Algorithms for Decision Support

(Integer) Linear Programming (3/3)
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® Warm up: Minimum spanning tree
® Tricks:
® Range constraints
® Absolute value objective
® Min-max objective
® Discontinuous-values variables
® Fixed-cost objective
e Facility location
® |ot-sizing
® Or and conditional conditions

® Solving ILP: Cutting plane
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e Given agraph G = (V, E) and edge weights ¢, for (1, v) € E, find a
minimum weight subgraph such that the subgraph is connected.
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Minimum Spanning Tree

e Variables: x,, = 1 if the edge (i, v) is in the subgraph, and x,, = 0
otherwise

o minimize 2, ,crCypXy

subjectto 2, ). ,esvev\s Xuy = 1 for any subset S C V with
1 <|S|<n
x,, € 10,1} for (u,v) € E
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Tips

® Observe the problem itself to get the constraints
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Range constraints 1

LP1 LP2
Minimize 2 C; X; Minimize 2 C; X;
jeS jeJ
stz/”<za x<ufora||z StZa x<ufora||z
jeS jEJS
ijO Za x< . forall i

jeS
x; 2 O forall
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Range constraints 2

LP1 LP2’
Minimize Z C; X; Minimize Z C; X;
jet JEJ
stz/”<2a x; < u; for allz . t. di+2aijxj=uiforalli
jeJ JeJ

x; 2 0 forallj

d >0
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Range constraints 3

LP1 LP2’
Minimize 2 C; X; Minimize Z ijj
jeJ jel
stZa X = for all 1 stZa x< for all 1
jet jeS
X 2 0 —Z a;x; < — b forall

jeJ
x; 2 O forallj
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Range constraints 3

LP1 LP2’
Minimize 2 C; X; Minimize Z ijj
jeJ jed
stZa X = for all 1 stZa x< for all 1
jet jeS
ijO Za]x> for all i

jeJ
x; 2 O forallj
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Tips

® Replacing the equality constraints by >-constraint and <-constraint
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Least absqlute deviations estimation

(X45 Vg)
O
(-x29 y2)
O ® (X5, y5)
O
(.X3, y3)
® (X1, )
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Least absqlute deviations estimation

(X45 Vg)

e W=ax+Db
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Least absqlute deviations estimation

(X45 Vg)

e W=ax+Db
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Least absolute deviations estimation
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Least absqlute deviations estimation

CIR W =ax+ b

® (X1, 1)

Find a line to minimize Z
i=1
such that = = |ax. + b — y]
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Absolute values

Minimize ) ¢ || (¢;> 0)
jel

s.t. Z a;;x; 2 b;forall 7
jel

is free for all j

e Replace 1 by xj+ — X;, where xj+ >0andx” > 0= || =xj+ + X

20



Absolute values

LP
Minimize ¥ ¢; x| (¢ > 0) Minimize ) ¢;(x"+x7)  (¢;> 0)
jeJ jer
. _|— _ — .
s.t. 2 a; v, > b;forall i s. t. Z a;; (x]. X;') 2 b;forall i
jelJ JjeJS
is free for all X, x; = Oforallj

e Replace 1 by xj+ — X;, where xj+ >0andx” > 0= || =xj+ + X
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Absolute values

LP J
. . . . . . _|_ —_—
Minimize ¥ ¢; x| (¢ > 0) Minimize ) ¢;(x"+x7)  (¢;>0)
jeS jel
. e _ — . .
s.t. Z a;; x; 2 b;forall i s. t. Z a; (x;" —x;7) 2 b;forall 7
JjeS jel
is free for all j X, x; = Oforallj
e Replace byxj+—xj_, wherex;r > 0andx; > 0= | |=xj++xj_

e In the optimal solution to LP, at least one of xj+ and X; is O for each j (otherwise, the corresponding constraints is still satisfied

when both xj+ and x;” are reduced by min{xj+, x: } and so does the objective, which contradicts to the optimality of xj+ and x;")
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Absolute values

LP
. . . ’ _I_ _j
Minimize Z c; || (c; > 0) Minimize Z ch(xj + X; zl (¢; > 0)
jeS jel
. e _ — . .
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Absolute values

LP
. . . . . . _I_ —_—
Minimize ¥ ¢; x| (¢ > 0) Minimize ) ¢;(x"+x7)  (¢;>0)
jeS jel
. e _ _ . .
S.1. 2 alj > bi for all 1 S. 1. Z azj (X] X] ) > bz for all 1
jEJS jeS
is free for all j X, x; = Oforallj
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® in this case, the optimal solutions of the two LPs are the same:
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Absolute values

LP
. . . . . . _I_
Minimize 2 ¢ |l (¢;>0) Minimize 2 ¢; (X ) (> 0)
jeS jel
S.1. 2 alj > bi for all 1 S. 1. Z azj (X]+ ) > bi for all 1
jEJS jeS
is free for all j X', 2 0forally
e Replace byxj+—xj_, wherex;r > 0andx; > 0= | |=xj++xj_

e In the optimal solution to LP, at least one of xj+ and X; is O for each j (otherwise, the corresponding constraints is still satisfied

when both x].+ and x;” are reduced by min{x;r, x:”} and so does the objective, which contradicts to the optimality of xj+ and x;")
® in this case, the optimal solutions of the two LPs are the same:

=)c].Jr when 1, > 0; v, = —x~ when x;, <0
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Absolute values

LP
Minimize ) ¢ || (¢;> 0) Minimize ) ¢;( +x7)  (¢;>0)
jeS jel
s.t. Z a;; x; 2 b;forall i s. t. Z a;(+ —x;) 2 b;foralli
jes jeS
is free for all j x; 2 Qforally
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Absolute values

e Replace the variable x who’s absolute value is considered by x™ — x
e xT is the amount of positive part, and x~ the amount of negative part

e The solution’s optimality automatically forces at least one of x™ and
X" beO
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Min-max objective

e Consider the diet choice problem, where each type of nutrient 7 has a
minimum amount needed m; and price p;, and there is an amount of

budget B
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Min-max objective

e Consider the diet choice problem, where each type of nutrient 7 has a
minimum amount needed m; and price p;, and there is an amount of

budget B

® \What happens if we concern about the maximum cost spent on a type
of nutrient?

e Thatis, we want to minimize max{p; - x;} while satisfying the
l

constraints
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Min-max objective

Minimize max ) ¢,
keK

jeT
s. t. Z a;; x; 2 b; forall 7
jel
x;p 20
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Min-max objective

P
Minimize max Z Cri X
kekK ~
jeS
S. t. Za X; > b for all 1
jet
X 2 0

Let z = max E CriX;
¢ keK “ )
jet
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Min-max objective

Minimize max Z Cr. X

k
kekK ~ /o
jet

s. t. Z a;; x; 2 b; for all
jel
L >
X 2 0
Let 7 = max C:X:
® kek Z Y
jet

. That is, should not be larger than 7
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Min-max objective

»
Minimize max ) ¢,
] "
kek “
jet
. t. Za X; > b for all 1
jet
. >
X 2 0
. Let 27 = IIIClEaI? Z CriXi
jeJ
. That is, should not be larger than 7

® Then, we only need to minimize 7
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Min-max objective

P LP
Co. . Minimize 7
Minimize max Z Cri X
keK e stZax>bforaIll
jeJ
s. t. Za X; > b for all 1
<Z
jet
X; > () x; > 0 for all j

Let z = max E CriX;
¢ keK “ )
jet

. That is, should not be larger than 7

® Then, we only need to minimize 7
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Min-max objective

® |ntroduce a new variable z that represents the maximum value of the
targeted variable x

e Relate z with all the possible value of the targeted variable x by
restricting x < Zin any case
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Discontinuous-values variables

® Consider that you are a manager of a store and need to manage the
amount of items in the store so the items are always available

e However, the provider of item x has a range-constraint on every
purchase: whenever you buy item x, the amount must be in [£, u]

e Thatis, x=0or? <x<u

46



Discontinuous-values variables

Minimize Z C; X; Minimize Z C; X;
jel jeJ
S. t. S. t.
v =0or/<x<uVjeJ x; <u-y; forallj € J

x;2¢ -y foralljeJ
v, € {0,1} forallj € J’

e Introduce a binary indicator variable y; € {0,1} (hope: y; = 0ifx; = Oand y;, = L'ifx; > 0)

o Observation:x; <u-y;andx; > 7 - y;whethery, =0ory, =1
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Discontinuous-values variables

e Introduce a binary indicator variable y
e Hopefully, the value of y indicates different scenarios of choice of x

e Need to relate the value of y and the value of x
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Facility Location

® \When the objective value is discontinuous
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Facility Location

e Given a set of potential depots N = {1,---,n} andaset M = {1,---,m} of clients, suppose that
the use of depot j associates with a fixed cost f;, and there is a transportation cost ¢;; if one unit of

the demand of client i is served by depot j. The problem is to decide which depots to open, and
which depot serves each client so as to minimize the sum of the fixed and transportation cost
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| /i /2 /3 fa
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Facility Location

e Given a set of potential depots N = {1,---,n} andaset M = {1,---,m} of clients, suppose that
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depots j
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e Given a set of potential depots N = {1,---,n} andaset M = {1,---,m} of clients, suppose that
the use of depot j associates with a fixed costjj-, and there is a transportation cost Cjj if one unit of

the demand of client i is served by depot j. The problem is to decide which depots to open, and
which depot serves each client so as to minimize the sum of the fixed and transportation cost
1 2 3 4

RO

cost =ﬂ +‘f2 T Cll —+ C22 —+ C31 —+ C41 —+ C52
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Facility Location

e Given a set of potential depots N = {1,---,n} andaset M = {1,---,m} of clients, suppose that
the use of depot j associates with a fixed costjj-, and there is a transportation cost Cjj if one unit of

the demand of client i is served by depot j. The problem is to decide which depots to open, and
which depot serves each client so as to minimize the sum of the fixed and transportation cost

|
depots j

clients 1

cost =]C3 —+ C13 + C23 —+ C33 -
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Facility Location
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Facility Location
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Facility Location
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Facility Location

e Given a set of potential depots N = {1,---,n} andaset M = {1,---,m} of clients, suppose that
the use of depot j associates with a fixed cost]} and there is a transportation cost Cjj if one unit of

the demand of client i is served by depot j. The problem is to decide which depots to open, and
which depot serves each client so as to minimize the sum of the fixed and transportation cost

1 N

depots j

x;; < y;foralliandj



Facility Location

® \ariables:

o Forevery depotj, the variable y; = 1 if j is used, and y; = () otherwise

o x; = lif the demand of client i satisfied from depot j, and x;; = O otherwise

. . o m n
o Minimize 2., f;y; + 22 2 C;iX;;

subject to Z;’:lxl.j = 1fori=1,--,m

2 X;; < my; forj=1,---,n

x; 2 0fori=Lee,m,j=1,-n

y; € {0,1} forj = 1,---,n

006
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Fixed cost

Minimize F(x) Minimize ky + cx
S.t. Zaw>bforallz stZaw>bforaIlz
jeJ JeJ
x>0 x < uy
w; > 0 forall j x>0
e where F(x) = 0forx =0, and w; 2 Oforally

Fx)=k+ cxforx >0 vy € 10,1}

e Introduce a binary indicator variable y € {0,1} (y =0forx =0,and y = 1 forx > 0)

e Relate y and the objective function in different choices of x
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Tips

e Use a binary indicator variabley € {0,1} (y=0forx=0,andy = 1
for x > 0) to indicate the objective value under different choices of x
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Lot-SizIng

e On day ¢, there is a demand of d,, a fixed producing cost of f,, a production cost of p,

per unit of production, and storage cost of A, per unit of production. The problem is
to decide on a production plan for an n-day horizon for a single product.
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e Ondayt, thereisa , a fixed producing cost of f,, a production cost of p,

per unit of production, and storage cost of A, per unit of production. The problem is
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Lot-SizIng

e Ondayt, thereisa , a fixed producing cost of f,, a production cost of p,

per unit of production, and storage cost of &, per unit of production. The problem is
to decide on a production plan for an n-day horizon for a single product.

storage cost =I- h,
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produced oanay |
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izing

d producing cost of f,, a production cost of p,

e Ondayf, therc]z ¥
d

per unit of pr of h, per unit of production. The problem is

C
to decide on a pto on plan fo -day horizon for a single product.

Every day, there should
be enough (from
production and saving) so
the demand is satisfied

s,: the stock
at the end of day ¢

v

X,: the amount of

x,+(s,_; —s,)=d, forall t

production on day ¢

Correlation of y, and x;:

nin Z1_, ppy+ 1 s+ o Y f,=0,),=0
. . . . " ifx, >0,y =1
fixed cost (if produced) f; f, v, = lif production occurs on day 1 ;
roduction cost x, <y 2" dforallt
P storage cost P1 h, P> h, 87 t =Vt “=1"




Lot-SizIng

® \ariables:

e X.:the amount produced on day ¢

e 5.:the stock at the end of day 7
e y, = | if production occurs on day ¢, and y, = O otherwise
e minimize X px,+2_ hs,+ 2 |y
subjectto  x,+(s,_; —s,) =d,fort =1,---,n
X, <y -2 _dfort=1,-,n
SO — O
s,x, > 0fort=1,---,n

Y € 10,1}
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Outline

e \Warm up: Minimum spanning tree
® Tricks:
® Range constraints
® Absolute value objective
® Min-max objective
® Discontinuous-values variables
® Fixed-cost objective
e Facility location
® |ot-sizing
® Or and conditional conditions

® Solving ILP: Cutting plane
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Different formulations of Facility Location

® \ariables:

o Forevery depotj, the variable y; = 1 if j is used, and y; = () otherwise

o x; = lif the demand of client i satisfied from depot j, and x;; = O otherwise

e Minimize Z” Syt 2 12;’ | CiiXis

subject to Z” | X = lfori=1,---,m

2 X; < my;forj =1,

X 2 Ofori=1,---m,j=1,---,n
y; € {0,1} forj = 1,---,n
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Different formulations of Facility Location

® \ariables:

o Forevery depotj, the variable y; = 1 if j is used, and y; = () otherwise
o x; = lif the demand of client i satisfied from depot j, and x;; = O otherwise
o minimize 2., f;y; + 2 2y CjiX;;

x.=1fori=1,---.m

n
=1 "y

subject to ZJ
Xii SV fori=1,--ym,j=1,---,n
Xji 2 Ofori=1,--m,j=1,---,n

y;€{0,1}forj=1,---,n
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Different formulations of Facility Location

® \ariables:

o Forevery depotj, the variable y; = 1 if j is used, and y; = () otherwise

e Xx;; = | if the demand of client i satisfied from depot j, and x;; = () otherwise

] ]
o minimize 2., fiy; + 2 2y C;iX;; o minimize 2., f;y; + 2 2y CjiX;;
subjectto 2._, x;; = 1 forall i subjectto 2._, x;; = 1 forall i
x; < y;foralli,j 2.~ X; < my;forall
x; = Oforalli,j x; 2 Oforalli,j

y; € {0,1} forj y; € {0,1} for
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Different formulations of Facility Location

® \ariables:

o Forevery depotj, the variable y; = 1 if j is used, and y; = () otherwise

e Xx;; = | if the demand of client i satisfied from depot j, and x;; = () otherwise

] ]
o minimize 2., fiy; + 2 2y C;iX;; o minimize 2., f;y; + 2 2y CjiX;;
subjectto 2._, x;; = 1 forall i subjectto 2._, x;; = 1 forall i
x; < y;foralli,j 2.~ X; < my;forall
x; = Oforalli,j x; 2 Oforalli,j

y; € {0,1} forj y; € {0,1} for
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of LP1 is at least as high as the bound of the LP-relaxation of
LP2
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of L P1 is at least as high as the bound of the LP-relaxation of
LP2

. n _ .
subjectto 2.._, x; = 1 forall

x;; < y;forallz, j

x; = Oforalli,j

y; € {0,1} for
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of L P1 is at least as high as the bound of the LP-relaxation of
LP2

. n _ .
subjectto 2.._, x; = 1 forall

if |x; < y;forall

x; = Oforalli,j

y; € {0,1} for
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of L P1 is at least as high as the bound of the LP-relaxation of
LP2

subjectto 2._, x;; = 1 forall i
X1; <

if xl:]' S y] for all l,] ij < y]

x; = Oforalli,j X3 S

y;€{0,1}forj & <y

mj —
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of L P1 is at least as high as the bound of the LP-relaxation of
LP2

subjectto 2._, x;; = 1 forall i
X1; <

if xl:]' S y] for all l,] ij < y]

x; = Oforalli,j X3 S

y;€{0,1}forj & <y

mj —
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Different formulations of Facility Location

® Theorem: The lower bound on the optimum value obtained from the LP-

relaxation of L P1 is at least as high as the bound of the LP-relaxation of
LP2

. n _ .
subjectto 2.._, x; = 1 forall

if |x; < y;forall

x; = Oforalli,j

y; € {0,1} for
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Different formula f Facility Location

value obtained from the LP-
ound of the LP-relaxation of

® Theorem: The lower bo

relaxation of LP1 is at leas
LP2

. n _ .
subjectto 2.._, x; = 1 forall

if |x; < y;forall

x; = Oforalli,j

y; € {0,1} for
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Different formula f Facility Location

value obtained from the LP-
ound of the LP-relaxation of

® Theorem: The lower bo

relaxation of LP1 is at leas
LP2

. n _ .
subjectto 2.._, x; = 1 forall

if |x; < y;forall

x; = Oforalli,j

y; € {0,1} for
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Different formula f Facility Location

value obtained from the LP-
ound of the LP-relaxation of

® Theorem: The lower bo

relaxation of LP1 is at leas
LP2

. n _ .
subjectto 2.._, x; = 1 forall

if |x; < y;forall

x; = Oforalli,j

y; € {0,1} for
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Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

ldeal formulation
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program

o 9 o o
o ~ | o o
: : . )
\
el e . \ o
—_—
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program

o o o o
o . o o
. . o
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Example 1: adding constraints

Minimize Xl —+ X2 —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
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Example 1: adding constraints

Minimize Xl —+ X2 —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i

o |f XZ:.X4:O:
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Example 1: adding constraints

Minimize Xl —+ XZ —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i

o |f Xz — X4 — O:
3X1 +2.X3 + ’XS — 3X1 +2X3 —+ XS Z 0
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Example 1: adding constraints

Minimize Xl —+ XZ —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
o If X2:X420:
3X1 +2.X3 —+ ’XS = 3X1 +2X3 —+ XS Z O

o It'simpossible that 3x; —4x, +2x; —3x, + x5 < — 2
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Example 1: adding constraints

Minimize x; + X, + X35 + X4 + X5
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
o If x,=x,=0:
3x, +2x; + X5 = 3x; +2x3 + x5 > 0
o It'simpossible that 3x; —4x, +2x; —3x, + x5 < — 2

e That s, in any feasible solution, it cannot be the case that x, =x, =0
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Example 1: adding constraints

Minimize x; + X, + X35 + X4 + X5
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
o If x,=x,=0:
3x, +2x; + X5 = 3x; +2x3 + x5 > 0
o It'simpossible that 3x; —4x, +2x; —3x, + x5 < — 2
e That s, in any feasible solution, it cannot be the case that x, =x, =0

= add a constraint that forbidden this condition: x, + x, > 1
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Example 1: adding constraints

Minimize Xl —+ XZ —+ X3 —+ X4 —+ xs

s. t.3x; —4x, +2x —3x, + x5 < — 2
Xy +x, 21

x. € 10,1} foralli
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Example 2: adding constraints

Minimize Xl —+ X2 —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i

o If x;=1andx,=0:
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Example 2: adding constraints

Minimize Xl —+ XZ —+ X3 —+ X4 —+ xs
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i

o |f and x, = 0:
— 4005 +2x =3x, + x5 =5—04+2x%, —3x,+x2>2—-04+0-34+0=0
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Minimize Xl + XZ + X3 + X4 + xs
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Example 2: adding constraints

Minimize x; + X, + X35 + X4 + X5
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
o If and x, = 0:
— 4005 +2x =3x, + x5 =5—04+2x%, —3x,+x2>2—-04+0-34+0=0
o It'simpossible that 3x; —4x, +2x; —3x, + x5 < — 2

e That s, in any feasible solution, it cannot be the case that x;, = 1 and x, =0
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Example 2: adding constraints

Minimize x; + X, + X35 + X4 + X5
s. t.3x; —4x, +2x —3x, + x5 < — 2
x: € {0,1} forall i
o If and x, = 0:
— 4005 +2x =3x, + x5 =5—04+2x%, —3x,+x2>2—-04+0-34+0=0
o It'simpossible that 3x; —4x, +2x; —3x, + x5 < — 2
e That s, in any feasible solution, it cannot be the case that x;, = 1 and x, =0

= add a constraint that forbidden this condition: x; < X,
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Example 1: adding constraints

Minimize Xl —+ XZ —+ X3 —+ X4 —+ xs

s. t.3x; —4x, +2x —3x, + x5 < — 2
Xy +x, 21

X1 < X,

x. € {0,1} forall i
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Example 3: adding constraints

Minimize Z ¢ %, e All feasible solutions satisfy:
1eEM,JEN ® xl] S b] y]
1. < D;y:.foryj
stiezMxl]_b]y] orJEN ‘xzjgai
injzal-foriEM With)’je 10,1}
jeEN

x;>0andy; € {0,1} = x; <min{a;, b;}- y;
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Example 4: adding constraints

Minimize Xl -+ X2 -+ X3 -+ X4

s. t. 13x; +20x, +11x3 +6x, > 72

x; € Nforallz
e Divide both sides of the constraint by 11:
13 20 6 72
Hxl +HX2 + X3 +HX4 Z H
o Sincex; € N, 2x; +2x, +x;3 +x, > Exl +§x2 + X5 +ix4 > 2 —6.-.-
11 11 11 11

o Sincex; € N, 2x; +2x%, +x3+x, =7
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program

124



Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program

125



Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program:

o o o o
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program:
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Cutting Plane

® Sometimes, by , the integer linear program might be
more effective to solve

® These added constraints should not rule out any feasible solutions to
the original integer linedr program:
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Cutting Planes

® By adding constraints, the solution to relaxed LP might be closer to the
solution to the ILP

® Need to make sure that no feasible integral solution is ruled out by
the new constraints
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Or constraints

® Recall that in a linear program, every constraint should be satisfied

® \What happens if you only need (at least) one of two conditions to be
true?
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Or constraints

Minimize Z C; X; Minimize 2 C; X;
jel jel
st. Y ay;x < by (1) st. ) ayx;, <b +M, -y (1%)
jel jel
Y ayx < b, (2) Y ayx; < by+ M, (1-y) (2%)
jel jel
x; 2 O forallj x; 2 O forallj
e where at least one of (1) and (2) is true y € 10,1}

e Introduce y € {0,]} and large enough M, and M, to indicate if one condition is true
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Or constraints

Minimize Z C; X; Minimize 2 C; X;
jel jel
st. Y ay;x < by (1) st. ) ayx;, <b +M, -y (1%)
jel jel
Y ayx < b, (2) Y ayx; < by+ M, (1-y) (2%)
jel jel
x; 2 O forallj x; 2 O forallj
e where at least one of (1) and (2) is true y € 10,1}

e Introduce y € {0,]} and large enough M, and M, to indicate if one condition is true

o If y=20,(1*)=(1), and (2*) is more relaxed than (2) = a solution must satisfy (1) but may not satisfy (2)
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Or constraints

Minimize Z C; X; Minimize 2 C; X;
jel jel
st. Y ay;x < by (1) st. ) ayx;, <b +M, -y (1%)
jel jel
Y ayx < b, (2) Y ayx; < by+ M, (1-y) (2%)
jel jel
x; 2 O forallj x; 2 O forallj
e where at least one of (1) and (2) is true y € 10,1}

e Introduce y € {0,]} and large enough M, and M, to indicate if one condition is true
o If y=20,(1*)=(1), and (2*) is more relaxed than (2) = a solution must satisfy (1) but may not satisfy (2)

e The case where y = 1 is symmetrical
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Or constraints

e Use an indicator variable y again

e But this time, use y to restrict one condition and relax the other one,
so it is not necessary that both the conditions are true
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Conditional constraints

® Recall that in a linear program, every constraint should be satisfied

e \What happens if we need condition (2) also be true if condition (1) is
true?
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Conditional constraints

D a;x <b (1)

jel

D ayx; < b, (2)

jel
e if condition (1) is satisfied, then (2) must
also be satisfied

P Q IfPthenQ %notP%notPorQ

o |f Pthen O & notPor(Q e o IO R MOTTNOTTOTM

T - F

........................................................................................................................................................

........................................................................................................................................................
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Conditional constraints

D a;x <b (1)
iel
D ayx; < b, (2)
jes

e if condition (1) is satisfied, then (2) must
also be satisfied

o fPthenQ < notPorQ P | Q| rPthend not PinotPor G
TF_F F_F
T
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Conditional constraints

> ayy < b (1) et
jel

D ayx; < b, (2)

jes

e if condition (1) is satisfied, then (2) must
also be satisfied

o fPthenQ < notPorQ P | Q| rPthend not PinotPor G
TF_F F_F
T
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Conditional constraints

Z a,j X; < by (1)
jel
Not (1):
D ayx; < b, (2)
jel
e if condition (1) is satisfied, then (2) must
also be satisfied
o f PthenQ < notPorQ P Q ______ | fPt?GHQ.notP.notiorQ
TFL L F O F R
____________________________________________________________________________ LI
T
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Conditional constraints

Z a,j X; < by (1)
jel
Not (1):
Z ay; X; < by (2)
jeJ or (2):
e if condition (1) is satisfied, then (2) must —M;-y

also be satisfied

jel
e fPthenQ < notPorQ Pla | fP?enQ.notP.notPTorQ
| _F ¢ F
___________________________________________________________________________ L
T
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Conditional constraints

® An application for the “or condition” method

e [f Pthen O < notPor(

e Use +& where € is very small to deal with the strict inequality
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It’s obvious

— by Abstruse Goose

1 THINK WE'RE NO, WE'RE
SUPPOSED TO SUPPOSEP
TURN LEFT TO TURN
HERE.,

ANY OTHER BRIGHT IDEAS?

HEY, WHY ARE YOU TURN-
ING? WE'RE SUPPOSED TO
GO STRAIGHT,

OK, MAYBE
YOU WERE
RIGHT,

NOW I'M POS- ARE
ITIVE WE MAKE YouU
A LEFT HERE. SURE?

NICE WORK,
EINSTEIN,

years later I

LOOKt THERE
IT IS! WE
MADE IT ?

YAY! QUICK, WRITE
DOWN THE DIRECTIONS
BEFORE WE FORGET !

From A
Turn left on Ricci Street

Turn right on Hamilton Ave

B is on your left

144

This is how most mathematical
proofs are written.



