verEces in starEng from and end at

2. For every consecuEve pair of verEces in , and , check if there is an edge from to in

3. If 1 and 2 both pass, accept; otherwise, reject.”

For each element in in Step 1, it takes at most linear Eme of scanning through the input. In total, it scan through
the input Emes, where is the number of verEces in . Each consecuEve pair in Step 2 can be checked in one
scan through the input, and there are at most pairs. Hence, runs in polynomial Eme in the input length.

= {⟨G, s, t⟩∣ G s t}

⇔ c

c G s t

V ⟨⟨G, s, t⟩ c⟩

c G s t

c vi vi+1 vi vi+1 G

c
n n G

O(n) V

233

What Happened

234

• To show that a problem is in NP, we can show that it is polynomial-Eme verifiable

<Proof Idea>

1. Show that for any yes instance , there is a polynomial-size cerEficate .

2. Design a verifier on input that accepts all and rejects all

3. Show that runs in polynomial Eme (in the length of)

w c

V ⟨w, c⟩ w ∈ A w ∉ A

V w

Why P and NP?

• There is at most a square or polynomial difference between the Eme complexity
of problems measured on determinisEc single-tape and many Turing machine
variaEons

• There is at most an exponenEal difference between the Eme complexity of
problems on determinisEc and nondeterminisEc Turing machines

235

• There are many Eme Turing machine variaEons that have an equivalent
 Eme single-tape Turing machine

f(n)
poly(f(n))

• Every Eme non-determinisEc Turing machine has an equivalent Eme
determinisEc Turing machine

f(n) 2O(f(n))

Reference
• Introduc-on to the Theory of Computa-on by Michael Sipser

• Computers and Intractability - A Guide to the Theory of NP-Completeness by
Michael R. Garey and David S. Johnson

• Introduc-on to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein

• Computa-onal Complexity by Christos h. Papadimitriou

236

