Algorithms for Decision Support

Online Algorithms (3/3)

Problem lower bound and optimal online algorithms

Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

Competitive Ratios

® An algorithm ALG is c-competitive if

. ALG(/) S
for all instance [, < ¢ (minimization)
OPT(/)
® Show that ALG is at most c-competitive (upper bound):
| ALG(]) x
Claim that for any I, ALG(/) < xand OPT(/) > y, hence, <—<c
OPT(/) vy

e Show that ALG is at least d-competitive (lower bound):
ALG(/")

OPT(I)

> (]

Find an instance I’ such that

4

Recap: Online Optimization

An online
problem

Recap: Online Optimization

Design an online
algorithm ALG

An online

problem

Recap: Online Optimization

Design an online

algorithm ALG
Show that ALG is at

. least d-competitive
An online P

problem

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains

. least d-competitive a competitive ratio ¢
An online

problem

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains

. least d-competitive a competitive ratio ¢
An online . .

problem

§~* "4
c=d?

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
least d-competitive a competitive ratio ¢

N~ 4
N~ 4
N 4
N~ \ 4
N 4
4 \ 4

c=d?

g

The analysis of ALG is tight

An online

problem

10

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
. least d-competitive a competitive ratio ¢
An online .. -
prOblem ~~~~~ ’¢¢"
% &x
c=d?

g

The analysis of ALG is tight

11

Problem Competitive Ratio Lower Bound

® Recall that for any algorithm, we can prove that its competitive ratio has
a lower bound (by designing an adversarial input against it)

12

Problem Competitive Ratio Lower Bound

® Recall that for any algorithm, we can prove that its competitive ratio has
a lower bound (by designing an adversarial input against it)

® By designing adversarial instances, one can prove that for a problem,
there is a performance for all online algorithm. That is,
any (deterministic) online algorithm is at least / -competitive.

13

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

> L
OPT(Z;)

14

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

> L
OPT(Z;)

ALG

15

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

ALG (I,
(£;) o7

OPT(l)

ALG

16

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

> L
OPT(Z;)

ALG

17

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

ALG (I,
(£;) o7

OPT(Ii) in_stance [
)

ALG

ALG,

18

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

> L
OPT(Z;)

AlLGI——@—@ 909090 0 €080 @ — 7

ALG,—————@0—00 900 9 ——©@

ALG,——@—@@—@ @ —80—@— 7Y

19

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

> L
OPT(Z;)

AlGI—@9—@ 900 @ 0 98— @

ALG, ————80—0— 0000 —6

ALG, —@0—0 @ —9 @ —— @00 ——

20

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

>
OPT(Z;)

AlGI—9—@ @90 @ 0 & @ ————

AlG, ——0—00 099 ——©@

ALG, —@0—@@®—@® @ —o @ —— 7 —

21

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

>
OPT(Z;)

AlGI—9—@ @90 @ 0 & @ ————

ALG,——@0—00 09 9 ——©

AG,——990—8—80—0—e—————————————

For any algorithm, there is a ball on the right of the

22

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

— 2>
OPT(Z;)

AlGI—9—@ @90 @ 0 & @ ————

ALG, ————@—0—00 99 —©@

ALG, —@0—@@®—@® @ —¢o @ —— 77—

For any algorithm, there is a ball on the right of the

. <> For any algorithm, the competitive ratio is at least

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

— 2>
OPT(Z;)

AlLGI——9O—09 99 0 08— @ — 7 —

ALGr——————0—90 90— 90— 90 —6

AG,—O0—090—090—e0—0————————————

For any algorithm, there is a ball on the right of the

i <> For any algorithm, the competitive ratio is at least
4

Problem Competitive Ratio Lower Bound

e Formally, we prove that for any online algorithm ALG;, there exists an
instance /; such that

— 2
OPT(Z;)

ALGi ——@— 0090 —9-

For any algorithm, there is a ball on the right of the
<> For any algorithm, the competitive ratio is at least

25

Problem Competitive Ratio Lower Bound

e For any algorithm, there is a ball at or on the right of the
< For any algorithm, the competitive ratio is at least

ALGI —@— 0990 —9

20

Problem Competitive Ratio Lower Bound

e For any algorithm, there is a ball at or on the right of the
< For any algorithm, the competitive ratio is at least

e |f there is an algorithm that is /.-competitive, it is the best online
algorithm

ALG ——@— 00 —0—90—
ALG —————@—0—0—0 90—

ALG, — @—@—0—0—0—

No online algorithm can have a competitive ratio smaller than
27

What Happened

® |f you find a way to design (a series of) instances such that for any online
algorithm, the ratio between its cost and the optimal cost is at least L,
you show that no online algorithm can be better than L-competitive

® |n this case, if you have an online algorithm which is at most L
-competitive, it is the best (optimal) online algorithm for this problem

ALG
ALG,

28

Competitive Ratios

® An algorithm ALG is c-competitive if

. ALG(1) .
for all instance /, < ¢ (minimization)
OPT(/)
e Show that ALG is at most c-competitive (upper bound):
| ALG(I) x
Claim that for any I, ALG(/) < x and OPT(/) > y, hence, <—X<c
OPT(/) vy
e Show that ALG is at least d-competitive (lower bound):
. . , ALG(]")
Find an instance I’ such that > d
OPT(/")
e Show that no algorithm can be better than d-competitive:
. . . . ALG;(I')
Find each possible algorithm ALG; an instance /; such that > d

OPT(/")

29

Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

30

31

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

32

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

<Proof |Idea>

Any online algorithm must buy the ski on some day.

33

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

<Proof |Idea>

Any online algorithm must buy the ski on some day.
Assume that algorithm ALG,, buys the ski on the k-th skiing day, we design the

adversarial input [, that there are exactly & skiing days.

34

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

<Proof |Idea>

Any online algorithm must buy the ski on some day.
Assume that algorithm ALG,, buys the ski on the k-th skiing day, we design the

adversarial input [, that there are exactly k skiing days.

ALG(1}) 1 .
As long as we can prove that —— > 2 — — for all k, the theorem is proven.
OPT(/,) b

35

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

<Proof> Consider ALG, and /. Since [, is the instance with exactly k skiing days. The
cost of algorithm ALGy on instance [, is (k — 1) + B, while the optimal cost is
min{ B, k}.

e |f kK > B, the optimal cost is B and the ratio
ALG.(],) B (k—1)+ B S (B—1)+B _5 |

OPTW(I,) B N B B

36

Ski-Rental Problem Lower Bound

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

<Proof> Consider ALG; and [,. Since [is the instance with exactly k skiing days. The
cost of algorithm ALG, on instance [is (k — 1) + B, while the optimal cost is
min{ B, k}.

ALGk(Ik) - (k— 1)+ B

— = . The ratio decreases as k increases.
OPT.(/}) k

o |fk < B, the ratio

" (B-1)+B _
Hence, the ratio is lower bounded by T sincek < B

37

Ski-Rental Problem Lower Bound

ALGL(],)

OPT(/)

ALG1 ALG3 ALGp ALG,,

1 2 B-1 B n n+l
ALG» ALGp_ s ALG,,

Ski-Rental Problem Lower Bound

ALGy(Z,)
OPT(/y)
ALG(/ B
5| 2 1) = — where [is the instance with exactly 1 skiing days
f OPT(/)) 1
ALG| ALG; ALGp ALGy41
1 2 B-1 B n n+l

ALG» ALGp_ g9 ALG,,

Ski-Rental Problem Lower Bound

ALG(I})
OPT(1})
= where [, is the instance with exactly 2 skiing days
OPT(/,) 2
l+B /
2

1 2 B-1 B

40

Ski-Rental Problem Lower Bound

ALGy(1)
OPT(/,)
= where 5 is the instance with exactly 3 skiing days
OPT(/;) 3
2+8| ./
3
1 2 B-1 B

41

Ski-Rental Problem Lower Bound

ALGy(1)
OPT(/,)
= where [, is the instance with exactly 4 skiing days
OPT(ly) 4
3 + B ...
4
. B-1 B

42

Ski-Rental Problem Lower Bound

ALGL(],)

OPT(/)

ALGB—I(IB—I) . B — 2 + B
OPT(lz.,) B-1

1 2 B8-1 B

43

Ski-Rental Problem Lower Bound

ALGL(],)

oPT(l,)
OPT(I;) B
2B B 1 ...
B
1 2 -1 B

44

Ski-Rental Problem Lower Bound

ALGL(],)

OPT(I,)
ALG, (1) ~n—1+8B
OPT(I) B
—1+B }
.. ‘
B
1 2 B-1 B A

ALGL(],)

Ski-Rental Problem Lower Bound

OPT(Ik)
B
(k—1)+B
k
(k—1)+B
B
1
2__ ..
B
— k
1 2 B-1 B N

46

What Happened

® \We argue that any deterministic algorithm must buy the ski on some day

e For any algorithm that buys the ski on the k-th day, we design an
corresponding adversary which has exactly k skiing days

e The case where k = B — 1 has the smallest ratio between the

1

algorithm cost and the optimal cost, which gives a ratio of 2 — E

® That is, for any algorithm, there is an instance making its

1

competitive ratio’s lower bound at least 2 — E

47

Optimal Online Algorithms

ALG: Buy the ski on the B-th skiing day

e Theorem: For the Buy-or-Rent problem, algorithm ALG is

2 — —)-competitive.
(B) p

® Theorem: For the Buy-or-Rent problem, there is no deterministic online

algorithm better than (2 — E)-competitive.

e Corollary: ALG is an optimal online algorithm

® |f an online algorithm attains the competitive ratio which matches the problem
competitive ratio lower bound, the algorithm is an optimal online algorithm

48

Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

49

50

<Proof idea>
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance.

<Proof idea>
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 | 1 1 1
__61__61°";__€1_+€;_+€)”°)_+€
2 2 2 2

m m

<Proof idea> Assume ALG is (4/3-€)-competitive
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1
— —€,——€,,——€

m 2 2 2

2 m

Any deterministic online algorithm
is at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1
__6’_—6’...’——6

m 2 2 2
OPT(/) = — *
2
4
3

m
ALG(/) < =

Any deterministic online algorithm
is at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1
__6’_—6’...’——6

m 2 2 2
OPT(/) = — *
2
4
3

m 2
ALG(I) ?=§m

<Proof idea> Assume ALG is (4/3-€)-competitive
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

m
OPT(/) = —
2
4 m 2
ALG(/) < —+-—=—-m
3 2 3
=a1+d2

ai: #bins wit

a,: #bins wit

Any deterministic online algorithm
s at least 1.333-competitive

n 1item in ALG(/)

n 2 items in ALG(/)

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1
- 5—6,5—6,“',5—6
OPT(/) = — *
2
4 m 2
ALG(/) < —+—=—-m
3 2 3

ALG(/) =a; + a,

a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/)
m=a, +2a,

There are m items

58

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1
- 5—6,5—6,“',5—6
OPT(/) = — *
2
4 m 2
ALG(/) < —+—=—-m
3 2 3

ALG(/)=a; +a,=m — a,
a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)
m=ay+2a,

59

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPT(/) =— —_—
2 m
4 m 2
ALG(/) < —-—=—-m
3 2 3

ALG(/)=a; +a,=m — a,
a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)
m=ay+2a,

60

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
- 2 2 P
OPT(/) = — _\,_J*
2 m
4 m 2
ALG(/) < —-—=—-m
3 2 3

ALG(/)=a; +a,=m — a,
a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)
m=ay+2a,

o1

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

| 1 | 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPT(D:E 7 R OPT(+)=m
4 m 2
ALG(/) < —+-—=—-m
3 2 3

ALG(/)=a; +a,=m — a,
a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)
m=ay+2a,

62

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) == T 7 R OPT(/+))=m
4 m 2 _
ALG(I)<§?=§m ALG(I+I)—CZ1+CZ2+X

ALG(/)=a; +a,=m — a,
a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)
m=ay+2a,

63

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) == T 7 R OPT(/+))=m
4 m 2 -
ALG(I)<__=_m ALG(I+I)—CZ1+CZ2+X
3 2 3 X

ALG(/)=a; +a,=m — a,

a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)

m=ay+2a, a4

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) == T 7 R OPT(/+))=m
4 m 2 _
ALG(I)<__=_m ALG(I+I)—a1+a2+XZCl2+m
3 2 3 X

ALG(/)=a; +a,=m — a,

a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)

m=ay+2a, a5

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) == ‘—"_"* OPT(I+I)
4 m 2

ALG(/)=a; +a,=m — a,

a,: #bins with 1 item in ALG(/)

a,: #bins with 2 items in ALG(/)

m=ay+2a, a6

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPT(D:E 7 R OPT(+)=m
ALG(I)<iﬁ=2m ALG(I+I)=a1+a2+XZCl2+m
3 2 3 A
ALG(/)=a; +a,=m — a, ALG(/+]) < g - OPT(/+/)

a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/)
m=ay+2a,

6/

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPT(D:E 7 R OPT(+)=m
ALG(I)<iﬁ=2m ALG(I+I)=a1+a2+XZCl2+m
3 2 3 A A
ALG(/)=a;+a,=m — a, ALG(/+]) < 3 OPT(/+]) = 3 m

a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/)
m=ay+2a,

63

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPT(I)zE 7 R OPT(+)=m
ALG(I)<iﬁ=2m ALG(I+I)=a1+Cl2+de2+m
3 2 3 A A
ALG(/)=a;+a,=m — a, ALG(/+]) < 3 OPT(/+]) = 3 m

a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/)
m=ay+2a,

69

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) = 9 7 R OPT(+)=m
4 m 2 ~
ALG(I)<__=_m ALG(I+I)—a1+Cl2+de2+m
3 2 3 A A
ALG(/)=a; +a,=m — a, ALG(/+]) < g - OPT(/+]) = g - m
a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/) a < ﬁ

m=a1+2a2 70 3

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) = 9 7 R OPT(+)=m
4 m 2 ~
ALG(I)<__=_m ALG(I+I)—a1+Cl2+de2+m
3 2 3 A A
ALG(/)=a; +a,=m — a, ALG(/+]) < g - OPT(/+]) = g - m
a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/) a, < ﬁ ALG(I) =m—a,

m=a,+2a, - 3

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 1 1 1 1 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
m 2 2 2
OPTU) = 9 7 R OPT(+)=m
4 m 2 ~
ALG(I)<__=_m ALG(I+I)—a1+Cl2+de2+m
3 2 3 A A
ALG(/)=a; +a,=m — a, ALG(/+]) < g - OPT(/+]) = g - m
a,: #bins with 1 item in ALG(/)
a,: #bins with 2 items in ALG(/) m 2

) <— <= ALG(/)=m—a,>—-m
m:a1+2a2 72 3 3

Any deterministic online algorithm
s at least 1.333-competitive

<Proof idea> Assume ALG is (4/3-€)-competitive
Prove by contradiction: design an instance such that any algorithm ALG that is (4/3-

¢)-competitive for the first half of the instance, it cannot be (4/3-¢)-competitive for
the whole instance. Consider the adversarial input:

1 11 1
— =€, — =€, ——€¢—F€ —TE€,,—FE€
" 2 2 2
OPTU) == 4 OPT(/+]) -

ALG(I‘l'I) =dq +Cl2+x2d2+m

4 4
ALG(/)=a; +a,=m — &5 - ALG(/+]) <§ - OPT(/+/) =§ - m

a,: #bins with 1 item in ALG(/) Contradiction! \”N :
a,: #bins with 2 items in ALG(/) o< 2 ALG(T) = 1 — s 2oml
m=ay; +2a, . 3 :

What Happened

|
e We first release m jobs, each with a size of 5 — €
e L 2 .
e FOr any algorithm, if it put these jobs in more than g - m bins, the adversary stops, and the
o 4 »
algorithm is at least g-compehhve
. . 2 . . .
e Otherwise, if an algorithm uses at most g - m bins for these jobs, we release another m jobs
L 1
with size of — + €
2
. . 4 - L 2 .
e Ihis algorithm must uses more than g - m bins in total since it uses at most g - m bins for

the first batch of jobs

4

Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

lge

/0

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k

’r’

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1,2, 3, ---, k, k+ 1.

/3

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k].

1 2 31, K

79

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page
I € [1,k]. Then, the adversary requests page 1.

1 i 31, K

80

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k]. Then, the adversary requests page i. The adversary repeatedly requests the
page evicted by ALG for n — 1 rounds.

1 2 31, K

31

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k]. Then, the adversary requests page i. The adversary repeatedly requests the
page evicted by ALG for n — 1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + .

82

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k]. Then, the adversary requests page i. The adversary repeatedly requests the
page evicted by ALG for n — 1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + .

Because there are only kK + 1 pages involved, OPT incurs at most 1 page fault per k pages.

83

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k]. Then, the adversary requests page i. The adversary repeatedly requests the
page evicted by ALG for n — 1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + .

Because there are only kK + 1 pages involved, OPT incurs at most 1 page fault per k pages.

Even when every page requests
ALG(/) k+n . .
Therefore, Z ~ Q(k) change dramatically, the optimal |
OPT(I) k + n/k solution can keep the k pages that will

be used in the most recent future and
evict the one that will be used later.

34

Paging Problem is at least k-competitive

<Proof idea>

Assume that the cache size is k. Consider any algorithm ALG and design the adversary as
follows: First request pages 1, 2, 3, ---, k, kK + 1. At this moment, ALG evicts a page

1 € [1,k]. Then, the adversary requests page i. The adversary repeatedly requests the
page evicted by ALG for n — 1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + .

Because there are only kK + 1 pages involved, OPT incurs at most 1 page fault per k pages.

ALG(]) S k+n
OPT(]) k+nl/k

Therefore,

~ Q(k)

85

What Happened

® For any paging algorithm, the next page the adversary request is the
page that was just evicted by the algorithm

e The algorithm incurs k + n page faults (kK + n: number of requests)

e For any sequence of k distinct requests, the optimal solution can
always evict the page that will be used again the latest in the future

n
. OPT§k+Z

86

Recap: Online Optimization

An online
problem

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains

. least d-competitive a competitive ratio ¢
An online . .

problem

§~* "4
c=d?

83

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
least d-competitive a competitive ratio ¢

N~ 4
N~ 4
N 4
N~ \ 4
N 4
4 \ 4

c=d?

g

The analysis of ALG is tight

An online

problem

89

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
. least d-competitive a competitive ratio ¢
An online .. -
prOblem ~~~~~ ’¢¢"
% &x
c=d?

g

The analysis of ALG is tight

90

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
least d-competitive a competitive ratio ¢

N~ 4
N 4
N~ \ 4

An online

problem

c =d?

g

The analysis of ALG is tight

Show that for this problem there is no
algorithm better than £-competitive

91

An online

problem

Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
least d-competitive a competitive ratio ¢
~~~* "” ) ‘e
c=d?

/@/ ‘sA
— 77
The analysis of ALG is tight c=1

’I
—’
-
—’
-
-
-
-
-

Show that for this problem there is no
algorithm better than £-competitive

92



Recap: Online Optimization

Design an online
algorithm ALG

4 N

Show that ALG is at Prove that ALG attains
. least d-competitive a competitive ratio ¢
An online .. - .
problem
% y 4 R
c=d?

2/1}/ ~2:f?

The analysis of ALGistighty .- >
Show that for this problem there is no @
algorithm better than £-competitive ALG is an optimal

03 online algorithm



Recap: Online Optimization

Design an online
algorithm ALG

[ N

- Show that ALG is at Prove that ALG attains
. least d-competitive a competitive ratio ¢
An online < — - .
problem
A &x .
c =d? RN O

2/1}/ ~2:f?

The analysis of ALG is tighty -~ _..- »
" Show that for this problem there i's'no : @
algorithm better than £-competitive ALG is an optimal

- /

o online algorithm




Recap: Online Optimization

Design an online
algorithm ALG

[ N

"~ Show that ALG is at Prove that ALG attains
. least d-competitive a competitive ratio ¢
An online - N - .
problem
A x %
c =d? R O

2/1}/ ~2:f?

The analysis of ALG is tighty -~ __.- »
" Show that for this problem there i's'no \ @
algorithm better than £-competitive ALG is an optimal

N /

o5 online algorithm




Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

06



List Accessing



List Accessing

® Given alist of £ items

® There is a pointer always starts from the head of the list

® An Access(x) request costs p if the item x is at the p-th position in the list

e After accessing an item x, it is free to move x to any position closer to the
front of the list

® An algorithm can also move an item actively by accessing it and then moving it
forward

® How to serve a sequence o of n Access operations?

98



List Accessing



List Accessing

Access(x)

AN EE .

4

cost=6

100



List Accessing

Access(x)

AR
AL EEEE.

4

cost =3



List Accessing

Access(x)

LlCEEEEEEEEEEEEEEEEEEEEE

It’s free to move the accessed item closer to the front

102



List Accessing

Access(x)

LlCEEEEEEEEEEEEEEEEEEEEE

It’s free to move the accessed item closer to the front

103



List Accessing

Access(x)

PP P PP PP PP

cost=6

It’s free to move the accessed item closer to the front

104



List Accessing

Access(x)

PP P PP PP PP

cost=6

It’s free to move the accessed item closer to the front

105



List Accessing

Access(x)

SENSTEEEE EEEEEEEEEEEEEE

cost=6

A4
SENS  EEE NN EEEEEEEE

Moving away the accessed item with a farther item with extra cost of 4

106



List Accessing

Access 0 =71, I, 1,

HENEEEEEEEEEEEEEEEEE N .

- — >

® ALG: decide whether the accessed item should be moved after accessing

107



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

108



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

109



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

AN

Al PP PP PP PP

110



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

AN NN

Al PP PP PP PP

111



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

AN NN

ol PP PP PP PP

112



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

AN AN

ol PP PP PP PP

113



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

AN AN

ninnl LT PP P PP

114



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

PP PP PP PP

ninnl LT PP P PP

115



Move-to-Front (MTF)

After accessing an i1tem, move to the front of the list

PP PP PP PP

rfnin L PP PP PP

116



|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

<Proof Idea>

1. Using amortized costa, =1, + @, — d._, to measure the cost MTF incurs for accessing r;

e Using a potential function ® to measure how much different MTF is from OPT

, MTF(o) = it,:cbo—cbﬁ iai
=1 =1

2. Showthata, <2 - OPT; —1 forall i

OPT(o) |
3. MTF(o) <2 -0PT(o) —n<2-0PT(o) — y = (2 — ?) - OPT(0)

117



|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

<Proof Idea>

1. Using amortized costa, =1, + @, — d._, to measure the cost MTF incurs for accessing r;

e Using a potential function ® to measure how much different MTF is from OPT

0|V|TF(6)=i=21ti=(D()—(Dn+ izzlai] IVITF(G)S iaisz.igp'ri_l
=1 =1

2. Show that a. < 2 - OPT;—1 foralli J OD. ; O for all i
| 2

OPT(o) |
3. MTF(o) <2 -0PT(o) —n<2-0PT(o) — y = (2 — ?) - OPT(0)

OPI(c) <?¢ -n

118



|
MTF Is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

1. Let Cll- — tl + (I)l — (I)i—l’
e /. is the actual cost that MTF incurs for processing the i-th request

o {.isapotential function, which maps the list configurations of MTF and OPT into

a nonnegative real number just after both algorithms have finished processing the
I-th request

e ®O.:= number of inversions in MTF’s list with respect to OPT’s list
n n
,MTR0) =) ,=0- @, + ) q

119



|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)

HENEN = - ¥ EEEEEEN
.’s+|:|’s
IIIIIIIIIIII H B

If OPT doesn’t mover, ®, — O, , = —




|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)

HENEN = _ ¥ EEEEEEE

MTF; + AD, —k—.’s+|:|’s=k—g+(k—1—g)=2-(k—g)—1§2-OPT,-—1




|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)
ENNEN W I 3 HEEEENE

If OPT moves r away for d positions, ®, — ©,_ — . 's + |:| s+ d




|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)
ENNEN W I 3 HEEEENE

MTF, + A®D. <k—.’s+|:|’s+d—k—g+(k—1—g)+d<2-(k—g+d)—ISZ-OPTi—l




|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)
ENNEN W I 3 HEEEENE

If OPT moves r forward for d positions, @, — O, | < — . 's + |:| 'S




|
MTF is (2 — ?)-competitive

After accessing an i1tem, move to the front of the list

2. Claim:a; <2 -OPT;—1 forall i

k
AEEN B _ 3 DEEEEEEE

k—l=g+(k—1-2)

HENEN = _ ¥ EEEEEEE

MTFi+A(I)iSk— ﬂigﬁ-(k—l—g)zzo(k—g)—lﬁzoOPTi—l

d
IIIIIIIIIIII H B




Potential function method




List Accessing is at least (2 — )-competitive

C+ 1

e Adversary o: given any ALG, always access the last item in its list

o letn=|o|,ALG(0) =7 -n

PP PP PPl g

4

127



List Accessing is at least (2 — )-competitive

C+ 1

£ | static algorithms: first get one of the ! possible permutations of the items using O(£?) paid movings

permutation 1| | | [ | [ Jef ][ ][ )PP
permutation2) | x| | [ ) [ ) [ ) [V [P PP

permutation | | | | | | [ | [ [ [ | [ ] {x [ ][]

When access x, there are (£ — 1)! static algorithms that costs i

¢ n- Y i (Z-1)

Total cost of n requests on all static algorithms =n - Z - (£ —1)! = on average, OPT < )

=1
r + 1
OPT(o) < e + 1) |
128 o

LﬂZ



List Accessing is at least (2 — )-competitive

C+ 1

£ | static algorithms: first get one of the ! possible permutations of the items using O(£?) paid movings

permutation 1| | | [ | [ Jef J [ ][ )PP
permutation2) | x| | [ ) [ ) [ ) [V [P PP

permutation | | | | | | [ | [ [ [ | [ ] {x [ ][]

ALG(o) S 20
OPT(c) ¢ +1

ALG(oc)=¢-n OPT(o) < e+ 1) - £?

129 2



List Accessing is at least (2 — ———)-competitive

C+ 1

e Consider ! static algorithms that never change the order of the list, each starts at one of the £! permutation of £ elements (which

can be formed within at most O(£?) swaps)

£ £
, |ntotal, each Access(r;) costs Z i - (£ — 1)!in all the static algorithm, and the total cost of n accessing = n 2 1-(—1)!

i=1 =1
£ .
n-zizlz-(f—l)!
£
£ .
n-zizll-(f—l)!
£
n-Y i-@-1!
i=1 L

e OPT cannot be worst than that static algorithm and has cost < |

!

o On average, the cost of n accessing on one static algorithm is

e lhereis at least one static algorithm with total cost <

KZ

ALG(0) S £ n i ALG(0) S 26%n , 2
,whenn — o0, > =
e OPT(6)  n-Y_ i (-1 - OPT(o) (£?2+&)n £+ 1
£

130



Bound by average

® A useful technique to get the lower bound of the optimal strategy on the instance
is to set a set of (offline) algorithms

® (Calculate the total cost incurred by these algorithms

® The optimal algorithm must be as good as the average cost

131



Outline

® Problem lower bound and “best” online algorithms
® Ski-rental
® Bin packing
® Paging

® Bounding difference to the optimal solution — potential function

® |ist accessing

® k-server

132



k-Server

e On a metric space (A, d)

133



k-Server

e On a metric space (A, d)

134



k-Server

e On a metric space (A, d)

135



k-Server

e On a metric space (A, d)

db,c) <d(a,b)+ d(a,c)

130



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4

137



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4

e A sequence o of requests, each is a point in ./

133



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4

e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

139



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4

e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

140



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4

e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

141



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

O

O
O

O

142



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

O

O
O

143



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

O

O
O

O

144



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

* .

O

O
O

145



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

"O\

O

146



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

"O\

147



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

148



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

149



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

) g
R .
. s
.
. .
.
.
.
.

5
O

150



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

O O
O

O O

151



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

O O

152



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

153



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

1564



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

155



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

156



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

157



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

158



k-Server

e On a metric space (/,d), there are k servers sitting at some points in .4
e A sequence o of requests, each is a point in ./

e Once arequest arises at a point p € /, the algorithm has to send at least one
server to p and serve the request

® The goal is to minimize the total traveling distance of all servers

159



k-Server

160



Greedy algorithm

Always send the server that 1s the closest to the regquest

161



Greedy algorithm

Always send the server that 1s the closest to the regquest

162



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

163



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

164



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

165



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

166



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

167



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

163



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

169



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

170



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

171



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

172



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

173



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

174



Greedy algorithm is unbounded

Always send the server that 1s the closest to the regquest

175



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

176



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request

at equal speeds until at least one server reaches it

177



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request

at equal speeds until at least one server reaches it

178



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

179



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

180



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

181



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

182



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

183



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

184



Double-Coverage on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

ONONONON

185



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

186



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

<Proof Idea>

1. Seta potential function® =k - M _. + 2, -
o M _. :costofthe minimum matching between DC servers to OPT servers

e 2., sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT movesd, AD, <k-d
(2) When DC moves d, A®, < —d

187



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

<Proof Idea>

1. Seta potential function® =k - M _. + 2, -
o M _. :costofthe minimum matching between DC servers to OPT servers

e 2., sum of pairwise distance between DC servers

i A




DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

<Proof Idea>

1. Seta potential function® =k - M _. + 2, -

e /I . :costofthe minimum matching between DC servers to OPT servers

e 2., sum of pairwise distance between DC servers

189



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

<Proof Idea>

1. Seta potential function® =k - M _. + 2, -

o M _. :costofthe minimum matching between DC servers to OPT servers

e 2., sum of pairwise distance between DC servers

< > A Sl 4 <
oy T S RN TN TR DS
< > il o = - S 4
leng TR By B PIIN = s sl
< ~ 4 - . d < O, Lo A \G 52

190



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

<Proof Idea>

1. Seta potential function® =k - M _. + 2, -

o M _. :costofthe minimum matching between DC servers to OPT servers

e 2., sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT movesd, AD, <k-d DC;+D; <0+ k-d=k- OPT,
(2) When DC moves d, A®, < —d DC;+ ®, <d—-d=0=k- OPT;

191



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(1) When OPT moves d, A®. <k-d

192



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(1) When OPT moves d, A®. <k-d

193



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(2) When DC moves d, AD, < —d

(I):kaln+2

=k (~d)
+(k—-1)-d

194



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(2) When DC moves 2d, AD, < —2d

— k-0

195



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(2) When DC moves 2d, AD, < —2d

for any other server s,
the total distance does not change

— k-0

196



DC is k-competitive on a line

If the request falls outside the convex hull of the
servers, serve 1t with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

(2) When DC moves 2d, AD, < —2d

—d o —d The only changed distance is the one
| o : between the two moving servers

=k-042d

197



k-Server Lower Bound

198



