
Algorithms for Decision Support 

NP-Completeness (1/3)
Turing Machine, P, and NP
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Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc 

• Formal language framework: string and language 

• Time complexity 

• Input size 

• Classes P and NP 

• Polynomial Eme verificaEon
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Hilbert’s 10th Problem
• In 1900, mathemaEcian David Hilbert delivered a famous 

talk at the InternaEonal Congress of MathemaEcians in Paris 

• He idenEfied 23 math problems which he thinks are 
important in the coming century 

• Hilbert’s 10th problem conceded algorithms: 
Given a mulE-variable polynomial  with integral 
coefficients. To devise a process according to which it can be 
determined in a finite number of operaEons whether  has 
integral roots. 

•  ( , ) 

•

F

F

x2 + 2xy + y2 − 1 = 0 x = 2 y = − 3

x2 + y2 − 3 = 0
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What is an algorithm/computer? 
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Turing Machine
• Proposed by Alan Turing in 1936 

• A model of a general purpose computer: a Turing machine can do every thing that 
a real computer con do
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Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

12

…………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

13
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

14
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

15
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

16
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

17
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

18
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

19
0 11 1 1 10 # 00 1 …………



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

20
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

21
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

22
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

23
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

24
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

25
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

26
0 11 1 1 10 # 00 1control ……



Turing Machine
• Proposed by Alan Turing in 1936 

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is 
blank everywhere else 

• A tape head that can read and write symbols and move 
around on the tape 

• Finite-state control 

• Two special hal$ng states: accept and reject Alan Turing 1912~1954

27
0 11 1 1 10 # 00 1control ……



Turing Machine
• A Turing machine’s configura-on: 

• Its current state 

• what the read-write head reads 

• By its current configuraEon, a Turing machine 

• decides the tape symbol to write on the tape, 

• switches to the next state, and 

• moves the tape head to its le^ or right

28
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Turing Machine
• Output: accept or reject (both halEng configuraEons) 

• Obtained by entering designated accepEng and rejecEng states 

• When a Turing machine enters the accept state, it accepts the input 
immediately; when a Turing machine enters the reject state, it rejects the input 
immediately 

• If it does not enter the accept or reject states, TM will run forever (loop), and 
never halt 

•  
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Turing Machine
• We can use Turing machines to solve problems!  

• Does 1100010000000010 contains  0s for some integer ?  

• Is 15 a prime number?  

• Is a graph  connected? 

•  

2k k

G
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Turing Machine Example
• There is a Turing machine that decides if an input string has  0’s: 2k
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Turing Machine Example
• There is a Turing machine that decides if an input string has  0’s:  

 = “On input string : 

1. Sweep le^ to right across the tape, crossing off every other 0. 

2. If in stage 1 the tape contained a single 0, accept. 

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was 
odd, reject. 

4. Return the head to the le^-hand end of the tape. 

5. Go to stage 1.”

2k

M w
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Turing Machine Example
• There is a Turing machine that decides if an input string has  0’s:  

 = “On input string : 
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2. If in stage 1 the tape contained a single 0, accept. 

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was 
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Turing machine

• An infinitely long tape/memory 

• IniEally contains the (finite) input sequence and is blank everywhere else 

• A tape head that can read and write symbols and move around on the tape 

• Finite-state control 

• The Turing machine may end up with an accept state or reject state 

• It accepts the input or rejects the input
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NondeterminisEc Turing Machine
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NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control 

• For an input , we can describe all possible computaEons 
of nondeterminisEc Turing machine by a computa-on tree 

w
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NondeterminisEc Turing Machine
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: ConfiguraEon 
 
(The current control state and  
what the read-write head reads 

Root: iniEal configuraEon
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NondeterminisEc Turing Machine
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NondeterminisEc Turing Machine
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DeterminisEc NondeterminisEc
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what the read-write head reads 

Root: iniEal configuraEon
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accept

reject

DeterminisEc NondeterminisEc

: ConfiguraEon 
 
(The current control state and  
what the read-write head reads 

Root: iniEal configuraEon



NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control 

• The nondeterminisEc Turing machine accepts the input  
if some branch of computaEon (i.e., a path from root to 
some node) leads to the accept state

w
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NondeterminisEc Turing Machine

• It is like a (determinisEc) Turing machine, but with non-
determinisEc control 

• Given an state and read a symbol, the non-determinisEc 
Turing machine may enter different states  

• The nondeterminisEc Turing machine accepts the input  
if some branch of computaEon (i.e., a path from root to 
some node) leads to the accept state

w
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Non-DeterminisEc Turing machine

• Like the (determinisEc) Turing machine, but have non-determinisEc behavior 

• If there is a path ends at an accept state, the input is accepted
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What is an algorithm/computer? 
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Church-Turing Thesis [1936]

Real world computaEon = Turing machine computaEon
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Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc 

• Formal language framework: string and language 

• Time complexity 

• Input size 

• Classes P and NP 

• Polynomial Eme verificaEon
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• IniEally, there is a string of symbols on the Turing machine tape

A Formal Language Framework for Problems

69
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• , , , , , …,  

• ,  

•  

•  

• prime numbers  = , , , , , , , , …  

•   is connected graph  

•   is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

70

Example: 010, 0, 1, 11111, ϕ, ⋯
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 
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We use  to represent an encoding of ⟨ ⋅ ⟩ ⋅

74

(binary!)



A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• , , , , , …,  

• ,  

•  

•  

• prime numbers  = , , , , , , , , …  

•   is connected graph  

•   is a polynomial with an integral root

{1 01 001 0001 00001 0*1}

{0 1}*

{akbk |k ≥ 0}

{w#w |w ∈ {0,1}*}

{ } {2 3 5 7 11 13 17 19 }

{⟨G⟩| G }

{⟨p⟩| p }

We use  to represent an encoding of ⟨ ⋅ ⟩ ⋅

75

(binary!)



A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  = , , , , , …,  and a string  = , is 
 in ?

⇔

⇔

L {1 01 001 0001 00001 0*1} w 10110
w L

76

all possible strings
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• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 
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A Formal Language Framework for Problems
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• Given a language  = prime number  and a string  = , is  in ? 
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  = prime number  and a string  = , is  in ? 

 Is  a prime number?

⇔

⇔

L { } w 15 w L

⇔ w
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  =   is connected graph  and a string  = , is  in 
? 

⇔

⇔

L {⟨G⟩| G } w ⟨H⟩ w
L
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  =   is connected graph  and a string  = , is  in 
? 

 Is  a connected graph?

⇔

⇔

L {⟨G⟩| G } w ⟨H⟩ w
L

⇔ H
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A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  =   is a polynomial with an integral root  and a string  
= , is  in ? 

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

87



A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  =   is a polynomial with an integral root  and a string  
= , is  in ? 

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

88

all possible polynomials

all polynomials  
with an integral root

f
f

?



A Formal Language Framework for Problems

• DefiniEon: A language is a set of strings (that saEsfy some constraints) 

• Language  problem 

• String  instance 

• Given a language  =   is a polynomial with an integral root  and a string  
= , is  in ? 

 Is  a polynomial with an integral root?

⇔

⇔

L {⟨p⟩| p } w
⟨ f⟩ w L

⇔ f
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Yes-Instance and No-Instance
• Consider a language . For any instance , either    or   . 

• If   , we call  a yes-instance (that is, a correct algorithm should return 
accept or yes) 

• If   , we call  a no-instance (that is, a correct algorithm should return 
reject or no)

A w w ∈ A w ∉ A

w ∈ A w

w ∉ A w
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Yes-Instance and No-Instance
• Consider a language . For any instance , either    or   . 

• If   , we call  a yes-instance (that is, a correct algorithm should return 
accept or yes) 

• If   , we call  a no-instance (that is, a correct algorithm should return 
reject or no)

A w w ∈ A w ∉ A

w ∈ A w

w ∉ A w
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What Happened
• Following the vein of Turing machine concept,  a language is a set of strings 

• Language  problem 

• String  instance 

• Asking if a string is in a language  
 if the instance saEsfies the property that the problem asks 

• Given a problem/language, a instance/string is a 

• yes-instance: an instance that saEsfies the property that the problem asks 

• no-instance: an instance that does not saEsfy the property that the problem asks

⇔

⇔

⇔
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Turing-Decidable Language
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Turing-Decidable Language
• A language  is (Turing-)decidable if some Turing machine decides it  

• The Turing machine accepts all strings in  and rejects all strings not in 

L

L L
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Turing-Decidable Language
• A language  is (Turing-)decidable if some Turing machine decides it  

• The Turing machine accepts all strings in  and rejects all strings not in  

• Ex:  = prime number

L

L L

L { }
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Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we 
feed this input to the problem, the answer is yes or no 

• Ex: Partition problem 

• Optimization problems: finding the best solution among all feasible solutions
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Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we 
feed this input to the problem, the answer is yes or no 

• Ex: Partition problem 

• Optimization problems: finding the best solution among all feasible solutions 

• Feasible solution: a solution that satisfies the requirement but probably not the 
best
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Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we 
feed this input to the problem, the answer is yes or no 

• Ex: Partition problem 

• Optimization problems: finding the best solution among all feasible solutions 

• Feasible solution: a solution that satisfies the requirement but probably not the 
best 

• A subgraph which is a clique is not necessary the one that contains minimum 
number of vertices
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Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we 
feed this input to the problem, the answer is yes or no 

• Ex: Partition problem 

• Optimization problems: finding the best solution among all feasible solutions 

• Feasible solution: a solution that satisfies the requirement but probably not the 
best 

• A subgraph which is a clique is not necessary the one that contains minimum 
number of vertices  

• Minimization or maximization
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Decision Problems and Optimization Problems

• Decision problems: Given a problem and an input of the problem, asking if we 
feed this input to the problem, the answer is yes or no 

• Ex: Partition problem 

• Optimization problems: finding the best solution among all feasible solutions 

• Feasible solution: a solution that satisfies the requirement but probably not the 
best 

• A subgraph which is a clique is not necessary the one that contains minimum 
number of vertices  

• Minimization or maximization 

• Ex: Minimum vertex cover or Maximum independent set
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Optimization? An Equivalent Decision Problem

104



Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify 
optimization problems?
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Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify 
optimization problems? 

• We can recast an optimization problem as a decision problem that is no harder!
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Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify 
optimization problems? 

• We can recast an optimization problem as a decision problem that is no harder! 

• Optimization problem: we want to minimize/maximize…
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Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify 
optimization problems? 

• We can recast an optimization problem as a decision problem that is no harder! 

• Optimization problem: we want to minimize/maximize… 

• Equivalent decision version problem: we want to find a solution with cost at 
most/least k
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Optimization? An Equivalent Decision Problem

• The classes P and NP are both define on decision problems. How do we classify 
optimization problems? 

• We can recast an optimization problem as a decision problem that is no harder! 

• Optimization problem: we want to minimize/maximize… 

• Equivalent decision version problem: we want to find a solution with cost at 
most/least  

•  is an additional parameter

k

k
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Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc 

• Formal language framework: string and language 

• Time complexity 

• Input size 

• Classes P and NP 

• Polynomial Eme verificaEon
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Time Complexity
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Time Complexity
• DefiniEon: Let  be a determinisEc Turing machine that accepts or rejects all 

inputs. The running $me or $me complexity of  is the funcEon  , 
where  is the maximum number of steps that  uses on any input of length . 

• If  is the running Eme of , we say that  is an  -me Turing machine

M
M f : 𝒩→𝒩

f(n) M n

f(n) M M f(n)
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Time Complexity
• DefiniEon: Let  be a determinisEc Turing machine that accepts or rejects all 

inputs. The running $me or $me complexity of  is the funcEon  , 
where  is the maximum number of steps that  uses on any input of length . 

• Ex:    

• Ex:   

M
M f : 𝒩→𝒩

f(n) M n

f(n) = O(n2)

f(n) = O(2n)
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Input length n

…
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Input Size
• PARTITION   can be parEEoned into two equal-sum 

subsets : a string  encoding the elements in  

• Input size:    bits 

• : number of items in the set  

• : maximum value of the items in . That is, for all ,  
  .

={⟨S = {a1, a2, ⋯, an}⟩| S
} w S

O(n log amax)

n S
amax S 1 ≤ i ≤ n
ai ≤ amax

 bitsO(n ⋅ log amax)
a1 a2 a3 an…

 bitsO(log a1)  bitsO(log a2)  bitsO(log an)
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Input Size
• CONNECT =   is connected graph : a string  encoding a graph  

• Input size: using binary encoding to encode verEces and edges in  

• Use an adjacency array, the input size is    
bits 

• Use an adjacency list, the input size is    

 bits 
• The  bits are for encoding the vertex ID

{⟨G⟩| G } w G

G
O( |V | log |V |+ |V |2 ) = O( |V |2 )

O( |V | log |V |+ |E | ⋅ 2 log |V | ) = O(
|V |2 log |V | )

O(log |V | )

O( |V | log |V | )  O( |E | ⋅ 2 log |V | )
e1 = (vi1, vj1), e2 = (vi2, vj2), ⋯, em = (vim, vjm)v1, v2, v3, ⋯, vn
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Input Size
• PRIME = prime number : a string  represenEng number  

• Input size?

{ } w n
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Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc 

• Formal language framework: string and language 

• Time complexity 

• Input size 

• Classes P and NP 

• Polynomial Eme verificaEon
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The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in 

polynomial Eme by a determinisEc single-tape Turing machine. 

• P is invariant for all models of computaEon that are polynomially equivalent to 
the determinisEc single-tape Turing machine, and 

• P roughly corresponds to the class of problems that are realisEcally solvable on 
a computer

118
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The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in 

polynomial Eme by a determinisEc single-tape Turing machine. 

• Ex:  

• P roughly corresponds to the class of problems that are realisEcally solvable on 
a computer

O(n2), O(n log n), O(n425), ⋯
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The Class P
• DefiniEon: P is the class of languages that are can be accepted or rejected in 

polynomial Eme by a determinisEc single-tape Turing machine. 

• Ex:  

• P roughly corresponds to the class of problems that are realisEcally solvable on 
a computer

O(n2), O(n log n), O(n425), ⋯
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Running Emecontrol 0 11 1 1 10 # 00 1…

Input length n

…
  f(n) = poly(n)

Check trough this tape for polynomial Emes



The Class NP
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The Class NP
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The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
  f(n) = poly(n)
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The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine  

• DefiniEon: NP is the class of languages that are accepted in polynomial Eme by a 
nondeterminisEc Turing machine.

N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
  f(n) = poly(n)
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The Class NP
• Similarly, we can define the running Eme of a non-determinisEc Turing machine  

• DefiniEon: NP is the class of languages that are accepted in polynomial Eme by a 
nondeterminisEc Turing machine.

N

control 0 11 1 1 10 # 00 1…

Input length n

…

accept

reject

Running Eme
  f(n) = poly(n)
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There exists a way to get accepted 
by checking trough this tape for polynomial Emes



What Happened
• The class P is the class of languages that are accepted or rejected in polynomial 

Eme by a determinis-c Turing machine 

• The class NP is the class of languages that are accepted in polynomial Eme by a 
non-determinis-c Turing machine.
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Overview
• Algorithms:Turing machine, DeterminisEc and non-determinisEc 

• Formal language framework: string and language 

• Time complexity 

• Input size 

• Classes P and NP 

• Polynomial Eme verificaEon
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Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much 

easier 

• For example, we want to know if 63187 is a composite number (that is, it is not 
a prime number). 

• It seems difficult to find the answer 

• But if we are told that one of the divisor of 63187 is 353… 

• We can verify that 63187 is indeed a composite number by simple 
arithmeEcs.
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Verify
• IntuiEon: Some problems are difficult. But with a li:le hint, it becomes much 

easier 

• For example, we want to know if 63187 is a composite number (that is, it is not 
a prime number). 

• It seems difficult to find the answer 

• But if we are told that one of the divisor of 63187 is 353… 

• We can verify that 63187 is indeed a composite number by simple 
arithmeEcs.
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string .

A V

A = {w | V ⟨w, c⟩ c}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string .

A V

A = {w | V ⟨w, c⟩ c}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• Just assume there is an angel that can provide you any  you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• You don’t need to worry about the Eme complexity for coming up with  

• Just assume there is an angel that can provide you any  you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c

c
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• You don’t need to worry about the Eme complexity for coming up with  

• Just assume there is an angel that can provide you any  you want for free

A V

A = {w | V ⟨w, c⟩ c}

c
w A

c

c
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• COMPOSITES     , for integers ,  

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• COMPOSITES     , for integers ,   

• A devisor  of the number  can be a good cerEficate 

•

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}

p x

c = p
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• COMPOSITES     , for integers ,   

• A devisor  of the number  can be a good cerEficate 

•  is  

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {x | x = pq p q > 1}

p x

c p
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique  

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,3⟩ | G 3 }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique  

• Ex:
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique  

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,3⟩ | G 3 }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique  

• A string  that encodes a clique with size  in  is a good cerEficate

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G, k⟩ | G k }

c k G
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique  

• Ex:

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }

154



Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• CLIQUE    is an undirected graph with a -clique

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨G,4⟩ | G 4 }
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have   

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have    

• Ex:  and   

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have    

• Ex:  and   

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have    

• Ex:  and    

• Ex:  and   No answer

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

S = {4,2,8,5,7} t = 25 ⇒
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have    

• Ex:  and    

• Ex:  and   No answer

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

S = {4,2,8,5,7} t = 17 ⇒ {y1, ⋯, yt} = {2,8,7}

S = {4,2,8,5,7} t = 25 ⇒
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify that 
the string  is a member of  

• SUBSET-SUM    and for some 
, we have    

• A string  that encodes a subset of  with sum  is a good cerEficate 

• Ex:  and   

A V

A = {w | V ⟨w, c⟩ c}

c
w A

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

c S t

S = {4,2,8,5,7} t = 17 ⇒ c = {2,8,7}
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of 

A V

A = {w | V ⟨w, c⟩ c}

c
w A
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• An algorithm  verifies a language  if for any yes-instance , there is a 
cerEficate  that  can use to prove that  

• For any no-instance , there must be no cerEficate proving that 

A V

A = {w | V ⟨w, c⟩ c}

c
w A

V A w ∈ A
c V w ∈ A

w ∉ A w ∈ A
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Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

•  is called a cerEficate or proof, which is an addiEonal informaEon to verify 
that the string  is a member of  

• An algorithm  verifies a language  if for any yes-instance , there is a 
cerEficate  that  can use to prove that  

• For any no-instance , there must be no cerEficate proving that 

A V

A = {w | V ⟨w, c⟩ c}

c
w A

V A w ∈ A
c V w ∈ A

w ∉ A w ∈ A
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of 

A V

A = {w | V ⟨w, c⟩ c}

w

w

166



Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier

A V

A = {w | V ⟨w, c⟩ c}

w

w

A
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w
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Instance

…

c
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Polynomial Time Verifier
• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

• A polynomial $me verifier runs in polynomial Eme in the length of  

• We measure the Eme of a verifiers only in terms of the length of  

• A language  is polynomial-$me verifiable if it has a polynomial Eme verifier 

• For polynomial verifiers, the cerEficate needs to have polynomial length (in 
the length of )

A V

A = {w | V ⟨w, c⟩ c}

w

w

A

w

0 11 1 1 10 # 00 1…

Instance

…

a subset of the numbers

c
SUBSET-SUM

the numbers target173



What Happened
• A language  is verifiable if for any of its yes-instances , there exists a piece of 

hint (cerEficate)  such that using this hint , one can be convinced that  is 
indeed a yes-instance of  

• Only yes-instances have cerEficates 

• Polynomial-Eme verifiable: the verificaEon can be done in Eme of polynomial in 
input length 

• The hint size should also be polynomial 

• It does NOT mean that the hint  should be constructed within polynomial 
Eme!

A w
c c w

A

c
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The Class NP — AlternaEve DefiniEon

175

accept

reject

Running Eme

• DefiniEon: NP is the class of languages that are accepted or rejected in 
polynomial Eme by a nondeterminisEc Turing machine.



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.

176

accept

reject

Running Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.

177

accept

reject

Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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accept

reject

Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme



The Class NP — AlternaEve DefiniEon
• DefiniEon: NP is the class of languages that are verifiable in polynomial Eme on a 

determinisEc Turing machine.
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accept

reject

Running Eme

• Any non-determinisEc Turing machine 
can be simulated by a determinisEc 
Turing machine 

• It needs more than polynomial Eme 

• But if we know some hint, we know 
the path to an accept state with 
polynomial length



What Happened
• The class P is the class of languages that are accepted or rejected in polynomial 

Eme by a determinisEc Turing machine 

• The class NP is the class of languages that can be verified in polynomial Eme by a 
determinisEc Turing machine.

187

accept

reject

Running Eme
  f(n) = poly(n)

accept/reject
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Prove Language  is in PL
• To prove that a language  is in P, we need to: 

• Design a Turing machine  

• Show that  correctly accepts or rejects all input 

• Show that  runs in polynomial Eme

L

M

M

M
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To prove that a language  is in P, we need to: 

Design an algorithm 

Correctness proof 

Time complexity analysis

L

Prove Language  is in PL
• To prove that a language  is in P, we need to: 

• Design a Turing machine  

• Show that  correctly accepts or rejects all input 

• Show that  runs in polynomial Eme
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To prove that a language  is in P, we need to: 

Design an algorithm 

Correctness proof 

Time complexity analysis

L

Prove Language  is in PL
• To prove that a language  is in P, we need to: 

• Design a Turing machine  

• Show that  correctly accepts or rejects all input 

• Show that  runs in polynomial Eme

L

M

M

M
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Use Polynomial Time Verifier to Prove that  is in NPA

• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

Prove  is in NP  Design a polynomial Eme verifier to decide  (with help from some ) 

<Proof Idea>  

1. Assume that there is a cerEficate . 

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

c

V ⟨w, c⟩ w ∈ A w ∉ A

V w
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Use Polynomial Time Verifier to Prove that  is in NPA

• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

Prove  is in NP  Design a polynomial Eme verifier to decide  (with help from some ) 

<Proof Idea>  

1. Assume that there is a cerEficate  with size polynomial in the length of  

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

c w

V ⟨w, c⟩ w ∈ A w ∉ A

V w

192



CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

• A string  that encodes a clique with size  in  is a good cerEficate 

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with 
help from some ) 

<Proof Idea>  

1. Assume that there is a cerEficate  that encodes a clique with size  in . 

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

= {⟨G, k⟩ | G k }

c k G

⇔
c

c k G

V ⟨w, c⟩ w ∈ A w ∉ A

V w
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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Use Polynomial Time Verifier to Prove that  is in NPA

• DefiniEon: A verifier for a language  is an algorithm , where  

   accepts   for some string . 

Prove  is in NP  Design a polynomial Eme verifier to decide  (with help from some ) 

<Proof Idea>  

1. Show that for any yes instance , there is a polynomial-size cerEficate . 

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

A V

A = {w | V ⟨w, c⟩ c}

A ⇔ A c

w c

V ⟨w, c⟩ w ∈ A w ∉ A

V w
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CLIQUE is in NP
• CLIQUE    is an undirected graph with a -clique  

Prove CLIQUE is in NP  Design a polynomial Eme verifier to decide CLIQUE (with help from some ) 

<Proof> 

Let string  that encodes a clique with size  in  as a cerEficate 

 = “On input , : 

1. Test whether  is a set of  nodes in  

2. Test whether  contains all edges connecEng nodes in  

3. If both 1 and 2 pass, accept; otherwise, reject.” 

Step 1 takes at most  Emes of scanning through the input. Step 2 takes at most  Emes 
of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨G, k⟩ | G k }

⇔ c

c k G

V ⟨⟨G, k⟩ c⟩

c k G

G c

|c | = k |c |2 = k2

V
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SUBSET-SUM is in NP
• SUBSET-SUM    and for some 

, we have    

• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide 
CLIQUE (with help from some ) 

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c
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SUBSET-SUM is in NP
• SUBSET-SUM    and for some 

, we have    

• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide 
CLIQUE (with help from some ) 

<Proof Idea>  

1. Assume that there is a cerEficate  with size polynomial in the length of  

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

= {⟨S, t⟩ | S = {x1, ⋯, xk}
{y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c w

V ⟨w, c⟩ w ∈ A w ∉ A

V w
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SUBSET-SUM is in NP
• SUBSET-SUM    and for some , we have    

• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V
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• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

1 |c | < |S |
|c | V
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• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input. Hence,  runs in polynomial Eme in the input length.
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• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}
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• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}
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• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}
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SUBSET-SUM is in NP
• SUBSET-SUM    and for some , we have    

• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most  Eme of scanning through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
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SUBSET-SUM is in NP
• SUBSET-SUM    and for some , we have    

• Prove SUBSET-SUM is in NP  Design a polynomial Eme verifier to decide SUBSET-SUM (with help from some 
) 

<Proof> 

Let string  that encodes a subset of  with sum  as a cerEficate 

 = “On input , : 

1. Test whether      

2. Test whether  is a collecEon of numbers that sum to   

3. Test whether  contains all the numbers in  

4. If all 1, 2, and 3 pass, accept; otherwise, reject.” 

Step 1 takes at most linear Eme to scan through the input. Step 2 takes    summaEons. Step 3 takes at 
most  Emes of scanning through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨S, t⟩ | S = {x1, ⋯, xk} {y1, ⋯, ym} ⊆ {x1, ⋯, xk} Σyi = t}

⇔
c

c S t

V ⟨⟨S, t⟩ c⟩

|c | < |S |

c t

S c

|c | < |S |
|c | V
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
212
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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Boolean Formula
• Boolean formula: an expression involving Boolean variables and operaEons 

• Example: 

•  

•    

• (Boolean) variables: , ,  

• The Boolean variables can take on the values TRUE ( ) and FALSE ( ) 

• A Boolean formula is saEsfiable if some assignment of TRUEs and FALSEs to the 
variables make the formula true 

• SAT = 

ϕ = x ∧ y ∧ z

ϕ = (x ∧ y) ∨ (x ∧ z)

x y z

1 0

{⟨ϕ⟩ ∣ ϕ is a saEsfiable Boolean formula}
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SAT is in NP
• SAT    is a saEsfiable Boolean formula  

• Prove SAT is in NP  Design a polynomial Eme verifier to decide SAT (with help from some ) 

<Proof> 

Let string  that encodes a truth assignment of variables in  as a cerEficate 

 = “On input , : 

1. Replace the literals in  by the truth assignments in  

2. Test whether the resulEng  is true 

3. If 2 pass, accept; otherwise, reject.” 

For each replacement in Step 1, it takes at most linear Eme of scanning through the input. In total, it 
scan through the input  Emes, where  is the number of literals in . Step 2 can be done in one scan 
through the input. Hence,  runs in polynomial Eme in the input length.

= {⟨ϕ⟩ | ϕ }

⇔ c

c ϕ

V ⟨⟨ϕ⟩ c⟩

ϕ c

ϕ

ℓ ℓ ϕ
V
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 
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• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH
• A Hamiltonian path of a graph  is a simple path that contains each 

vertex in .  

• D-HAM-PATH   is a directed graph with a Hamiltonian path from  
to 

G = (V, E)
V

= {⟨G, s, t⟩∣ G s
t}
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D-HAM-PATH is in NP
• D-HAM-PATH   is a directed graph with a Hamiltonian path from  to  

• Prove D-HAM-PATH is in NP  Design a polynomial Eme verifier to decide D-HAM-PATH (with help from some ) 

<Proof> 

Let string  that encodes a permutaEon of verEces in  that forms a Hamiltonian walk starEng from  and end at  
as a cerEficate 

 = “On input , : 

1. Check if  is indeed a permutaEon of verEces in  starEng from  and end at   

2. For every consecuEve pair of verEces in ,  and , check if there is an edge from  to  in  

3. If 1 and 2 both pass, accept; otherwise, reject.” 

For each element in  in Step 1, it takes at most linear Eme of scanning through the input. In total, it scan through 
the input  Emes, where  is the number of verEces in . Each consecuEve pair in Step 2 can be checked in one 
scan through the input, and there are at most  pairs. Hence,  runs in polynomial Eme in the input length.

= {⟨G, s, t⟩∣ G s t}

⇔ c

c G s t

V ⟨⟨G, s, t⟩ c⟩

c G s t

c vi vi+1 vi vi+1 G

c
n n G

O(n) V
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What Happened

234

• To show that a problem is in NP, we can show that it is polynomial-Eme verifiable 

<Proof Idea>  

1. Show that for any yes instance , there is a polynomial-size cerEficate . 

2. Design a verifier  on input   that accepts all    and rejects all    

3. Show that  runs in polynomial Eme (in the length of )

w c

V ⟨w, c⟩ w ∈ A w ∉ A

V w



Why P and NP?

• There is at most a square or polynomial difference between the Eme complexity 
of problems measured on determinisEc single-tape and many Turing machine 
variaEons 

• There is at most an exponenEal difference between the Eme complexity of 
problems on determinisEc and nondeterminisEc Turing machines

235

• There are many  Eme Turing machine variaEons that have an equivalent 
 Eme single-tape Turing machine

f(n)
poly( f(n))

• Every  Eme non-determinisEc Turing machine has an equivalent  Eme 
determinisEc Turing machine

f(n) 2O( f(n))
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