
Exercise Solution: P and NP

Prove their NP membership for the following problems (or their decision version).

1. Partition. Given a set S of n integers a1, a2, · · · , an, is there a way to partition S into two
subsets such that the sums in each subset are the same?

First, for any yes-instance (that is, a set of numbers with an equal-sum bipartition), we define a
certificate C as a subset of elements in one of the two parties. Note that the size of ⟨C⟩ is upper
bounded by the size of ⟨S⟩ since C is a subset of S.

Next, we design a polynomial-time verifier for Partition.

V = “On input ⟨⟨S⟩, C⟩ :
1. Check if C is a subset of S. If it is not true, reject.
2. Check if the sum of elements in C is equal to the sum of elements in S \ C.
If it is not true, reject
3. If both Steps 1 and 2 pass, accept.”

Finally, we show that V can verify Partition in polynomial time. For Step 1, V scans the input
string for at most min{|C|, |S|} times. For Step 2, V scans the input string twice. Hence, the
total running time of V is polynomial in the input string size.

2. Conjunctive normal form satisfiability. A Boolean formula is in Conjunctive Normal Form
(CNF) if it is a conjunction of clauses, where a clause is a disjunction of literals. Given a CNF
formula, is it satisfiable?

First, for any yes-instance (that is, a satisfiable CNF Boolean formula), we define a certificate C
as a truth assignment of the variables that makes the Boolean formula evaluate to 1. Note that
the size of ⟨C⟩ is upper bounded by the size of ⟨ϕ⟩.

Next, we design a polynomial-time verifier for 3SAT.

V = “On input ⟨⟨ϕ⟩, C⟩ :
1. Assign the truth value to the literals according to C.
2. Evaluate the value of ϕ. If it is true, accept; Otherwise, reject.”

Finally, we show that V can verify 3SAT in polynomial time. For Step 1, V scans the input
string for at most |ϕ| · n times, where n is the number of variables and |ϕ| denotes the total
number of literals in ϕ (since each variable appears at most one in the input, n ≤ |ϕ|). For Step
2, V scans the input string once. Hence, the total running time of V is polynomial in the input
string size.

1

3. Minimum vertex cover. Given graph G = (V, E), a vertex cover is a subset of vertices C ⊆ V
such that for all edge (u, v) ∈ E, u or v is in C. The minimum vertex cover problem asks about
finding the minimum vertex cover in the given graph.

We show the NP-membership of the decision version of the minimum vertex cover problem:
Given a graph G and an integer k, is there a vertex cover in G with size at most k?
For any yes-instance (that is, a graph G with a vertex cover with a size of k), we define a
certificate C as a set of k vertices that covers all the edges in G. Note that the size of ⟨C⟩ is
upper bounded by the size of ⟨G⟩ since C is a subset of vertices in G.

Next, we design a polynomial-time verifier for the decision problem.

V = “On input ⟨⟨G, k⟩, C⟩ :
Check if each edge in G has at least one endpoint in C.
If it is true, accept; Otherwise, reject.”

Finally, since each edge in G needs to scan the input ⟨⟨G, k⟩, C⟩ at most once, the total running
time of V is polynomial in the input string size.

4. Maximum independent set. An independent set is a set of vertices where each pair of vertices
is not adjacent to each other. The maximum independent set problem is: given a graph G, what
is the size of the maximum independent set in G?

We show the NP-membership of the decision version of the maximum independent set problem:
Given a graph G and an integer k, is there an independent set in G with size at least k?
For any yes-instance (that is, a graph G with an independent set with a size of k), we define a
certificate C as a set of k vertices that are mutually nonadjacent in G. Note that the size of ⟨C⟩
is upper bounded by the size of ⟨G⟩ since C is a subset of vertices in G.

Next, we design a polynomial-time verifier for the decision problem.

V = “On input ⟨⟨G, k⟩, C⟩ :
Check if each pair of vertices in C are non-adjacent in G.
If it is true, accept; Otherwise, reject.”

Finally, since each pair in C needs to scan the input ⟨⟨G, k⟩, C⟩ at most once, and there are at
most k2 pairs of vertices in C. Hence, the total running time of V is polynomial in the input
string size.

5. Bin packing. Given n items, where each item i with size si ∈ (0, 1], the goal is packing the
items into the minimum number of capacity-1 bins.

We show the NP-membership of the decision version of the bin packing problem: Given a set of n
items with sizes s1, s2, · · · , sn and an integer k, is it possible to pack the items into k capacity-1
bins?
For any yes-instance, we define a certificate C as an assignment of n items into k bins by attaching
each item an index of the bin it is assigned to. The size of ⟨C⟩ is O(n log k), which is polynomial
in the length of the input ⟨s1, s2, · · · , sn, k⟩.

Next, we design a polynomial-time verifier for the decision problem.

V = “On input ⟨⟨s1, s2, · · · , sn, k⟩, C⟩ :
For i = 1, 2, · · · , n, check if the total size of all items assign to the same bin with item i is
at most 1. If it is true, accept; Otherwise, reject.”

Finally, since each round needs to scan the input ⟨⟨s1, s2, · · · , sn, k⟩, C⟩ at most once and there
are n rounds, the total running time of V is polynomial in the input string size.

2

6. Knapsack. There are n items, each with positive integral weight wj (j = 1, · · · , n) and positive
integral value cj (j = 1, · · · , n) and an integer b. The question is to find a subset of the items
with total weight at most b and the maximal total value.

We show the NP-membership of the decision version of the knapsack problem: Given a set of n
items with positive integral weight wj (j = 1, · · · , n) and positive integral value cj (j = 1, · · · , n),
a budget b, and a value k, is there a set of items with total weight of at most b and total value
of at least k?
For any yes-instance, we define a certificate C as a subset of items that has total weight at most
b and total value at least k The size of ⟨C⟩ is O(n log n), which is polynomial in the length of
the input ⟨w1, s2, · · · , wn, c1, c2, · · · , cn, b, k⟩ since C is a subset of the items.

Next, we design a polynomial-time verifier for the decision problem.

V = “On input ⟨⟨w1, s2, · · · , wn, c1, c2, · · · , cn, b, k⟩, C⟩ :
Check if the total weight of the items in C is at most b and if the total value is at least k.
If it is true, accept; Otherwise, reject.”

Finally, since summing up the weights and the values needs to scan the input ⟨⟨w1, s2, · · · , wn, c1, c2, · · · , cn, b, k⟩, C⟩
at most once per item and there are at most n items in C, the total running time of V is poly-
nomial in the input string size.

3

