
Algorithms for Decision Support 

Online Algorithms (3/3)
Problem lower bound and op:mal online algorithms
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Compe::ve Ra:os
• An algorithm ALG is -compe::ve if 

for all instance ,  (minimiza:on) 

• Show that ALG is at most -compe::ve (upper bound): 

Claim that for any ,  and , hence,  

• Show that ALG is at least -compe::ve (lower bound): 

Find an instance  such that 

c

I
ALG(I)
OPT(I)

≤ c

c

I ALG(I) ≤ x OPT(I) ≥ y
ALG(I)
OPT(I)

≤
x
y

≤ c

d

I′ 

ALG(I′ )
OPT(I′ )

≥ d
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Problem Compe::ve Ra:o Lower Bound
• Recall that for any algorithm, we can prove that its compe::ve ra:o has 

a lower bound (by designing an adversarial input against it)
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Problem Compe::ve Ra:o Lower Bound
• Recall that for any algorithm, we can prove that its compe::ve ra:o has 

a lower bound (by designing an adversarial input against it)  

• By designing adversarial instances, one can prove that for a problem, 
there is a performance lower bound  for all online algorithm. That is, 
any (determinis8c) online algorithm is at least -compe88ve. 

L
L

ALG(IA)
OPT(IA)

≥ L
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Problem Compe::ve Ra:o Lower Bound

• For any algorithm, there is a ball at or on the right of the bar  
 For any algorithm, the compe::ve ra:o is at least  

• If there is an algorithm that is -compe::ve, it is the best online 
algorithm

L
↔ L

L
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Problem Compe::ve Ra:o Lower Bound

• For any algorithm, there is a ball at or on the right of the bar  
 For any algorithm, the compe::ve ra:o is at least  

• If there is an algorithm that is -compe::ve, it is the best online 
algorithm

L
↔ L

L
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What Happened
• If you find a way to design (a series of) instances such that for any online 

algorithm, the ra:o between its cost and the op:mal cost is at least , 
you show that no online algorithm can be beRer than -compe::ve 

• In this case, if you have an online algorithm which is at most 
-compe::ve, it is the best (op:mal) online algorithm for this problem

L
L

L

ALG1

ALG2

ALGn
L
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Compe::ve Ra:os
• An algorithm ALG is -compe::ve if 

for all instance ,  (minimiza:on) 

• Show that ALG is at most -compe::ve (upper bound): 

Claim that for any ,  and , hence,  

• Show that ALG is at least -compe::ve (lower bound): 

Find an instance  such that  

• Show that no algorithm can be beRer than -compe::ve: 

Find each possible algorithm  an instance  such that 

c

I
ALG(I)
OPT(I)
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• Theorem: For the Buy-or-Rent problem, there is no determinis:c online 

algorithm beRer than -compe::ve. (2 −
1
B

)
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• Theorem: For the Buy-or-Rent problem, there is no determinis:c online 

algorithm beRer than -compe::ve. 

<Proof Idea>  
Any online algorithm must buy the ski on some day.  
Assume that algorithm  buys the ski on the -th skiing day, we design the 
adversarial input  that there are exactly  skiing days.  

As long as we can prove that  for all , the theorem is proven.

(2 −
1
B

)

ALGk k
Ik k

ALGk(Ik)
OPT(Ik)

≥ 2 −
1
B

k
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1
B

)
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• Theorem: For the Buy-or-Rent problem, there is no determinis:c online algorithm 

beRer than -compe::ve. 

<Proof> Consider  and . Since  is the instance with exactly  skiing days. The 
cost of algorithm  on instance  is , while the op:mal cost is 

. 

• If , the op:mal cost is  and the ra:o 

 

• asdf

(2 −
1
B

)

ALGk Ik Ik k
ALGk Ik (k − 1) + B

min{B, k}
k ≥ B B

ALGk(Ik)
OPTk(Ik)

=
(k − 1) + B

B
≥

(B − 1) + B
B

= 2 −
1
B

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online 

algorithm beRer than -compe::ve. (2 −
1
B

)
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• Theorem: For the Buy-or-Rent problem, there is no determinis:c online algorithm 

beRer than -compe::ve. 

<Proof> Consider  and . Since  is the instance with exactly  skiing days. The 
cost of algorithm  on instance  is , while the op:mal cost is 

. 

• If , the ra:o . The ra:o decreases as  increases. 

Hence, the ra:o is lower bounded by  since 

(2 −
1
B

)

ALGk Ik Ik k
ALGk Ik (k − 1) + B

min{B, k}

k < B
ALGk(Ik)
OPTk(Ik)

=
(k − 1) + B

k
k

(B − 1) + B
B

k < B

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online 

algorithm beRer than -compe::ve. (2 −
1
B

)
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1
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k
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 where  is the instance with exactly 1 skiing days
ALG1(I1)
OPT(I1)

=
B
1

I1B
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 where  is the instance with exactly 2 skiing days
ALG2(I2)
OPT(I2)

=
1 + B

2
I2
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

  where  is the instance with exactly 3 skiing days
ALG3(I3)
OPT(I3)

=
2 + B

3
I3
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

  where  is the instance with exactly 4 skiing days
ALG4(I4)
OPT(I4)

=
3 + B

4
I4
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

  
ALGB−1(IB−1)

OPT(IB−1)
=

B − 2 + B
B − 1

= 2

43
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 
ALGB(IB)
OPT(IB)

=
2B − 1

B
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ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 
ALGn(In)
OPT(In)

=
n − 1 + B

B
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ALGk(Ik)
OPT(Ik)

k

B

2 −
1
B

1 2 BB-1

(k − 1) + B
B

(k − 1) + B
k
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What Happened
• We argue that any determinis:c algorithm must buy the ski on some day 

• For any algorithm that buys the ski on the -th day, we design an 
corresponding adversary which has exactly  skiing days 

• The case where  has the smallest ra:o between the 

algorithm cost and the op:mal cost, which gives a ra:o of  

• That is, for any algorithm, there is an instance making its 

compe::ve ra:o’s lower bound at least 

k
k

k = B − 1

2 −
1
B

2 −
1
B
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• If an online algorithm aRains the compe::ve ra:o which matches the problem 
compe::ve ra:o lower bound, the algorithm is an op8mal online algorithm

Op:mal Online Algorithms

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online 

algorithm beRer than -compe::ve. (2 −
1
B

)

• Theorem: For the Buy-or-Rent problem, algorithm  is  

-compe::ve. 

ALG

(2 −
1
B

)

: Buy the ski on the -th skiing dayALG B

• Corollary:  is an op:mal online algorithmALG
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Any determinis:c online algorithm  
is at least 1.333-compe::ve

<Proof idea>  
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3- )-compe::ve for 
the whole instance. Consider the adversarial input:  

, , , , , , , 

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ
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There are  itemsm
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<Proof idea>  
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What Happened

• We first release  jobs, each with a size of  

• For any algorithm, if it put these jobs in more than  bins, the adversary stops, and the 

algorithm is at least -compe::ve 

• Otherwise, if an algorithm uses at most  bins for these jobs, we release another  jobs 

with size of  

• This algorithm must uses more than  bins in total since it uses at most  bins for 

the first batch of jobs

m
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⋅ m
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⋅ m m
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4
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⋅ m
2
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Outline
• Problem lower bound  and “best” online algorithms 

• Ski-rental 

• Bin packing 

• Paging 

• Bounding difference to the op:mal solu:on — poten:al func:on 

• List accessing 

• -serverk
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Paging Problem is at least -compe::vek
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Paging Problem is at least -compe::vek
<Proof idea> 

Assume that the cache size is . Consider any algorithm ALG and design the adversary as 
follows: First request pages , , , , , . At this moment, ALG evicts a page 

. Then, the adversary requests page . The adversary repeatedly requests the 
page evicted by ALG for  rounds.  

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs . 

Because there are only  pages involved, OPT incurs at most  page fault per  pages. 

Therefore,     

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)
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Paging Problem is at least -compe::vek
<Proof idea> 
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Paging Problem is at least -compe::vek
<Proof idea> 

Assume that the cache size is . Consider any algorithm ALG and design the adversary as 
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Paging Problem is at least -compe::vek
<Proof idea> 

Assume that the cache size is . Consider any algorithm ALG and design the adversary as 
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<Proof idea> 
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Paging Problem is at least -compe::vek
<Proof idea> 
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<Proof idea> 
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Even when every page requests 
change drama:cally, the op:mal 
solu:on can keep the  pages that will 
be used in the most recent future and 
evict the one that will be used later.
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Paging Problem is at least -compe::vek
<Proof idea> 

Assume that the cache size is . Consider any algorithm ALG and design the adversary as 
follows: First request pages , , , , , . At this moment, ALG evicts a page 
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What Happened
• For any paging algorithm, the next page the adversary request is the 

page that was just evicted by the algorithm 

• The algorithm incurs  page faults ( : number of requests) 

• For any sequence of  dis:nct requests, the op:mal solu:on can 
always evict the page that will be used again the latest in the future 

• OPT  

k + n k + n
k

≤ k +
n
k
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Recap: Online Op:miza:on

An online 
 problem
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Recap: Online Op:miza:on

An online 
 problem

Design an online 
algorithm ALG

Prove that ALG aRains 
a compe::ve ra:o c

Show that ALG is at 
least -compe::ved

?c = d
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Outline
• Problem lower bound  and “best” online algorithms 

• Ski-rental 

• Bin packing 

• Paging 

• Bounding difference to the op:mal solu:on — poten:al func:on 

• List accessing 

• -serverk
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List Accessing

…
x
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List Accessing
• Given a list of  items 

• There is a pointer always starts from the head of the list 

• An Access  request costs  if the item  is at the -th posi:on in the list 

• Ajer accessing an item , it is free to move  to any posi:on closer to the 
front of the list 

• An algorithm can also move an item ac:vely by accessing it and then moving it 
forward 

• How to serve a sequence  of  Access opera:ons?

ℓ

(x) p x p

x x

σ n
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List Accessing

ℓ
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List Accessing

x

Access(x)

cost = 6
ℓ
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List Accessing

x

Access(x)

cost = 3
ℓ
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List Accessing

x

Access(x)

cost = 3

x

It’s free to move the accessed item closer to the front
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List Accessing

x

Access(x)

cost = 6

x

It’s free to move the accessed item closer to the front
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List Accessing

x

Access(x)

cost = 6

It’s free to move the accessed item closer to the front

x
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List Accessing

x

Access(x)

cost = 6

x

Moving away the accessed item with a farther item with extra cost of 4
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List Accessing

Access σ = r1, r2, ⋯, rn

ℓ

• ALG: decide whether the accessed item should be moved ajer accessing
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Move-to-Front (MTF)
After accessing an item, move to the front of the list
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

ri
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r1

r1
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r2

r1
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r2

r2 r1
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r3

r2 r1
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r3

r1r3 r2
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r4

r1r3 r2
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Move-to-Front (MTF)
After accessing an item, move to the front of the list

r4

r1r4 r3
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

<Proof Idea> 

1. Using amor:zed cost        to measure the cost MTF incurs for accessing  

• Using a poten:al func:on  to measure how much different MTF is from OPT 

•          

2. Show that     for all  

3.          

ai = ti + Φi − Φi−1 ri

Φ

MTF(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai

ai ≤ 2 ⋅ OPTi −1 i

MTF(σ) ≤ 2 ⋅ OPT(σ) −n ≤ 2 ⋅ OPT(σ) −
OPT(σ)

ℓ
= (2 −

1
ℓ

) ⋅ OPT(σ)
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After accessing an item, move to the front of the list

<Proof Idea> 

1. Using amor:zed cost        to measure the cost MTF incurs for accessing  

• Using a poten:al func:on  to measure how much different MTF is from OPT 

•          

2. Show that     for all  

3.          

ai = ti + Φi − Φi−1 ri

Φ

MTF(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai

ai ≤ 2 ⋅ OPTi −1 i

MTF(σ) ≤ 2 ⋅ OPT(σ) −n ≤ 2 ⋅ OPT(σ) −
OPT(σ)

ℓ
= (2 −

1
ℓ

) ⋅ OPT(σ)
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      MTF(σ) ≤
n

∑
i=1

ai ≤ 2 ⋅
n

∑
i=1

OPTi −1

OPT(σ) ≤ ℓ ⋅ n

 for all Φi ≥ 0 i



MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

1. Let       ,  

•  is the actual cost that MTF incurs for processing the -th request 

•  is a poten&al func&on, which maps the list configura:ons of MTF and OPT into 
a nonnega:ve real number just ajer both algorithms have finished processing the 
-th request 

•  number of inversions in MTF’s list with respect to OPT’s list 

• MTF           

ai = ti + Φi − Φi−1

ti i

Φi

i
Φi :=

(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT doesn’t move ,             ’s           ‘sr Φi − Φi−1 = − +

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)

120



MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

               ’s           ’s                 MTFi + ΔΦi = k − + = k − g + (k − 1 − g) = 2 ⋅ (k − g) − 1 ≤ 2 ⋅ OPTi − 1

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT moves  away for  posi:ons,              ’s           ’s  r d Φi − Φi−1 ≤ − + + d

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

               ’s           ’s                     MTFi + ΔΦi ≤ k − + + d = k − g + (k − 1 − g) + d ≤ 2 ⋅ (k − g + d) − 1 ≤ 2 ⋅ OPTi − 1

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT moves  forward for  posi:ons,              ’s           ’s r d Φi − Φi−1 ≤ − +

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)
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MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim:     for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

     j ≥ k − 1 − g +1

    k − 1 = g + (k − 1 − g)
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               ’s           ’s                 MTFi + ΔΦi ≤ k − + = k − g + (k − 1 − g) = 2 ⋅ (k − g) − 1 ≤ 2 ⋅ OPTi − 1



Poten:al func:on method

126



List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

• Adversary : given any ALG, always access the last item in its list 

• Let , ALG     

σ

n = |σ | (σ) = ℓ ⋅ n
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List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)
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x

x

x

permuta:on 1

permuta:on 2

permuta:on ℓ!

 sta:c algorithms: first get one of the  possible permuta:ons of the items using  paid movingsℓ! ℓ! O(ℓ2)

When access , there are  sta:c algorithms that costs  

Total cost of  requests on all sta:c algorithms    on average, OPT  

x (ℓ − 1)! i

n = n ⋅
ℓ

∑
i=1

i ⋅ (ℓ − 1)! ⇒ ≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

OPT(σ) ≤
n(ℓ + 1)

2
+ ℓ2



List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)
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x

x

x

permuta:on 1

permuta:on 2

permuta:on ℓ!

 sta:c algorithms: first get one of the  possible permuta:ons of the items using  paid movingsℓ! ℓ! O(ℓ2)

ALG     (σ) = ℓ ⋅ n OPT(σ) ≤
n(ℓ + 1)

2
+ ℓ2

ALG(σ)
OPT(σ)

≥
2ℓ

ℓ + 1



List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

• Consider  sta:c algorithms that never change the order of the list, each starts at one of the  permuta:on of  elements (which 
can be formed within at most  swaps) 

• In total, each Access  costs     in all the sta:c algorithm, and the total cost of  accessing       

• On average, the cost of  accessing on one sta:c algorithm is  

• There is at least one sta:c algorithm with total cost   

• OPT cannot be worst than that sta:c algorithm and has cost     

•
  , when ,     

ℓ! ℓ! ℓ
O(ℓ2)

(ri)
ℓ

∑
i=1

i ⋅ (ℓ − 1)! n = n ⋅
ℓ

∑
i=1

i ⋅ (ℓ − 1)!

n
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!
+ ℓ2

ALG(σ)
OPT(σ)

≥
ℓ ⋅ n

n ⋅ ∑ℓ
i=1 i ⋅ (ℓ − 1)!

ℓ! + ℓ2

n → ∞
ALG(σ)
OPT(σ)

≥
2ℓ2n

(ℓ2 + ℓ)n
= 2 −

2
ℓ + 1
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Bound by average
• A useful technique to get the lower bound of the op:mal strategy on the instance 

is to set a set of (offline) algorithms 

• Calculate the total cost incurred by these algorithms 

• The op:mal algorithm must be as good as the average cost
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Outline
• Problem lower bound  and “best” online algorithms 

• Ski-rental 

• Bin packing 

• Paging 

• Bounding difference to the op:mal solu:on — poten:al func:on 

• List accessing 

• -serverk
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-Serverk

133

• On a metric space , there are  servers siong at some points in  

• A set  of requests, each is a point in  

• Once a request arises at a point   , the algorithm has to send at least one 
server to  and serve the request 

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p
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a

b

• On a metric space , there are  servers siong at some points in  

• A set  of requests, each is a point in  

• Once a request arises at a point   , the algorithm has to send at least one 
server to  and serve the request 

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

d(a, b)



-Serverk

136

a

c

b

• On a metric space , there are  servers siong at some points in  

• A set  of requests, each is a point in  

• Once a request arises at a point   , the algorithm has to send at least one 
server to  and serve the request 

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

d(a, b)
d(a, c)

d(b, c) ≤ d(a, b) + d(a, c)
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• On a metric space , there are  servers siong at some points in  

• A set  of requests, each is a point in  

• Once a request arises at a point   , the algorithm has to send at least one 
server to  and serve the request 

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ
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Greedy algorithm
Always send the server that is the closest to the request
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Greedy algorithm is unbounded
Always send the server that is the closest to the request
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Greedy algorithm is unbounded
Always send the server that is the closest to the request
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Greedy algorithm is unbounded
Always send the server that is the closest to the request
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Greedy algorithm is unbounded
Always send the server that is the closest to the request
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Double-Coverage on a line
If the request falls outside the convex hull of the 
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request 
at equal speeds until at least one server reaches it
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<Proof Idea> 

1. Set a poten:al func:on        

• : cost of the minimum matching between DC servers to OPT servers 

• : sum of pairwise distance between DC servers 

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that: 

(1) When OPT moves ,      

(2) When DC moves ,   

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d
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<Proof Idea> 

1. Set a poten:al func:on        

• : cost of the minimum matching between DC servers to OPT servers 

• : sum of pairwise distance between DC servers 

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that: 

(1) When OPT moves ,      

(2) When DC moves ,   

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

            DCi + Φi ≤ 0 + k ⋅ d = k ⋅ OPTi

            DCi + Φi ≤ d − d = 0 = k ⋅ OPTi
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(1) When OPT moves ,     d ΔΦi ≤ k ⋅ d
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(1) When OPT moves ,     d ΔΦi ≤ k ⋅ d

d

d
      Φ = k ⋅ Mmin + ΣDC
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(2) When DC moves ,   d ΔΦi ≤ −d

d      Φ = k ⋅ Mmin + ΣDC

k − 1

      

          

Φ = k ⋅ (−d)

+ (k − 1) ⋅ d *
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(2) When DC moves ,   2d ΔΦi ≤ −2d

d      Φ = k ⋅ Mmin + ΣDC

       Φ = k ⋅ 0 + 2d

d

*
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(2) When DC moves ,   2d ΔΦi ≤ −2d

sd      Φ = k ⋅ Mmin + ΣDC

       Φ = k ⋅ 0 + 2d

d

−d
+d for any other server ,  

the total distance does not change
s

*
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(2) When DC moves ,   2d ΔΦi ≤ −2d

d      Φ = k ⋅ Mmin + ΣDC

       Φ = k ⋅ 0 + 2d

d

−d −d The only changed distance is the one  
between the two moving servers

*



-Server Lower Boundk
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