
Algorithms for Decision Support 

(Integer) Linear Programming (3/3)
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Minimum Spanning Tree
• Given a graph  and edge weights  for , find a 

minimum weight subgraph such that the subgraph is connected.
G = (V, E) cuv (u, v) ∈ E
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there is at least one edge connec@ng  
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Minimum Spanning Tree
• Variables:  if the edge  is in the subgraph, and  

otherwise 

• minimize      

subject to    for any subset  with 

 

 for 

xuv = 1 (u, v) xuv = 0

Σ(u,v)∈E cuvxuv

Σ(u,v):u∈S,v∈V∖S xuv ≥ 1 S ⊂ V
1 ≤ |S | < n

xuv ∈ {0,1} (u, v) ∈ E
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Tips

• Observe the problem itself to get the constraints
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Range constraints 1
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Minimize    

     s. t.      for all  

                  for all  

              for all 

∑
j∈J

cj xj

∑
j∈J

aij xj ≤ ui i

−∑
j∈J

aij xj ≤ − ℓi i

xj ≥ 0 j

LP1 LP2

Minimize    

       s. t.       for all  

                

∑
j∈J

cj xj

ℓi ≤∑
j∈J

aij xj ≤ ui i

xj ≥ 0



Range constraints 2

16

Minimize    

     s. t.        for all  

                  for all  

              for all  

             

∑
j∈J

cj xj

di +∑
j∈J

aij xj = ui i

di ≤ ui − ℓi i

xj ≥ 0 j

di ≥ 0

LP1

Minimize    

       s. t.       for all  

                

∑
j∈J

cj xj

ℓi ≤∑
j∈J

aij xj ≤ ui i

xj ≥ 0

LP2’



Range constraints 3
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Minimize    

     s. t.      for all  

                  for all  

              for all 

∑
j∈J

cj xj

∑
j∈J

aij xj ≤ bi i

−∑
j∈J

aij xj ≤ − bi i

xj ≥ 0 j

LP1

Minimize    

       s. t.      for all  

                

∑
j∈J

cj xj

∑
j∈J

aij xj = bi i

xj ≥ 0
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Range constraints 3
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Minimize    

     s. t.      for all  

                 for all  

              for all 

∑
j∈J

cj xj

∑
j∈J

aij xj ≤ bi i

∑
j∈J

aij xj ≥ bi i

xj ≥ 0 j

LP1

Minimize    

       s. t.      for all  

                

∑
j∈J

cj xj

∑
j∈J

aij xj = bi i

xj ≥ 0

LP2’



Tips

• Replacing the equality constraints by -constraint and -constraint≥ ≤
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objecCve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Least absolute devia@ons es@ma@on
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w = ax + b

22

b
slope  = a



Least absolute devia@ons es@ma@on

(x1, y1)

(x2, y2)

(x4, y4)

(x3, y3)

(x5, y5)

x

y

w = ax + b

z1

z2 z3

z4
z5

23



Least absolute devia@ons es@ma@on
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Least absolute devia@ons es@ma@on

(x1, y1)

(x2, y2)

(x4, y4)

(x3, y3)

(x5, y5)

x

y w = ax + b

z1

z2
z3

z4 z5

Find a line to minimize   

such that      

n

∑
i=1

zi

zi = |axi + b − yi|

25



• Replace  by   , where  and   |      

• In the op@mal solu@on to LP, at least one of  and  is  for each  (otherwise, the corresponding constraints is s@ll sa@sfied 

when both  and  are reduced by   and so does the objec@ve, which contradicts to the op@mality of  and ) 

• in this case, the op@mal solu@ons of the two LPs are the same: 

•    when ;    when 

xj x+
j − x−

j x+
j ≥ 0 x−

j ≥ 0 ⇒ xj| = x+
j + x−

j

x+
j x−

j 0 j

x+
j x−

j min{x+
j , x−

j } x+
j x−

j

xj = x+
j xj ≥ 0 xj = x−

j xj ≤ 0

Absolute values
Minimize           ( ) 

        s.t.    for all  

                is free for all 

∑
j∈J

cj |xj| cj > 0

∑
j∈J

aij xj ≥ bi i

xj j
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j } x+
j x−
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Absolute values
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                is free for all 
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j∈J
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xj j
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Minimize             ( ) 

       s. t.      for all  

               ,  for all 

∑
j∈J

cj (x+
j + x−

j ) cj > 0

∑
j∈J

aij (x+
j − x−

j ) ≥ bi i

x+
j x−

j ≥ 0 j

LP



Absolute values
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Minimize             ( ) 

       s. t.      for all  

               ,  for all 

∑
j∈J

cj (x+
j + x−

j ) cj > 0

∑
j∈J

aij (x+
j − x−

j ) ≥ bi i

x+
j x−

j ≥ 0 j

LP x−
j

x+
j

  x+
j − x−

j
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Minimize             ( ) 

       s. t.      for all  

               ,  for all 

∑
j∈J

cj (x+
j + x−

j ) cj > 0

∑
j∈J

aij (x+
j − x−

j ) ≥ bi i

x+
j x−

j ≥ 0 j

LP
x−

j  x+
j − x−

j

x+
j

does not change

↓
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Minimize             ( ) 

       s. t.      for all  

               ,  for all 

∑
j∈J

cj (x+
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∑
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Absolute values

• Replace the variable  who’s absolute value is considered by    

•  is the amount of posi@ve part, and  the amount of nega@ve part 

• The solu@on’s op@mality automa@cally forces at least one of  and 
 be 

x x+ − x−

x+ x−

x+

x− 0

34



Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objecCve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Min-max objec@ve

36

• Consider the diet choice problem, where each type of nutrient  has a 
minimum amount needed  and price , and there is an amount of 
budget 

i
mi pi

B



Min-max objec@ve
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• Consider the diet choice problem, where each type of nutrient  has a 
minimum amount needed  and price , and there is an amount of 
budget  

• What happens if we concern about the maximum cost spent on a type 
of nutrient?

i
mi pi

B



Min-max objec@ve

38

• Consider the diet choice problem, where each type of nutrient  has a 
minimum amount needed  and price , and there is an amount of 
budget  

• What happens if we concern about the maximum cost spent on a type 
of nutrient? 

• That is, we want to minimize    while sa@sfying the 

constraints

i
mi pi

B

max
i

{pi ⋅ xi}



Min-max objec@ve
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Minimize     

       s. t.    for all  

                

max
k∈K ∑

j∈J

ckj xj

∑
j∈J

aij xj ≥ bi i

xj ≥ 0

P



Min-max objec@ve
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Minimize     

       s. t.    for all  

                

max
k∈K ∑

j∈J

ckj xj

∑
j∈J

aij xj ≥ bi i

xj ≥ 0

P

• Let      

• That is, every possible   should not be larger than  

• Then, we only need to minimize 

z = max
k∈K ∑

j∈J

ckjxj

∑
j∈J

ckjxj z

z



Min-max objec@ve
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Min-max objec@ve
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Min-max objec@ve
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Minimize     

       s. t.    for all  

                

max
k∈K ∑

j∈J

ckj xj

∑
j∈J

aij xj ≥ bi i

xj ≥ 0

Minimize  

     s. t.   for all  

                for all  

              for all 

z

∑
j∈J

aijxj ≥ bi i

∑
j∈J

ckjxj ≤ z k

xj ≥ 0 j

P LP

• Let      

• That is, every possible   should not be larger than  

• Then, we only need to minimize 

z = max
k∈K ∑

j∈J

ckjxj

∑
j∈J

ckjxj z

z



Min-max objec@ve

• Introduce a new variable  that represents the maximum value of the 
targeted variable  

• Relate  with all the possible value of the targeted variable  by 
restric@ng  in any case

z
x

z x
x ≤ z
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• DisconCnuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Discon@nuous-values variables

46

• Consider that you are a manager of a store and need to manage the 
amount of items in the store so the items are always available 

• However, the provider of item  has a range-constraint on every 
purchase: whenever you buy item , the amount must be in  

• That is,  or 

x
x [ℓ, u]

x = 0 ℓ ≤ x ≤ u



Discon@nuous-values variables

47

Minimize    

       s. t. (constraints) 

                     for all  

                     for all  

                for all 

∑
j∈J

cj xj

xj ≤ u ⋅ yj j ∈ J′ 

xj ≥ ℓ ⋅ yj j ∈ J′ 

yj ∈ {0,1} j ∈ J′ 

Minimize    

       s. t. (constraints) 

                or      

∑
j∈J

cj xj

xj = 0 ℓ ≤ xj ≤ u ∀j ∈ J′ 

• Introduce a binary indicator variable  (hope:  if  and  if ) 

• Observa@on:      and      whether  or 

yj ∈ {0,1} yj = 0 xj = 0 yj = 1 xj > 0

xj ≤ u ⋅ yj xj ≥ ℓ ⋅ yj yj = 0 yj = 1



Discon@nuous-values variables

• Introduce a binary indicator variable  

• Hopefully, the value of  indicates different scenarios of choice of  

• Need to relate the value of  and the value of 

y
y x

y x

48



Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility locaCon 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Facility Loca@on

• When the objec@ve value is discon@nuous

50



Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j

51



Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j

64

f1 f2 f3 f4

c11 c12

depots j

clients i

y1 y2 y3 y4

x11 x12
c54 c55

x54 x55

min     Σn
j=1 yj + Σn

j=1Σ
m
i=1 cijxij

Correla@on of  and  : 
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Σm
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Facility Loca@on
• Given a set of poten@al depots  and a set  of clients, suppose that 

the use of depot  associates with a fixed cost , and there is a transporta@on cost  if one unit of 

the demand of client  is served by depot . The problem is to decide which depots to open, and 
which depot serves each client so as to minimize the sum of the fixed and transporta@on cost 

•  

N = {1,⋯, n} M = {1,⋯, m}
j fj cij

i j
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y1 y2 y3 y4

x11 x12
c54 c55

x54 x55

min     Σn
j=1 yj + Σn

j=1Σ
m
i=1 cijxij

Correla@on of  and  : 

if  ,  

if  , 

yj Σm
i=1 xij

Σm
i=1 xij = 0 yj = 0

Σm
i=1 xij > 0 yj = 1

      for all Σm
i=1 xij ≤ m ⋅ yj j

   for all  and xij ≤ yj i j

Alterna@vely:  
if ,  

if ,  or 

xij = 1 yj = 1
xij = 0 yj = 0 1



Facility Loca@on
• Variables:  

• For every depot , the variable  if  is used, and  otherwise 

•  if the demand of client  sa@sfied from depot , and  otherwise 

• minimize       

subject to    for  

  for  

 for ,  

 for 

j yj = 1 j yj = 0

xij = 1 i j xij = 0

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i = 1,⋯, m

Σm
i=1 xij ≤ myj j = 1,⋯, n

xij ≥ 0 i = 1,⋯, m j = 1,⋯, n

yj ∈ {0,1} j = 1,⋯, n
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objecCve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Fixed cost

68

Minimize    

      s.t.   for all  

             

             

             for all  

            

ky + cx

∑
j∈J

aijwj ≥ bi i

x ≤ uy

x ≥ 0
wj ≥ 0 j

y ∈ {0,1}

Minimize  

      s.t.   for all  

              

             for all  

• where   for , and  
     for 

F(x)

∑
j∈J

aijwj ≥ bi i

x ≥ 0
wj ≥ 0 j

F(x) = 0 x = 0
F(x) = k + cx x > 0

• Introduce a binary indicator variable  (  for , and  for ) 

• Relate  and the objec@ve func@on in different choices of 

y ∈ {0,1} y = 0 x = 0 y = 1 x > 0
y x



Tips

• Use a binary indicator variable  (  for , and  
for ) to indicate the objec@ve value under different choices of 

y ∈ {0,1} y = 0 x = 0 y = 1
x > 0 x
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n

75

1 2 3 n
f1
p1

f2
p2h1 h2

fixed cost (if produced)
produc@on cost

storage cost



Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht

n
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  
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ht

n

83

1 2 3 n
f1
p1 h1

fixed cost (if produced)
produc@on cost

storage cost

f2
p2 h2

: the amount of  
produc@on on day 
xt

t

: the stock  
at the end of day 

st
t

 if produc@on occurs on day yt = 1 t



Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 
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Lot-Sizing
• On day , there is a demand of , a fixed producing cost of , a produc@on cost of  

per unit of produc@on, and storage cost of  per unit of produc@on. The problem is 
to decide on a produc@on plan for an -day horizon for a single product. 

•  

t dt ft pt
ht
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: the amount of  
produc@on on day 
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t

: the stock  
at the end of day 

st
t

 if produc@on occurs on day yt = 1 t

min        Σn
t=1 ptxt + Σn

t=1 htst + Σn
t=1 ftyt

Every day, there should 
be enough (from 
produc@on and saving) so 
the demand is sa@sfied
     for all xt + (st−1 − st) = dt t

Correla@on of  and : 
if ,  
if , 

yt xt
xt = 0 yt = 0
xt > 0 yt = 1

 for all xt ≤ yt ⋅ Σn
t=1dt t



Lot-Sizing
• Variables: 

• : the amount produced on day  

• : the stock at the end of day  

•  if produc@on occurs on day , and  otherwise 

• minimize             

subject to      for  

 for  

 

  for  

xt t

st t

yt = 1 t yt = 0

Σn
t=1 ptxt + Σn

t=1 htst + Σn
t=1 ftyt

xt + (st−1 − st) = dt t = 1,⋯, n

xt ≤ yt ⋅ Σn
t=1dt t = 1,⋯, n

s0 = 0

st, xt ≥ 0 t = 1,⋯, n

yt ∈ {0,1}
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Outline
• Warm up: Minimum spanning tree 

• Tricks: 

• Range constraints 

• Absolute value objec@ve 

• Min-max objec@ve 

• Discon@nuous-values variables 

• Fixed-cost objec@ve 

• Facility loca@on 

• Lot-sizing 

• Or and condi@onal condi@ons 

• Solving ILP: CuKng plane
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Different formula@ons of Facility Loca@on
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Different formula@ons of Facility Loca@on
• Variables:  

• For every depot , the variable  if  is used, and  otherwise 

•  if the demand of client  sa@sfied from depot , and  otherwise 

• minimize       

subject to    for  

  for  

 for ,  

 for 

j yj = 1 j yj = 0

xij = 1 i j xij = 0

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i = 1,⋯, m

Σm
i=1 xij ≤ myj j = 1,⋯, n

xij ≥ 0 i = 1,⋯, m j = 1,⋯, n

yj ∈ {0,1} j = 1,⋯, n
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Different formula@ons of Facility Loca@on
• Variables:  

• For every depot , the variable  if  is used, and  otherwise 

•  if the demand of client  sa@sfied from depot , and  otherwise 

• minimize       

subject to    for  

 for ,  

 for ,  

 for 

j yj = 1 j yj = 0

xij = 1 i j xij = 0

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i = 1,⋯, m

xij ≤ yj i = 1,⋯, m j = 1,⋯, n

xij ≥ 0 i = 1,⋯, m j = 1,⋯, n

yj ∈ {0,1} j = 1,⋯, n
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Different formula@ons of Facility Loca@on
• Variables:  

• For every depot , the variable  if  is used, and  otherwise 

•  if the demand of client  sa@sfied from depot , and  otherwise 

• minimize       

subject to    for  

 for ,  

 for ,  

 for 

j yj = 1 j yj = 0

xij = 1 i j xij = 0

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i = 1,⋯, m

xij ≤ yj i = 1,⋯, m j = 1,⋯, n

xij ≥ 0 i = 1,⋯, m j = 1,⋯, n

yj ∈ {0,1} j = 1,⋯, n

93

• minimize       

subject to    for all  

 for all ,  

 for all ,  

 for 

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i

xij ≤ yj i j

xij ≥ 0 i j

yj ∈ {0,1} j

• minimize       

subject to    for all  

  for all  

 for all ,  

 for 

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i

Σm
i=1 xij ≤ myj j

xij ≥ 0 i j

yj ∈ {0,1} j



Different formula@ons of Facility Loca@on
• Variables:  

• For every depot , the variable  if  is used, and  otherwise 

•  if the demand of client  sa@sfied from depot , and  otherwise 

• minimize       

subject to    for  

 for ,  

 for ,  

 for 

j yj = 1 j yj = 0

xij = 1 i j xij = 0

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i = 1,⋯, m

xij ≤ yj i = 1,⋯, m j = 1,⋯, n

xij ≥ 0 i = 1,⋯, m j = 1,⋯, n

yj ∈ {0,1} j = 1,⋯, n

94

• minimize       

subject to    for all  

 for all ,  

 for all ,  

 for 

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i

xij ≤ yj i j

xij ≥ 0 i j

yj ∈ {0,1} j

• minimize       

subject to    for all  

  for all  

 for all ,  

 for 

Σn
j=1 fjyj + Σm

i=1Σ
n
j=1 cijxij

Σn
j=1 xij = 1 i

Σm
i=1 xij ≤ myj j

xij ≥ 0 i j

yj ∈ {0,1} j

m ⋅ n n



Different formula@ons of Facility Loca@on

• Theorem: The lower bound on the op@mum value obtained from the LP-
relaxa@on of LP1 is at least as high as the bound of the LP-relaxa@on of 
LP2
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Different formula@ons of ILP
• Geometrically, we can see that there must be an infinite number of 

formula@ons 

• How can we choose between them?

104

Formula@on 1

Formula@on 2

Ideal formula@on



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program
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Example 1: adding constraints
Minimize          

          s. t.       

                   for all 

x1 + x2 + x3 + x4 + x5

3x1 −4x2 +2x3 −3x4 + x5 ≤ − 2

xi ∈ {0,1} i
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• If      : 
           

• It’s impossible that       

• That is, in any feasible solu@on, it cannot be the case that      

  add a constraint that forbidden this condi@on:     

x2 = x4 = 0
3x1 −4x2 +2x3 −3x4 + x5 = 3x1 +2x3 + x5 ≥ 0

3x1 −4x2 +2x3 −3x4 + x5 ≤ − 2

x2 = x4 = 0

⇒ x2 + x4 ≥ 1
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Example 3: adding constraints
Minimize    

          s. t.      for  

                     for  

                     and 

∑
i∈M,j∈N

cij xij

∑
i∈M

xij ≤ bj yj j ∈ N

∑
j∈N

xij = ai i ∈ M

xij ≥ 0 yj ∈ {0,1}

122

• All feasible solu@ons sa@sfy: 

•     

•    

 with  

      

xij ≤ bj yj

xij ≤ ai

yj ∈ {0,1}

⇒ xij ≤ min{ai, bj}⋅ yj



Example 4: adding constraints
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Minimize        

          s. t.       

                   for all 

x1 + x2 + x3 + x4

13x1 +20x2 +11x3 +6x4 ≥ 72

xi ∈ ℕ i

• Divide both sides of the constraint by : 

       

• Since ,                 

• Since ,        

11
13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11

xi ∈ ℕ 2x1 +2x2 + x3 + x4 ≥
13
11

x1 +
20
11

x2 + x3 +
6

11
x4 ≥

72
11

= 6.⋯

xi ∈ ℕ 2x1 +2x2 + x3 + x4 ≥ 7



CuKng Plane
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more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

124



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

125



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

126



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

127



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

128



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

129



CuKng Plane
• Some@mes, by adding constraints, the integer linear program might be 

more effec@ve to solve 

• These added constraints should not rule out any feasible solu@ons to 
the original integer linear program

130



CuKng Planes

• By adding constraints, the solu@on to relaxed LP might be closer to the 
solu@on to the ILP 

• Need to make sure that no feasible integral solu@on is ruled out by 
the new constraints
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Or constraints
• Recall that in a linear program, every constraint should be sa@sfied 

• What happens if you only need (at least) one of two condi@ons to be 
true?
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Or constraints
Minimize    

      s.t.                                   

                                     

             for all  

                

∑
j∈J

cj xj

∑
j∈J

a1j xj ≤ b1 + M1 ⋅ y (1*)

∑
j∈J

a2j xj ≤ b2 + M2 ⋅ (1 − y) (2*)

xj ≥ 0 j

y ∈ {0,1}

Minimize    

      s.t.                                                  

                                                             

             for all  

• where at least one of  and  is true

∑
j∈J

cj xj

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

xj ≥ 0 j

(1) (2)

• Introduce  and large enough  and  to indicate if one condi@on is true 

• If  ,   , and  is more relaxed than   a solu@on must sa@sfy  but may not sa@sfy  

• The case where  is symmetrical

y ∈ {0,1} M1 M2

y = 0 (1*) = (1) (2*) (2) ⇒ (1) (2)
y = 1
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Or constraints

• Use an indicator variable  again 

• But this @me, use  to restrict one condi@on and relax the other one, 
so it is not necessary that both the condi@ons are true

y
y
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Condi@onal constraints
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• Recall that in a linear program, every constraint should be sa@sfied 

• What happens if we need condi@on  also be true if condi@on  is 
true?

(2) (1)



Condi@onal constraints
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• if condi@on  is sa@sfied, then  must 
also be sa@sfied

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

(1) (2)

P Q If P then Q not P not P or Q
T T F
T F F
F T T
F F T

• If  then   not  or P Q ⇔ P Q



Condi@onal constraints
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• if condi@on  is sa@sfied, then  must 
also be sa@sfied

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

(1) (2)

P Q If P then Q not P not P or Q
T T T
 F T
T F F F F
F T T T T
F F T T T

• If  then   not  or P Q ⇔ P Q



Condi@onal constraints
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Not :    

Not :    

Not  or : 

       

          

(1) ∑
j∈J

a1j xj > b1

(1) ∑
j∈J

a1j xj ≥ b1 + ε

(1) (2)

∑
j∈J

a1j xj ≥ b1 + ε − M1 ⋅ y

∑
j∈J

a2j xj ≤ b2 + M2 ⋅ (1 − y)

                                               

                                               

• if condi@on  is sa@sfied, then  must 
also be sa@sfied

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

(1) (2)

P Q If P then Q not P not P or Q
T T T
 F T
T F F F F
F T T T T
F F T T T

• If  then   not  or P Q ⇔ P Q



Condi@onal constraints
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Not :    

Not :    

Not  or : 

       

          

(1) ∑
j∈J

a1j xj > b1

(1) ∑
j∈J

a1j xj ≥ b1 + ε

(1) (2)

∑
j∈J

a1j xj ≥ b1 + ε − M1 ⋅ y

∑
j∈J

a2j xj ≤ b2 + M2 ⋅ (1 − y)

                                               

                                               

• if condi@on  is sa@sfied, then  must 
also be sa@sfied

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

(1) (2)

P Q If P then Q not P not P or Q
T T T
 F T
T F F F F
F T T T T
F F T T T

• If  then   not  or P Q ⇔ P Q



Condi@onal constraints
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Not :    

Not :    

Not  or : 

       

          

(1) ∑
j∈J

a1j xj > b1

(1) ∑
j∈J

a1j xj ≥ b1 + ε

(1) (2)

∑
j∈J

a1j xj ≥ b1 + ε − M1 ⋅ y

∑
j∈J

a2j xj ≤ b2 + M2 ⋅ (1 − y)

                                               

                                               

• if condi@on  is sa@sfied, then  must 
also be sa@sfied

∑
j∈J

a1j xj ≤ b1 (1)

∑
j∈J

a2j xj ≤ b2 (2)

(1) (2)

• If  then   not  or P Q ⇔ P Q P Q If P then Q not P not P or Q
T T T
 F T
T F F F F
F T T T T
F F T T T



Condi@onal constraints

• An applica@on for the “or condi@on” method 

• If  then   not  or  

• Use  where  is very small to deal with the strict inequality

P Q ⇔ P Q
+ε ε
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It’s obvious 
— by Abstruse Goose
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