
Algorithms for Decision Support

Online Algorithms (3/3)
Problem lower bound and op:mal online algorithms

1

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

2

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

3

Compe::ve Ra:os
• An algorithm ALG is -compe::ve if

for all instance , (minimiza:on)

• Show that ALG is at most -compe::ve (upper bound):

Claim that for any , and , hence,

• Show that ALG is at least -compe::ve (lower bound):

Find an instance such that

c

I
ALG(I)
OPT(I)

≤ c

c

I ALG(I) ≤ x OPT(I) ≥ y
ALG(I)
OPT(I)

≤
x
y

≤ c

d

I′

ALG(I′)
OPT(I′)

≥ d

4

Recap: Online Op:miza:on

An online
 problem

5

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

6

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Show that ALG is at
least -compe::ved

7

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

8

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

?c = d

9

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

The analysis of ALG is :ght

Y
?c = d

10

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

The analysis of ALG is :ght

Y

N

?c = d

11

Problem Compe::ve Ra:o Lower Bound
• Recall that for any algorithm, we can prove that its compe::ve ra:o has

a lower bound (by designing an adversarial input against it)

12

Problem Compe::ve Ra:o Lower Bound
• Recall that for any algorithm, we can prove that its compe::ve ra:o has

a lower bound (by designing an adversarial input against it)

• By designing adversarial instances, one can prove that for a problem,
there is a performance lower bound for all online algorithm. That is,
any (determinis8c) online algorithm is at least -compe88ve.

L
L

ALG(IA)
OPT(IA)

≥ L

13

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

14

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

15

ALG1

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

16

ALG1

ALG2

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

17

ALG1

ALG2

ALGn

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

18

ALG1

ALG2

ALGn

instance I

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

19

ALG1

ALG2

ALGn

instance I

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

20

ALG1

ALG2

ALGn

instance I

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

21

ALG1

ALG2

ALGn

L

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

22

ALG1

ALG2

ALGn

L For any algorithm, there is a ball on the right of the bar
 For any algorithm, the compe88ve ra8o is at least

L
↔ L

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

23

ALG1

ALG2

ALGn

L For any algorithm, there is a ball on the right of the bar
 For any algorithm, the compe88ve ra8o is at least

L
↔ L

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

24

ALG1

ALG2

ALGn

L For any algorithm, there is a ball on the right of the bar
 For any algorithm, the compe88ve ra8o is at least

L
↔ L

Problem Compe::ve Ra:o Lower Bound

• Formally, we prove that for any online algorithm , there exists an
instance such that

ALGi
Ii

ALGi(Ii)
OPT(Ii)

≥ L

25

ALG1

ALG2

ALGn

L For any algorithm, there is a ball on the right of the bar
 For any algorithm, the compe88ve ra8o is at least

L
↔ L

Problem Compe::ve Ra:o Lower Bound

• For any algorithm, there is a ball at or on the right of the bar
 For any algorithm, the compe::ve ra:o is at least

• If there is an algorithm that is -compe::ve, it is the best online
algorithm

L
↔ L

L

26

ALG1

ALG2

ALGn

L

Problem Compe::ve Ra:o Lower Bound

• For any algorithm, there is a ball at or on the right of the bar
 For any algorithm, the compe::ve ra:o is at least

• If there is an algorithm that is -compe::ve, it is the best online
algorithm

L
↔ L

L

27

ALG1

ALG2

ALGn

L No online algorithm can have a compe88ve ra8o smaller than L

What Happened
• If you find a way to design (a series of) instances such that for any online

algorithm, the ra:o between its cost and the op:mal cost is at least ,
you show that no online algorithm can be beRer than -compe::ve

• In this case, if you have an online algorithm which is at most
-compe::ve, it is the best (op:mal) online algorithm for this problem

L
L

L

ALG1

ALG2

ALGn
L

28

Compe::ve Ra:os
• An algorithm ALG is -compe::ve if

for all instance , (minimiza:on)

• Show that ALG is at most -compe::ve (upper bound):

Claim that for any , and , hence,

• Show that ALG is at least -compe::ve (lower bound):

Find an instance such that

• Show that no algorithm can be beRer than -compe::ve:

Find each possible algorithm an instance such that

c

I
ALG(I)
OPT(I)

≤ c

c

I ALG(I) ≤ x OPT(I) ≥ y
ALG(I)
OPT(I)

≤
x
y

≤ c

d

I′

ALG(I′)
OPT(I′)

≥ d

d

ALGi Ii
ALGi(I′)
OPT(I′)

≥ d

29

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

30

Ski-Rental Problem Lower Bound

31

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

32

Ski-Rental Problem Lower Bound

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve.

<Proof Idea>
Any online algorithm must buy the ski on some day.
Assume that algorithm buys the ski on the -th skiing day, we design the
adversarial input that there are exactly skiing days.

As long as we can prove that for all , the theorem is proven.

(2 −
1
B

)

ALGk k
Ik k

ALGk(Ik)
OPT(Ik)

≥ 2 −
1
B

k

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

33

Ski-Rental Problem Lower Bound

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve.

<Proof Idea>
Any online algorithm must buy the ski on some day.
Assume that algorithm buys the ski on the -th skiing day, we design the
adversarial input that there are exactly skiing days.

As long as we can prove that for all , the theorem is proven.

(2 −
1
B

)

ALGk k
Ik k

ALGk(Ik)
OPT(Ik)

≥ 2 −
1
B

k

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

34

Ski-Rental Problem Lower Bound

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve.

<Proof Idea>
Any online algorithm must buy the ski on some day.
Assume that algorithm buys the ski on the -th skiing day, we design the
adversarial input that there are exactly skiing days.

As long as we can prove that for all , the theorem is proven.

(2 −
1
B

)

ALGk k
Ik k

ALGk(Ik)
OPT(Ik)

≥ 2 −
1
B

k

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

35

Ski-Rental Problem Lower Bound

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online algorithm

beRer than -compe::ve.

<Proof> Consider and . Since is the instance with exactly skiing days. The
cost of algorithm on instance is , while the op:mal cost is

.

• If , the op:mal cost is and the ra:o

• asdf

(2 −
1
B

)

ALGk Ik Ik k
ALGk Ik (k − 1) + B

min{B, k}
k ≥ B B

ALGk(Ik)
OPTk(Ik)

=
(k − 1) + B

B
≥

(B − 1) + B
B

= 2 −
1
B

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

36

Ski-Rental Problem Lower Bound

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online algorithm

beRer than -compe::ve.

<Proof> Consider and . Since is the instance with exactly skiing days. The
cost of algorithm on instance is , while the op:mal cost is

.

• If , the ra:o . The ra:o decreases as increases.

Hence, the ra:o is lower bounded by since

(2 −
1
B

)

ALGk Ik Ik k
ALGk Ik (k − 1) + B

min{B, k}

k < B
ALGk(Ik)
OPTk(Ik)

=
(k − 1) + B

k
k

(B − 1) + B
B

k < B

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

37

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

38

ALG1

ALG2

ALG3

ALGB−1

ALGB

n+1n

ALGn+1

ALGn

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

39

ALG1

ALG2

ALG3

ALGB−1

ALGB

n+1n

ALGn+1

ALGn

 where is the instance with exactly 1 skiing days
ALG1(I1)
OPT(I1)

=
B
1

I1B

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 where is the instance with exactly 2 skiing days
ALG2(I2)
OPT(I2)

=
1 + B

2
I2

40

1 + B
2

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 where is the instance with exactly 3 skiing days
ALG3(I3)
OPT(I3)

=
2 + B

3
I3

41

2 + B
3

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

 where is the instance with exactly 4 skiing days
ALG4(I4)
OPT(I4)

=
3 + B

4
I4

42

3 + B
4

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

ALGB−1(IB−1)

OPT(IB−1)
=

B − 2 + B
B − 1

= 2

43

2

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

ALGB(IB)
OPT(IB)

=
2B − 1

B

44

2B − 1
B

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k
1 2 BB-1

ALGn(In)
OPT(In)

=
n − 1 + B

B

45

n − 1 + B
B

n

Ski-Rental Problem Lower Bound

ALGk(Ik)
OPT(Ik)

k

B

2 −
1
B

1 2 BB-1

(k − 1) + B
B

(k − 1) + B
k

46

n

Ski-Rental Problem Lower Bound

What Happened
• We argue that any determinis:c algorithm must buy the ski on some day

• For any algorithm that buys the ski on the -th day, we design an
corresponding adversary which has exactly skiing days

• The case where has the smallest ra:o between the

algorithm cost and the op:mal cost, which gives a ra:o of

• That is, for any algorithm, there is an instance making its

compe::ve ra:o’s lower bound at least

k
k

k = B − 1

2 −
1
B

2 −
1
B

47

• If an online algorithm aRains the compe::ve ra:o which matches the problem
compe::ve ra:o lower bound, the algorithm is an op8mal online algorithm

Op:mal Online Algorithms

• Theorem: For the Buy-or-Rent problem, there is no determinis:c online

algorithm beRer than -compe::ve. (2 −
1
B

)

• Theorem: For the Buy-or-Rent problem, algorithm is

-compe::ve.

ALG

(2 −
1
B

)

: Buy the ski on the -th skiing dayALG B

• Corollary: is an op:mal online algorithmALG

48

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

49

Bin Packing Problem Lower Bound

50

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

51

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

52

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m

53

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

Assume ALG is (4/3-)-compe::veϵ

54

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

ALG() =

 =

I <
4
3

⋅
m
2

2
3

⋅ m

a1 + a2 = m − a2

Assume ALG is (4/3-)-compe::veϵ

55

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

ALG() =

 =

I <
4
3

⋅
m
2

2
3

⋅ m

a1 + a2 = m − a2

Assume ALG is (4/3-)-compe::veϵ

56

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

ALG() =

 =

I <
4
3

⋅
m
2

2
3

⋅ m

a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2

Assume ALG is (4/3-)-compe::veϵ

57

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2

Assume ALG is (4/3-)-compe::veϵ

There are itemsm
58

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m
OPT() = I

m
2

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2

Assume ALG is (4/3-)-compe::veϵ

59

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 60

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 61

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2

Assume ALG is (4/3-)-compe::veϵ

OPT(+) = I I m

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 62

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 63

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

xALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 64

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

xALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 65

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

xALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 66

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 67

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 68

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 69

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 70

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 71

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2 72

Any determinis:c online algorithm
is at least 1.333-compe::ve

<Proof idea>
Prove by contradic:on: design an instance such that any algorithm ALG that is (4/3-

)-compe::ve for the first half of the instance, it cannot be (4/3-)-compe::ve for
the whole instance. Consider the adversarial input:

, , , , , , ,

ϵ ϵ

1
2

− ϵ
1
2

− ϵ ⋯
1
2

− ϵ
1
2

+ ϵ
1
2

+ ϵ ⋯
1
2

+ ϵ

m m
OPT() = I

m
2 OPT(+) = I I m

ALG(+) =

ALG(+) < OPT(+) =

 ALG() =

I I a1 + a2 + x ≥ a2 + m

I I
4
3

⋅ I I
4
3

⋅ m

a2 <
m
3

⟺ I m − a2 >
2
3

⋅ m

Assume ALG is (4/3-)-compe::veϵ

ALG() =

 ALG() =

I <
4
3

⋅
m
2

2
3

⋅ m

I a1 + a2 = m − a2
: #bins with 1 item in ALG()
: #bins with 2 items in ALG()

a1 I
a2 I
m = a1 + 2a2

Contradic:on!

73

What Happened

• We first release jobs, each with a size of

• For any algorithm, if it put these jobs in more than bins, the adversary stops, and the

algorithm is at least -compe::ve

• Otherwise, if an algorithm uses at most bins for these jobs, we release another jobs

with size of

• This algorithm must uses more than bins in total since it uses at most bins for

the first batch of jobs

m
1
2

− ϵ

2
3

⋅ m

4
3

2
3

⋅ m m

1
2

+ ϵ

4
3

⋅ m
2
3

⋅ m

74

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

75

Paging Problem is at least -compe::vek

76

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

77

1 2 3 … … k

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

78

1 2 3 … … k

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

79

1 2 3 k+1 … k

i

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

80

1 i 3 k+1 … k

2

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

81

1 2 3 k+1 … k

2

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

82

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

83

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

84

Even when every page requests
change drama:cally, the op:mal
solu:on can keep the pages that will
be used in the most recent future and
evict the one that will be used later.

k

Paging Problem is at least -compe::vek
<Proof idea>

Assume that the cache size is . Consider any algorithm ALG and design the adversary as
follows: First request pages , , , , , . At this moment, ALG evicts a page

. Then, the adversary requests page . The adversary repeatedly requests the
page evicted by ALG for rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs .

Because there are only pages involved, OPT incurs at most page fault per pages.

Therefore,

k
1 2 3 ⋯ k k + 1

i ∈ [1,k] i
n − 1

k + n

k + 1 1 k

ALG(I)
OPT(I)

≥
k + n

k + n/k
≈ Ω(k)

85

What Happened
• For any paging algorithm, the next page the adversary request is the

page that was just evicted by the algorithm

• The algorithm incurs page faults (: number of requests)

• For any sequence of dis:nct requests, the op:mal solu:on can
always evict the page that will be used again the latest in the future

• OPT

k + n k + n
k

≤ k +
n
k

86

Recap: Online Op:miza:on

An online
 problem

87

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

?c = d

88

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

The analysis of ALG is :ght

Y
?c = d

89

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

The analysis of ALG is :ght

Y

N

?c = d

90

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

Show that for this problem there is no
algorithm beRer than -compe::veℓ

The analysis of ALG is :ght

Y

N

?c = d

91

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

Show that for this problem there is no
algorithm beRer than -compe::veℓ

The analysis of ALG is :ght

Y

N

?c = d

?c = ℓ

92

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

Show that for this problem there is no
algorithm beRer than -compe::veℓ

The analysis of ALG is :ght

Y

N

ALG is an op:mal
online algorithm

Y

?c = d

?c = ℓ

93

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

Show that for this problem there is no
algorithm beRer than -compe::veℓ

The analysis of ALG is :ght

Y

N

ALG is an op:mal
online algorithm

Y

N?c = d

?c = ℓ

94

Recap: Online Op:miza:on

An online
 problem

Design an online
algorithm ALG

Prove that ALG aRains
a compe::ve ra:o c

Show that ALG is at
least -compe::ved

Show that for this problem there is no
algorithm beRer than -compe::veℓ

The analysis of ALG is :ght

Y

N

ALG is an op:mal
online algorithm

Y

N?c = d

?c = ℓ

95

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

96

List Accessing

…
x

97

List Accessing
• Given a list of items

• There is a pointer always starts from the head of the list

• An Access request costs if the item is at the -th posi:on in the list

• Ajer accessing an item , it is free to move to any posi:on closer to the
front of the list

• An algorithm can also move an item ac:vely by accessing it and then moving it
forward

• How to serve a sequence of Access opera:ons?

ℓ

(x) p x p

x x

σ n

98

List Accessing

ℓ

99

List Accessing

x

Access(x)

cost = 6
ℓ

100

List Accessing

x

Access(x)

cost = 3
ℓ

101

List Accessing

x

Access(x)

cost = 3

x

It’s free to move the accessed item closer to the front

102

List Accessing

x

Access(x)

cost = 3

x

It’s free to move the accessed item closer to the front

103

List Accessing

x

Access(x)

cost = 6

x

It’s free to move the accessed item closer to the front

104

List Accessing

x

Access(x)

cost = 6

It’s free to move the accessed item closer to the front

x

105

List Accessing

x

Access(x)

cost = 6

x

Moving away the accessed item with a farther item with extra cost of 4

106

List Accessing

Access σ = r1, r2, ⋯, rn

ℓ

• ALG: decide whether the accessed item should be moved ajer accessing

107

Move-to-Front (MTF)
After accessing an item, move to the front of the list

108

Move-to-Front (MTF)
After accessing an item, move to the front of the list

ri

109

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r1

r1

110

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r2

r1

111

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r2

r2 r1

112

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r3

r2 r1

113

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r3

r1r3 r2

114

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r4

r1r3 r2

115

Move-to-Front (MTF)
After accessing an item, move to the front of the list

r4

r1r4 r3

116

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

<Proof Idea>

1. Using amor:zed cost to measure the cost MTF incurs for accessing

• Using a poten:al func:on to measure how much different MTF is from OPT

•

2. Show that for all

3.

ai = ti + Φi − Φi−1 ri

Φ

MTF(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai

ai ≤ 2 ⋅ OPTi −1 i

MTF(σ) ≤ 2 ⋅ OPT(σ) −n ≤ 2 ⋅ OPT(σ) −
OPT(σ)

ℓ
= (2 −

1
ℓ

) ⋅ OPT(σ)

117

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

<Proof Idea>

1. Using amor:zed cost to measure the cost MTF incurs for accessing

• Using a poten:al func:on to measure how much different MTF is from OPT

•

2. Show that for all

3.

ai = ti + Φi − Φi−1 ri

Φ

MTF(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai

ai ≤ 2 ⋅ OPTi −1 i

MTF(σ) ≤ 2 ⋅ OPT(σ) −n ≤ 2 ⋅ OPT(σ) −
OPT(σ)

ℓ
= (2 −

1
ℓ

) ⋅ OPT(σ)

118

 MTF(σ) ≤
n

∑
i=1

ai ≤ 2 ⋅
n

∑
i=1

OPTi −1

OPT(σ) ≤ ℓ ⋅ n

 for all Φi ≥ 0 i

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

1. Let ,

• is the actual cost that MTF incurs for processing the -th request

• is a poten&al func&on, which maps the list configura:ons of MTF and OPT into
a nonnega:ve real number just ajer both algorithms have finished processing the
-th request

• number of inversions in MTF’s list with respect to OPT’s list

• MTF

ai = ti + Φi − Φi−1

ti i

Φi

i
Φi :=

(σ) =
n

∑
i=1

ti = Φ0 − Φn +
n

∑
i=1

ai

119

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT doesn’t move , ’s ‘sr Φi − Φi−1 = − +

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

120

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

 ’s ’s MTFi + ΔΦi = k − + = k − g + (k − 1 − g) = 2 ⋅ (k − g) − 1 ≤ 2 ⋅ OPTi − 1

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

121

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT moves away for posi:ons, ’s ’s r d Φi − Φi−1 ≤ − + + d

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

122

d

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

 ’s ’s MTFi + ΔΦi ≤ k − + + d = k − g + (k − 1 − g) + d ≤ 2 ⋅ (k − g + d) − 1 ≤ 2 ⋅ OPTi − 1

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

123

d

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

If OPT moves forward for posi:ons, ’s ’s r d Φi − Φi−1 ≤ − +

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

124

d

MTF is -compe::ve(2 −
1
ℓ

)

After accessing an item, move to the front of the list

2. Claim: for all ai ≤ 2 ⋅ OPTi −1 i

r

r

r

k

j

 j ≥ k − 1 − g +1

 k − 1 = g + (k − 1 − g)

125

d

 ’s ’s MTFi + ΔΦi ≤ k − + = k − g + (k − 1 − g) = 2 ⋅ (k − g) − 1 ≤ 2 ⋅ OPTi − 1

Poten:al func:on method

126

List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

• Adversary : given any ALG, always access the last item in its list

• Let , ALG

σ

n = |σ | (σ) = ℓ ⋅ n

127

r
ℓ

List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

128

x

x

x

permuta:on 1

permuta:on 2

permuta:on ℓ!

 sta:c algorithms: first get one of the possible permuta:ons of the items using paid movingsℓ! ℓ! O(ℓ2)

When access , there are sta:c algorithms that costs

Total cost of requests on all sta:c algorithms on average, OPT

x (ℓ − 1)! i

n = n ⋅
ℓ

∑
i=1

i ⋅ (ℓ − 1)! ⇒ ≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

OPT(σ) ≤
n(ℓ + 1)

2
+ ℓ2

List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

129

x

x

x

permuta:on 1

permuta:on 2

permuta:on ℓ!

 sta:c algorithms: first get one of the possible permuta:ons of the items using paid movingsℓ! ℓ! O(ℓ2)

ALG (σ) = ℓ ⋅ n OPT(σ) ≤
n(ℓ + 1)

2
+ ℓ2

ALG(σ)
OPT(σ)

≥
2ℓ

ℓ + 1

List Accessing is at least -compe::ve(2 −
1

ℓ + 1
)

• Consider sta:c algorithms that never change the order of the list, each starts at one of the permuta:on of elements (which
can be formed within at most swaps)

• In total, each Access costs in all the sta:c algorithm, and the total cost of accessing

• On average, the cost of accessing on one sta:c algorithm is

• There is at least one sta:c algorithm with total cost

• OPT cannot be worst than that sta:c algorithm and has cost

•
 , when ,

ℓ! ℓ! ℓ
O(ℓ2)

(ri)
ℓ

∑
i=1

i ⋅ (ℓ − 1)! n = n ⋅
ℓ

∑
i=1

i ⋅ (ℓ − 1)!

n
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!

≤
n ⋅ ∑ℓ

i=1 i ⋅ (ℓ − 1)!

ℓ!
+ ℓ2

ALG(σ)
OPT(σ)

≥
ℓ ⋅ n

n ⋅ ∑ℓ
i=1 i ⋅ (ℓ − 1)!

ℓ! + ℓ2

n → ∞
ALG(σ)
OPT(σ)

≥
2ℓ2n

(ℓ2 + ℓ)n
= 2 −

2
ℓ + 1

130

Bound by average
• A useful technique to get the lower bound of the op:mal strategy on the instance

is to set a set of (offline) algorithms

• Calculate the total cost incurred by these algorithms

• The op:mal algorithm must be as good as the average cost

131

Outline
• Problem lower bound and “best” online algorithms

• Ski-rental

• Bin packing

• Paging

• Bounding difference to the op:mal solu:on — poten:al func:on

• List accessing

• -serverk

132

-Serverk

133

• On a metric space , there are servers siong at some points in

• A set of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

134

• On a metric space , there are servers siong at some points in

• A set of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

135

a

b

• On a metric space , there are servers siong at some points in

• A set of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

d(a, b)

-Serverk

136

a

c

b

• On a metric space , there are servers siong at some points in

• A set of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

d(a, b)
d(a, c)

d(b, c) ≤ d(a, b) + d(a, c)

-Serverk
• On a metric space , there are servers siong at some points in

• A set of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

137

-Serverk

138

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

139

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

140

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

141

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

142

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

143

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

144

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

145

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

146

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

147

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

148

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

149

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

150

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

151

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

152

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

153

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

154

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

155

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

156

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

157

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

158

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

159

• On a metric space , there are servers siong at some points in

• A sequence of requests, each is a point in

• Once a request arises at a point , the algorithm has to send at least one
server to and serve the request

• The goal is to minimize the total traveling distance of all servers

(ℳ, d) k ℳ

σ ℳ
p ∈ ℳ

p

-Serverk

160

ra:o =

Greedy algorithm
Always send the server that is the closest to the request

161

Greedy algorithm
Always send the server that is the closest to the request

162

Greedy algorithm is unbounded
Always send the server that is the closest to the request

163

Greedy algorithm is unbounded
Always send the server that is the closest to the request

164

Greedy algorithm is unbounded
Always send the server that is the closest to the request

165

Greedy algorithm is unbounded
Always send the server that is the closest to the request

166

Greedy algorithm is unbounded
Always send the server that is the closest to the request

167

Greedy algorithm is unbounded
Always send the server that is the closest to the request

168

Greedy algorithm is unbounded
Always send the server that is the closest to the request

169

Greedy algorithm is unbounded
Always send the server that is the closest to the request

170

Greedy algorithm is unbounded
Always send the server that is the closest to the request

171

Greedy algorithm is unbounded
Always send the server that is the closest to the request

172

Greedy algorithm is unbounded
Always send the server that is the closest to the request

173

…
…

Greedy algorithm is unbounded
Always send the server that is the closest to the request

174

…
…

Greedy algorithm is unbounded
Always send the server that is the closest to the request

175

…
…

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

176

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

177

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

178

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

179

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

180

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

181

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

182

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

183

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

184

Double-Coverage on a line
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

185

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

186

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

187

<Proof Idea>

1. Set a poten:al func:on

• : cost of the minimum matching between DC servers to OPT servers

• : sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT moves ,

(2) When DC moves ,

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

188

<Proof Idea>

1. Set a poten:al func:on

• : cost of the minimum matching between DC servers to OPT servers

• : sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT moves ,

(2) When DC moves ,

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

189

<Proof Idea>

1. Set a poten:al func:on

• : cost of the minimum matching between DC servers to OPT servers

• : sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT moves ,

(2) When DC moves ,

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

190

<Proof Idea>

1. Set a poten:al func:on

• : cost of the minimum matching between DC servers to OPT servers

• : sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT moves ,

(2) When DC moves ,

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

191

<Proof Idea>

1. Set a poten:al func:on

• : cost of the minimum matching between DC servers to OPT servers

• : sum of pairwise distance between DC servers

2. Assume that once a request arrives, OPT moves first, and then DC moves. Show that:

(1) When OPT moves ,

(2) When DC moves ,

Φ = k ⋅ Mmin + ΣDC

Mmin

ΣDC

d ΔΦi ≤ k ⋅ d

d ΔΦi ≤ −d

 DCi + Φi ≤ 0 + k ⋅ d = k ⋅ OPTi

 DCi + Φi ≤ d − d = 0 = k ⋅ OPTi

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

192

(1) When OPT moves , d ΔΦi ≤ k ⋅ d

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

193

(1) When OPT moves , d ΔΦi ≤ k ⋅ d

d

d
 Φ = k ⋅ Mmin + ΣDC

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

194

(2) When DC moves , d ΔΦi ≤ −d

d Φ = k ⋅ Mmin + ΣDC

k − 1

Φ = k ⋅ (−d)

+ (k − 1) ⋅ d *

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

195

(2) When DC moves , 2d ΔΦi ≤ −2d

d Φ = k ⋅ Mmin + ΣDC

 Φ = k ⋅ 0 + 2d

d

*

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

196

(2) When DC moves , 2d ΔΦi ≤ −2d

sd Φ = k ⋅ Mmin + ΣDC

 Φ = k ⋅ 0 + 2d

d

−d
+d for any other server ,

the total distance does not change
s

*

DC is -compe::ve on a linek
If the request falls outside the convex hull of the
servers, serve it with the nearest server

Otherwise, move the two closest servers towards the request
at equal speeds until at least one server reaches it

197

(2) When DC moves , 2d ΔΦi ≤ −2d

d Φ = k ⋅ Mmin + ΣDC

 Φ = k ⋅ 0 + 2d

d

−d −d The only changed distance is the one
between the two moving servers

*

-Server Lower Boundk

198

