Algorithms for Decision Support

NP-Completeness (1/3)

Turing Machine, P, and NP
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® Algorithms:Turing machine, Deterministic and non-deterministic
® Formal language framework: string and language

® Time complexity
® |nput size
® Classes P and NP

® Polynomial time verification
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Hilbert’s 10th Problem

® |n 1900, mathematician David Hilbert delivered a famous
talk at the International Congress of Mathematicians in Paris

® He identified 23 math problems which he thinks are
important in the coming century

® Hilbert’s 10th problem conceded algorithmes:
Given a multi-variable polynomial F with integral
coefficients. To devise a process according to which it can be
determined in a finite number of operations whether F has
integral roots.

o x*+2xy+y?—-1=0(x=2,y=—23)

e x*4+y°=3=0




What is an algorithm/computer?
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® Proposed by Alan Turing in 1936
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Turing Machine

® Proposed by Alan Turing in 1936

® A model of a general purpose computer:
a Turing machine can do every thing that a real computer
can do

Alan Turing 1912~1954
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® Proposed by Alan Turing in 1936

® An infinitely long tape/memory
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Turing Machine

® Proposed by Alan Turing in 1936
® An infinitely long tape/memory

® |nitially contains the (finite) input sequence and is
blank everywhere else

® A tape head that can read and write symbols and move
around on the tape A

® Finite-state control ..
e B

® Two special halting states:|accept|and|reject Alan Turing 1912~1954
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® Proposed by Alan Turing in 1936
® An infinitely long tape/memory

® |nitially contains the (finite) input sequence and is
blank everywhere else

® A tape head that can read and write symbols and move
around on the tape

® Finite-state control O ‘ ..‘ '
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® Two special halting states: accept and reject Alan Turing 1912~1954
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Turing Machine

® A Turing machine’s configuration:
® |ts current state

® what the read-write head reads

control
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Turing Machine

® A Turing machine’s configuration:
® |ts current state
® what the read-write head reads
® By its current configuration, a Turing machine
® decides the tape symbol to write on the tape,
® switches to the next state, and

® moves the tape head to its left or right
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Turing Machine

® QOutput: accept or reject (both halting configurations) “

® Obtained by entering designated accepting and rejecting states
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Turing Machine

® QOutput: accept or reject (both halting configurations) “

® Obtained by entering designated accepting and rejecting states

® \When a Turing machine enters the accept state, it accepts the input

immediately; when a Turing machine enters the reject state, it rejects the input
immediately
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Turing Machine

® QOutput: accept or reject (both halting configurations) “

® Obtained by entering designated accepting and rejecting states

® \When a Turing machine enters the accept state, it accepts the input

immediately; when a Turing machine enters the reject state, it rejects the input
immediately

® |f it does not enter the accept or reject states, TM will run forever (loop), and
never halt

control
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Turing Machine

® \We can use Turing machines to solve problems!
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Turing Machine

® \We can use Turing machines to solve problems!

e Does 1100010000000010 contains 2X 0s for some integer k?
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Turing Machine

® \We can use Turing machines to solve problems!

e Does 1100010000000010 contains 2X 0s for some integer k?

® |s15a prime number?

® |sagraph G connected?
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Turing Machine Example

® There is a Turing machine that decides if an input string has 2K 0's:
M = “On input string w:
1. Sweep left to right across the tape, crossing off every other O.

2. If in stage 1 the tape contained a single O, accept.

3. If in stage 1 the tape contained more than a single 0 and the number of Os was
odd, reject.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.
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® There is a Turing machine that decides if an input string has 2K 0's:
M = “On input string w:
1. Sweep left to right across the tape, crossing off every other O.

2. If in stage 1 the tape contained a single O, [accept.

3. If in stage 1 the tape contained more than a single 0 and the number of Os was
odd, reject.
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Turing machine

control

® An infinitely long tape/memory

® |nitially contains the (finite) and is blank everywhere else
® A tape head that can read and write symbols and move around on the tape
® Finite-state control O OO‘

® The Turing machine may end up with an accept state or reject state

® |t accepts the input or rejects the input
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Nondeterministic Turing Machine

control
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® |tislike a (deterministic) Turing machine, but with non-
deterministic control
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Nondeterministic Turing Machine

control

¥ (T Aol oA Aol T T T T 1] -

® |tislike a (deterministic) Turing machine, but with non-
deterministic control

® For aninput w, we can describe all possible computations
of nondeterministic Turing machine by a computation tree
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Nondeterministic Turing Machine

Deterministic

O

@ : Configuration

(The current control state and
what the read-write head reads
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Nondeterministic Turing Machine

Deterministic

P
The symbol read by the hw

@ : Configuration

(The current control state and
what the read-write head reads
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Nondeterministic Turing Machine
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Nondeterministic Turing Machine

Deterministic

@ : Configuration ‘l'
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what the read-write head reads

& accept/reject
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Nondeterministic Turing Machine

Deterministic Nondeterministic

?T =N

he symbol read by the head

@ : Configuration ‘l'

(The current control state and

what the read-write head reads
& accept/reject
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Nondeterministic Turing Machine
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Nondeterministic Turing Machine

Deterministic Nondeterministic
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Nondeterministic Turing Machine

Deterministic Nondeterministic
T /O\
7 Y I\

@ : Configuration \l' ‘/ \1 f g \l

(The current control state and
what the read-write head reads
accept\
& accept/reject g reject
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Nondeterministic Turing Machine

control
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® |tislike a (deterministic) Turing machine, but with non-
deterministic control /O\
ﬂ\z& }\
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Nondeterministic Turing Machine

control

& —

------ L 1AfTlOlT[Ol#{Afa10fal0) [ ) [ [ ] |-
® |tislike a (deterministic) Turing machine, but with non-
deterministic control /O\
® Given an state and read a symbol, the non-deterministic A% }
Turing machine may enter different states

accept N‘
é reject
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Nondeterministic Turing Machine

control

------ L 1AfTlOlT[Ol#{Afa10fal0) [ ) [ [ ] |-
® |tislike a (deterministic) Turing machine, but with non-
deterministic control /O\
® Given an state and read a symbol, the non-deterministic A% }
Turing machine may enter different states

® The nondeterministic Turing machine accepts the input w

if some branch of computation (i.e., a path from root to accept%
some node) leads to the accept state
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Non-Deterministic Turing machine

control

® |ike the (deterministic) Turing machine, but have non-deterministic behavior

® |f thereis a path ends at an accept state, the input is accepted /O\

YN v\
AR VAT

accept NC)
65 g reject



What is an algorithm/computer?

006



Church-Turing Thesis [1936]

Real world computation = Turing machine computation



Overview

® Algorithms:Turing machine, Deterministic and non-deterministic
® Formal language framework: string and language

® Time complexity
® |nput size
® (Classes P and NP

® Polynomial time verification
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A Formal Language Framework for Problems

® |nitially, there is a of symbols on the Turing machine tape
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)

* | j
4 4 4 4 ) *°**)

e [0, 1}* Example:010,0,1,11111, ¢, ---
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® { V4 V4 ) V4 ) ***) }
o {0,1}%

o | |k >0} Example: aabb, ab, ¢, aaaaabbbbb
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)

® {0,1}7
o {0 |k=0]

o {winw|w € {0,1}*} Example: 01#01, 1001#1001, ¢, ---
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)

* {0,1}%
o {0 |k=0]
o [witw|we {0,1}%]

e {prime numbers}=1{2,3,5,7,11,13,17,19, ..}
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® { V4 V4 ) V4 ) ***) }
® { ’ }>I< /\
o (a1 k>0) /

o [witw|we {0,1}%]
® {prime numbers} ={2,3,5,7,11,13,17,19, ..}

° { | G is connected graph | We use ( - ) to represent an encoding of -
(binary!)
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)

e {0,1}7

* | [k 2> 0]

* | |lwe {0,1}%}

® {prime numbers}={2,3,5,7,11,13,17,15, ..}

° { | G is connected graph | We use ( - ) to represent an encoding of -

(binary!)
e {(p)|pisapolynomial with an integral root}

lgs



A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
e Given alanguage L=1{1, 01, , , e t and a string v = s
in L7

all possible strings
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)

e Givenalanguage L =1{1, 01,001, 0001, 00001, ..., 0*1} and a string w = 10110, is
win L?

all possible strings
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)

e Givenalanguage L =1{1, 01,001, 0001, 00001, ..., 0*1} and a string w = 10110, is
win L?

all possible strings
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® Language < problem

® <
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® Language < problem
® <

e Given alanguage L = {prime number} and a string 1w =15, is w in L?
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L = {prime number} and a string 1w =15, is w in L?

all prime
all possible numbers
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L = {prime number} and a string 1w =15, is w in L?

all prime
all possible numbers
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem
® String < Instance
e Given alanguage L = {prime number} and a string 1w =15, is w in L?
< |s 1w a prime number?

all prime
all possible numbers
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A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® Language < problem
® <

e Given alanguage L = { | G is connected graph} and a string v = , 1S W in
L?

34



A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L= {(()| G is connected graph} and a string 1w = (/{), is w in
L?

all connectefl graphs

all possible graphs
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L= {(()| G is connected graph} and a string 1w = (/{), is w in
L?

< Is /1 a connected graph?
all connectefl graphs

all possible graphs

86



A Formal Language Framework for Problems

® Definition: A language is a set of (that satisfy some constraints)
® Language < problem
® <

e Given alanguage L = { | p is a polynomial with an integral root} and a string
=(f),iswin/L?
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A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L ={(p)| pis a polynomial with an integral root} and a string
=(f),iswinL?

all possible polynomials

all polynomials

. with an integral root



A Formal Language Framework for Problems

® Definition: A language is a set of strings (that satisfy some constraints)
® |anguage < problem

® String < Instance

e Given alanguage L ={(p)| pis a polynomial with an integral root} and a string
=(f),iswinL?

all possible polynomials

< Is [ a polynomial with an integral root?

all polynomials

. with an integral root



Yes-Instance and No-Instance

e Consider a language A. For any instance v, either w € A or w & A.

o [f1weEA, wecall w ayes-instance (that is, a correct algorithm should return
accept or yes)

o If wé&A, we call wa no-instance (that is, a correct algorithm should return
reject or no)
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Yes-Instance and No-Instance

e Consider a language A. For any instance w, either w € A or w & A.

o [f 1w €EA,wecall wayes-instance (that is, a correct algorithm should return
accept or yes)

o If wé&A, we call wano-instance (that is, a correct algorithm should return
reject or no)

Qstance
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What Happened

Following the vein of Turing machine concept, a language is a set of strings
® |anguage < problem

e String < Instance

® Asking if a string is in a language
< if the instance satisfies the property that the problem asks

Given a problem/language, a instance/string is a
® yes-instance: an instance that satisfies the property that the problem asks

® no-instance: an instance that does not satisfy the property that the problem asks
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Turing-Decidable Language

e Alanguage L is (Turing-)decidable if some Turing machine decides it

® The Turing machine accepts all strings in L and rejects all strings not in L
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Turing-Decidable Language

e Alanguage L is (Turing-)decidable if some Turing machine decides it
® The Turing machine accepts all strings in L and rejects all strings not in L

e Ex: /.= {prime number
{p } All natural numbers that > 1

L: all prime numbers

1456 e
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Decision Problems and Optimization Problems

« Decision problems:

e Optimization problems:
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Optimization problems:
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem

e Optimization problems:
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem

« Optimization problems: finding the best solution among all feasible solutions
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem
« Optimization problems: finding the best solution among all feasible solutions

e Feasible solution: a solution that satisfies the requirement but probably not the
best
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem
« Optimization problems: finding the best solution among all feasible solutions

e Feasible solution: a solution that satisfies the requirement but probably not the
best

o A subgraph which is a clique is not necessary the one that contains minimum

number of vertices
<A <AR <A
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem
« Optimization problems: finding the best solution among all feasible solutions

e Feasible solution: a solution that satisfies the requirement but probably not the
best

o A subgraph which is a clique is not necessary the one that contains minimum
number of vertices

e Minimization or maximization
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Decision Problems and Optimization Problems

» Decision problems: Given a problem and an input of the problem, asking if we
feed this input to the problem, the answer is yes or no

e Ex: Partition problem
« Optimization problems: finding the best solution among all feasible solutions

e Feasible solution: a solution that satisfies the requirement but probably not the
best

o A subgraph which is a clique is not necessary the one that contains minimum
number of vertices

e Minimization or maximization

e Ex: Minimum vertex cover or Maximum independent set
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Optimization? An Equivalent Decision Problem
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Optimization? An Equivalent Decision Problem

e The classes P and NP are both define on decision problems. How do we classify
optimization problems?
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e The classes P and NP are both define on decision problems. How do we classify
optimization problems?

e \We can recast an optimization problem as a decision problem that is no harder!
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Optimization? An Equivalent Decision Problem

e The classes P and NP are both define on decision problems. How do we classify
optimization problems?

e \We can recast an optimization problem as a decision problem that is no harder!

e Optimization problem: we want to minimize/maximize...
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Optimization? An Equivalent Decision Problem

e The classes P and NP are both define on decision problems. How do we classify
optimization problems?

e \We can recast an optimization problem as a decision problem that is no harder!
e Optimization problem: we want to minimize/maximize...

e Equivalent decision version problem: we want to find a solution with cost at
most/least k
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Optimization? An Equivalent Decision Problem

e The classes P and NP are both define on decision problems. How do we classify
optimization problems?

e \We can recast an optimization problem as a decision problem that is no harder!
e Optimization problem: we want to minimize/maximize...

e Equivalent decision version problem: we want to find a solution with cost at
most/least k

e kis an additional parameter
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Overview

® Algorithms:Turing machine, Deterministic and non-deterministic
® Formal language framework: string and language

® Time complexity
® |nput size
® Classes P and NP

® Polynomial time verification
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Time Complexity

® Definition: Let M be a deterministic Turing machine that accepts or rejects all
inputs. The running time or time complexity of M is the functionf : / — ./,

where /(7) is the maximum number of steps that M uses on any input of length 7.
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Time Complexity

® Definition: Let M be a deterministic Turing machine that accepts or rejects all
inputs. The running time or time complexity of M is the functionf : / — ./,

where f(77) is the maximum number of steps that M uses on any input of length 7.

Y
i

o Ex:f(n)=0(n

o Ex: f(1n)= (2"

Input length n

¥

Running time

1 1AJifOTjolA#fafijolaiol [ § 1 1 | |-

control -

& accept/reject
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Input Size

e PARTITION ={ | .S can be partitioned into two equal-sum

subsets }: a string 1w encoding the elements in $

e Inputsize: O(nloga, ) bits

max

e 77: NuMber of items in the set

e a1, .: Maximum value of the items in 5. That is, for all ,
<da

max-

O(log a,) bits O(log a,) bits O(loga,) bits
e —p —_—
a a a3 . a
) bits

n

O(n - loga

max
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Input Size

e CONNECT ={ | G is connected graph }: a string v encoding a graph

® |nput size: using binary encoding to encode vertices and edges in

e Use an adjacency array, the input size is O(| V| log |V |+ V\z) = O(| V\Z)
bits

e Use an adjacency list, the input sizeis O(| V| log |V |+ |E|-21log| V|])=0O(
| V\zlog | V]) bits

e The O(log| V| ) bits are for encoding the vertex ID

Vl, V2, V3, e, vl’l €1 = (Vila le)a €y = (Vi29 ij)a "t em — (Vima v]m)

O(|V]log|V]) —>+——O(|E|-2log|V]|) ——
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Input Size

e PRIME = {prime number }: a string  representing number

® |nput size?
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Overview

® Algorithms:Turing machine, Deterministic and non-deterministic
® Formal language framework: string and language

® Time complexity
® |nput size
® Classes P and NP

® Polynomial time verification
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The Class P

® Definition: P is the class of languages that are can be accepted or rejected in
polynomial time by a deterministic single-tape Turing machine.

Input length n

Running time

f(n) = n

1 1AJifOTjolA#fafijolaiol [ § 1 1 | |-

control -

accept/reject

Y
v
J
Y
8
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The Class P

® Definition: P is the class of languages that are can be accepted or rejected in

polynomial time by a deterministic single-tape Turing machine.

o Ex: O(n?), O(nlogn), O(n*>), -

control -

Input length n

1 1AJifOTjolA#fafijolaiol [ § 1 1 | |-
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The Class P

® Definition: P is the class of languages that are can be accepted or rejected in
polynomial time by a deterministic single-tape Turing machine.

o Ex: O(n?), O(nlogn), O(n*>), -

® P roughly corresponds to the class of problems that are realistically solvable on
a computer 9

Input length n

Running time

f(n) = n

1 1AJifOTjolA#fafijolaiol [ § 1 1 | |-

control -

accept/reject

v
J
Y
8
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The Class NP

e Similarly, we can define the running time of a non-deterministic Turing machine N

45 P

S &%

Input length n

1 1AJIfOJT10 A afajOJajof | | 1 | [ |- f(n)=poly(n)

control -

accept N‘
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The Class NP

e Similarly, we can define the running time of a non-deterministic Turing machine N

® Definition: NP is the class of languages that are accepted in polynomial time by a
nondeterministic Turing machine.

Y

Input length n

S &%

Running time

1 1AJIfOJT10 A afajOJajof | | 1 | [ |- f(n)=poly(n)

control -

accept N‘
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The Class NP

e Similarly, we can define the running time of a non-deterministic Turing machine N

® Definition: NP is the class of languages that are accepted in polynomial time by a
nondeterministic Turing machine.

Y

Input length n

S &%

Running time

1 1AJIfOJT10 A afajOJajof | | 1 | [ |- f(n)=poly(n)

control -

accept N‘
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What Happened

® The class P is the class of languages that are accepted or rejected in polynomial
time by a deterministic Turing machine

® The class NP is the class of languages that are accepted in polynomial time by a

non-deterministic Turing machine.
N v\
VAR v ¥\

g reject

Running time

f(n) = poly(n)

v
!
| e Yo
&

accept/reject



Overview

® Algorithms:Turing machine, Deterministic and non-deterministic
® Formal language framework: string and language

® Time complexity
® |nput size
® Classes P and NP

® Polynomial time verification
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

® |t seems difficult to find the answer
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

® |t seems difficult to find the answer

e But if we are told that one of the of 63187 is
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

® [t seems difficult to find the answer
e Butif we are told that one of the of 63187 is

® \We can verify that 63187 is indeed a composite number by simple
arithmetics.
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

® [t seems difficult to find the answer
e Butif we are told that one of the of 63187 is
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Verity

® |ntuition: Some problems are difficult. But with , it becomes much
easler

® For example, we want to know if 63187 is a composite number (that is, it is not
a prime number).

® [t seems difficult to find the answer
e Butif we are told that one of the of 63187 is

® \We can verify that 63187 is indeed a composite number by simple 0\
arithmetics. AN AN
/4

[ 4\

accept Q@
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Verifier

e Definition: A verifier for a language A is an algorithm V, where

A = {w | Vaccepts (w, c) for some string c }.
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Verifier

e Definition: A verifier for a language A is an algorithm V, where

A = {w | Vaccepts (w, c) for some string c }.
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Verifier

e Definition: A verifier for a language A is an algorithm V, where

A = {w | Vaccepts (w, c) for some string c }.

swinA? .. | | |A|IJOJI1OJ#fIfIjOI1jOf [ | 1 | f 0 1 1 1§ 1]-
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Verifier

e Definition: A verifier for a language A is an algorithm V, where

A = {w | Vaccepts (w, c) for some string c }.

swinA? .. | | |A|IJOJI1OJ#fIfIjOI1jOf [ | 1 | f 0 1 1 1§ 1]-

- fafajolifoyalafaqolajol 4 4 P4 PPl E] ]
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

swinA? .. | | |A|IJOJI1OJ#fIfIjOI1jOf [ | 1 | f 0 1 1 1§ 1]-

- fafajolifoyalafaqolajol 4 4 P4 PPl E] ]
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

® You don’t need to worry about the time complexity for coming up with

swinA? .. | | |A|IJOJI1OJ#fIfIjOI1jOf [ | 1 | f 0 1 1 1§ 1]-

- fafajolifoyalafaqolajol 4 4 P4 PPl E] ]
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

~ @ You don't need to worry about the time complexity for coming up with

® Just assume there is an angel that can provide you any ¢ you want for free
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e COMPOSITES = {x | x=pg, forintegersp,qg > 1}
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e COMPOSITES = {x | x=pg, forintegersp,qg > 1}

o A of the number x can be a good certificate
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e COMPOSITES = {x | x=pg, forintegersp,qg > 1}
o A of the number x can be a good certificate

® (IS

145



Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique }
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique }

A set of k vertices with edge
between every pair of vertices
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G,3) | Gis an undirected graph with a 3-clique}

=i
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G,3) | Gis an undirected graph with a 3-clique}

/§ gg% \ & (G.3) is a yes-instance
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G,3) | Gis an undirected graph with a 3-clique}

/

\

® Ex:

\ (G,3) is a no-instance
/
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique }
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique }

® A string ¢ that encodes k IS a good certificate
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G.,4) | Gis an undirected graph with a 4-clique}

=i
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G.,4) | Gis an undirected graph with a 4-clique}

=i
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e CLIQUE = {(G.,4) | Gis an undirected graph with a 4-clique}

=i
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vo b € {xg, o0, X}, we have 2y, =1}
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vo b € {xg, o0, X}, we have 2y, =1}

o Ex:S = {42857} and’=17= {y;, v} = {2,8,7)
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vb € Xy, o+, X}, we have 2y, =1}

e Ex: S =1{4,285"7}andt =17 {y,---,y,} = {2,8,7} &
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vb € Xy, o+, X}, we have 2y, =1}

e Ex: S =1{4,285"7}andt =17 {y,---,y,} = {2,8,7} &

o Ex: S =1{4.,2,8,5,7} and f = 25 = No answer
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vb € Xy, o+, X}, we have 2y, =1}

e Ex: S =1{4,285"7}andt =17 {y,---,y,} = {2,8,7} &

o Ex: S =1{4.,2,8,5,7} and f = 25 = No answer
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify that
the string w is a member of A

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vo b € {xg, o0, X}, we have 2y, =1}

® A string ¢ that encodes [ is a good certificate

o Ex: S =1{4,2,8,5,7}andr =17 =
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e An algorithm V verifies a language A if for any yes-instance w € A, there is a
certificate ¢ that V can use to prove that w € A

® For any no-instance w & A, there must be no certificate proving that w € A
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Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

® (jscalleda or , Which is an additional information to verify
that the string w is a member of A

e An algorithm V verifies a language A if for any yes-instance w € A, there is a
certificate ¢ that V can use to prove that w € A

® For any no-instance w & A, there must be no certificate proving that w € A

ves Instance
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.

e A polynomial time verifier runs in polynomial time in the length of w
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w

® We measure the time of a verifiers only in terms of the length of w
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w

® We measure the time of a verifiers only in terms of the length of w

® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w

® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)

Input length n n
—
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w

® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)

The instance number
-—————»
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w
® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)

The input graph
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w
® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w
® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)
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Polynomial Time Verifier

e Definition: A verifier for a language A is an algorithm V, where
A = {w | Vaccepts (w, c) for some string c }.
e A polynomial time verifier runs in polynomial time in the length of w
® We measure the time of a verifiers only in terms of the length of w
® Alanguage A is polynomial-time verifiable if it has a polynomial time verifier

® For polynomial verifiers, the needs to have polynomial length (in
the length of w)

Instance

SUBSET-SUM

the numbers target



What Happened

e A language A is verifiable if for any of its yes-instances w, there exists a piece of
hint (certificate) ¢ such that using this hint ¢, one can be convinced that w is
indeed a yes-instance of A

® Only yes-instances have certificates

® Polynomial-time verifiable: the verification can be done in time of polynomial in
input length

® The hint size should also be polynomial

® |t does NOT mean that the hint ¢ should be constructed within polynomial
time!
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are accepted or rejected in
polynomial time by a nondeterministic Turing machine.

A/O\\
A

accept N‘
é reject

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

N
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine

can be simulated by a deterministic

Turing machine /O\
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Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic e
Turing machine o

® |t needs more than polynomial time A% f\l
VA f&

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic SO
Turing machine
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Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time

é reject
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time

accept N‘
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time

Running time
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The Class NP — Alternative Definition

® Definition: NP is the class of languages that are verifiable in polynomial time on a
deterministic Turing machine.

® Any non-deterministic Turing machine
can be simulated by a deterministic
Turing machine

® |t needs more than polynomial time l/ 3%/ f\l
" 3!&

® But if we know some , we know Running time
the path to an accept state with
polynomial length

accept ’
é reject
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What Happened

® The class P is the class of languages that are accepted or rejected in polynomial
time by a deterministic Turing machine

® The class NP is the class of languages that can be verified in polynomial time by a

deterministic Turing machine.

Running time

f(n) = poly(fr)

accept/reject

V
¥
v
8



Prove Language L isin P

® To prove that a language L is in P, we need to:
® Design a Turing machine M
e Show that M correctly accepts or rejects all input

e Show that M runs in polynomial time
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Prove Language L isin P

® To prove that a language L is in P, we need to:
® Design a Turing machine M Design an algorithm
e Show that M correctly accepts or rejects all input Correctness proof

e Show that M runs in polynomial time Time complexity analysis
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Prove Language LisinP

® To prove that a language L is in P, we need to:

® Design a Turing machine M Design an algorithm
e Show that M correctly accepts or rejects all input Correctness proof
e Show that M runs in polynomial time Time complexity analysis

design a Turing machine = design an algorithm
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Use Polynomial Time Verifier to Prove that A is in NP

e Definition: A for a language A is an algorithm V, where
= {w | V accepts (w, c) for some string c}.

Prove A is in NP < Design a polynomial time verifier to decide A (with help from some ¢)
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Use Polynomial Time Verifier to Prove that A is in NP

® Definition: A for a language A is an algorithm V, where
= {w | V accepts (w, c) for some string c}.

Prove A is in NP < Design a polynomial time verifier to decide A (with help from some ¢)

<Proof Idea>

1. Assume that there is a certificate ¢ with size polynomial in the length of w
2. Design a verifier V on input {w, ¢) that accepts all w € A and rejects all w & A

3. Show that V runs in polynomial time (in the length of w)
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}

® A string ¢ that encodes k IS a good certificate

Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with
help from some )

<Proof Idea>

1. Assume that there is a certificate ¢ that encodes k

2. Design a verifier V on input {w, ¢) that accepts all w € A and rejects all w & A

3. Show that V runs in polynomial time (in the length of w)
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}

Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
V="Oninput ((G, k), c):
L. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
V="Oninput ((G, k), c):
L. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most times of scanning through the input.
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
V="Oninput ((G, k), c):
L. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most times of scanning through the input. Step 2 takes at most times

of scanning through the input.
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
V="Oninput ((G, k), c):
L. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most times of scanning through the input. Step 2 takes at most times
of scanning through the input. Hence, V runs in polynomial time in the input length.
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes a clique with size k in & as a certificate
V="Oninput ((G, k), c):
1. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, @ccept; otherwise, reject.”

Step 1 takes at most times of scanning through the input. Step 2 takes at most times
of scanning through the input. Hence, V runs in polynomial time in the input length.
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Use Polynomial Time Verifier to Prove that A is in NP

e Definition: A for a language A is an algorithm V, where
= {w | V accepts (w, ) for some string ¢ }.

Prove A is in NP < Design a polynomial time verifier to decide A (with help from some ¢)

<Proof Idea>

1. Show that for any yes instance w, there is a polynomial-size certificate .

2. Design a verifier V on input {w, ¢) that accepts all w € A and rejects all w & A

3. Show that V runs in polynomial time (in the length of w)
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CLIQUE isin NP

e CLIQUE = {(G, k) | Gisan undirected graph with a k-clique}
Prove CLIQUE is in NP < Design a polynomial time verifier to decide CLIQUE (with help from some )

<Proof>

Let string ¢ that encodes k as a certificate
V="Oninput ((G, k), c):
L. Test whether ¢ is a set of k nodes in G

2. Test whether G contains all edges connecting nodes in

3. If both 1 and 2 pass, accept; otherwise, reject.”

Step 1 takes at most times of scanning through the input. Step 2 takes at most times
of scanning through the input. Hence, V runs in polynomial time in the input length.
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vb € Xy, o+, X}, we have 2y, =1}

® Prove SUBSET-SUM is in NP < Desigh a polynomial time verifier to decide
CLIQUE (with help from some ¢)
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,7) | S = {x;, --, x;} and for some
Wis Vb € Xy, o+, X}, we have 2y, =1}

® Prove SUBSET-SUM is in NP < Desigh a polynomial time verifier to decide
CLIQUE (with help from some ¢)

<Proof Idea>

1. Assume that there is a certificate ¢ with size polynomial in the length of w

2. Design a verifier V on input {w, ¢) that accepts all w € A and rejects all w & A

3. Show that V runs in polynomial time (in the length of w)

203



SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string ¢ that encodes S [ as a certificate
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>

Let string ¢ that encodes S [ as a certificate
V="“Oninput ((S, 1), ¢):
L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
Let string ¢ that encodes S [ as a certificate
V="Oninput ((S, 1), ¢):

L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most 1 time of scanning through the input.
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
Let string ¢ that encodes S [ as a certificate
V="Oninput ((S, 1), ¢):

L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most 1 time of scanning through the input. Step 2 takes < | S| summations.
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
Let string ¢ that encodes S f as a certificate
V="Oninput ((S, 1), ¢):

L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most 1 time of scanning through the input. Step 2 takes < | S| summations. Step 3 takes at
most times of scanning through the input.
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
Let string ¢ that encodes S f as a certificate
V="Oninput ((S, 1), ¢):

L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most 1 time of scanning through the input. Step 2 takes < | S| summations. Step 3 takes at

most times of scanning through the input. Hence, V runs in polynomial time in the input length.
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SUBSET-SUM iIs In NP

e SUBSET-SUM = {(S,1) | S = {x;, -, x.} and for some {y, ---, v, } C {x, -, x;.}, we have Xy. = 1}

® Prove SUBSET-SUM is in NP < Design a polynomial time verifier to decide SUBSET-SUM (with help from some
)

<Proof>
Let string ¢ that encodes S [ as a certificate
V="Oninput ((S, 1), ¢):

L. Test whether < |S]

2. Test whether ¢ is a collection of numbers that sum to ¢

3. Test whether S contains all the numbers in

4. If all 1, 2, and 3 pass, accept; otherwise, reject.”

Step 1 takes at most linear time to scan through the input. Step 2 takes < | §'| summations. Step 3 takes at

most times of scanning through the input. Hence, V runs in polynomial time in the input length.
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

o Examplem l
Iiterdais

o p=XAY)V(XAZ
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
® ) =XAVAZ
0O 1 1
* p=FTAY) VAT

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations
® Example:
e )=XAYAZ x = TRUE, y = TRUE, z = TRUE
* p=XAY)VEAZ)
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e )=XAYVAZ x = TRUE, y = TRUE, z = TRUE
0 1 1

* )=XAY)VEXAZ)
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

215



Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e ) =XAyAz =FALSE x = TRUE, y = TRUE, z = TRUE
0 1 1

* )=XAY)VEXAZ)
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:

e ) =XAYAZ

e p=XAY)V(IXAZ) x = TRUE, y = TRUE, z = FALSE
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e ) =XAVAZ
e )=XAY)V((XAZ) x = TRUE, y = TRUE, z = FALSE
0 1 1 1

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
® )=XAYAZ
) =(XAY)V(XAZ) = FALSE x = TRUE, y = TRUE, 7 = FALSE
0 1 1 1

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:

® ) =XAYAZ

o p=XAY)V(XAZD)
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

® A Boolean formula is satisfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations
® Example:
e )=XAYAZ X = FALSE,y = TRUE, z = TRUE
e p=XAY)V(XAZ)
e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

® A Boolean formula is satisfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e )=XAVAZ X = FALSE,y = TRUE, z = TRUE
e p=XAY)V(XAZ)

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

® A Boolean formula is satisfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

o SAT={(¢@) | ¢ is a satisfiable Boolean formula}
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Boolean Formula

® Boolean formula: an expression involving Boolean variables and operations

® Example:
e h=XAVAZ x = FALSE, y = TRUE, z = TRUE @ yes-instance
* )=XAY)V(XAZ) no-instance

e (Boolean) variables: x, y,

e The Boolean variables can take on the values TRUE (1) and FALSE (0)

® A Boolean formula is satisfiable if some assignment of TRUEs and FALSEs to the
variables make the formula true

o SAT={(¢@) | ¢ is a satisfiable Boolean formula}
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SAT I1sIn NP

o SAT = {(¢p) | ¢ is a satisfiable Boolean formula}

® Prove SAT isin NP < Design a polynomial time verifier to decide SAT (with help from some ¢)

<Proof>

Let string ¢ that encodes ¢ as a certificate

V="“Oninput ({(¢h), ¢):
1. Replace the literals in ¢ by the truth assignments in

2. Test whether the resulting @ is true

3. If 2 pass, accept; otherwise, reject.”

For each replacement in Step 1, it takes at most linear time of scanning through the input. In total, it
scan through the input £ times, where £ is the number of literals in ¢. Step 2 can be done in one scan

through the input. Hence, V runs in polynomial time in the input length.
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D-HAM-PATH




D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.

e D-HAM-PATH = {(G, s, 1)| G is a directed graph with a Hamiltonian path from s
to 7}
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.

e D-HAM-PATH = {(G, s, 1)| G is a directed graph with a Hamiltonian path from s
to 7}
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D-HAM-PATH

e A Hamiltonian path of a graph G = (V, E) is a simple path that contains each
vertex in V.

e D-HAM-PATH = {(G, s, 1)| G is a directed graph with a Hamiltonian path from s
to 7}
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D-HAM-PATH Is In NP

e D-HAM-PATH = {(G, s, 1)| G is a directed graph with a Hamiltonian path from s to 7}

® Prove D-HAM-PATH is in NP < Design a polynomial time verifier to decide D-HAM-PATH (with help from some ¢)

<Proof>

Let string ¢ that encodes G ) t
as a certificate

V="0On input <<G, S, t)l >:

L. Check if ¢ is indeed a permutation of vertices in G starting from s and end at

2. For every consecutive pair of vertices in ¢, v; and v., ;, check if there is an edge from v;to v, ; in G

3. If 1 and 2 both pass, accept; otherwise, reject.”

For each element in ¢ in Step 1, it takes at most linear time of scanning through the input. In total, it scan through
the input n times, where n is the number of vertices in . Each consecutive pair in Step 2 can be checked in one
scan through the input, and there are at most O(n) pairs. Hence, V runs in polynomial time in the input length.
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What Happened

® To show that a problem is in NP, we can show that it is polynomial-time verifiable

<Proof Idea>

1. Show that for any yes instance w, there is a polynomial-size certificate
2. Design a on input (w, ) thatacceptsallw € A and all w &

3. Show that V/ runs in polynomial time (in the length of )
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Why P and NP?

e There are many f(n) time Turing machine variations that have an equivalent
poly(f(n)) time single-tape Turing machine

® There is at most a square or polynomial difference between the time complexity
of problems measured on deterministic single-tape and many Turing machine
variations

® There is at most an exponential difference between the time complexity of
problems on deterministic and nondeterministic Turing machines
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