
Exercise 8: Problem Lower Bounds

1 Ever Given
Recall the Ever Given problem, where waiting until the canal is available takes F units of time, and
going around Africa via the Cape of Good Hope takes S. Prove that for this problem, there is no
deterministic online algorithm better than (2 − F

S )-competitive.

Proof. Consider any deterministic online algorithm. It must turn around to the Cape of Good Hope
route at some time. T . For algorithm ALGT which turns around at the T -th unit of time, we design
the adversarial input IT that the canal is available at time T + ϵ, where ϵ > 0 but very small. With
this instance, the cost of algorithm ALGT is T + S, while the optimal cost is min{S, T + ϵ + F}.

There are two cases of T : T ≥ S − F or T < S − F .

• If T ≥ S − F , the optimal cost is S and the ratio ALGT (IT )
OPT(IT ) = T +S

S ≥ (S−F )+S
S = 2 − F

S .

• If T < S −F , the optimal cost is less than or equal to T +F + ϵ. Therefore, the ratio ALGT (IT )
OPT(IT ) ≥

T +S
T +ϵ+F . The ratio decreases as T increases. Hence, since T < S − F , the ratio is lower bounded
by (S−F )+S

(S−F )+ϵ+F = 2 − F
S when ϵ tends to 0.

Therefore, for both cases, the ratio ALGT (IT )
OPT(IT ) ≥ 2 − F

S .

2 Two-store Ski-Rental
Consider that there are two stores in the Ski-rental problem, 1 and 2, where you can buy or rent a
pair of skis. Let r1 and B1 be the renting and buying prices from Store 1, respectively. For Store
2, r2 and B2 are defined symmetrically. Note that there is no specific relation between r1 and r2 or
B1 and B2, except that B1 and B2 are both larger than max{r1, r2}. Let rmin = min{r1, r2} and
Bmin = min{B1, B2}. Show that the problem lower bound is at least 2 − rmin

Bmin
.

(Hint: You can first show that the algorithms that always rent from the store with the lower renting
price and buy from the store with a lower buying price must have a better ratio. Then, you focus on
the algorithms in this family and find adversarial instances for any of them.)

Let Sr be the store with the renting price of rmin, and SB be the store with the buying price of
Bmin. Let A be a family of algorithms that always rent the ski from Sr and buy the ski from SB . We
first show that any algorithm ALG can be transformed into an algorithm ALGA without increasing
its cost on any instance. That is, for any ALG, there exists ALG′ ∈ A such that ALG(σ) ≥ ALG′(σ)
for any instance σ = (r1, B1, r2, B2, d), where d is the number of skiing days. If this claim is true, then
we only need to find adversarial instances for algorithms in A.

The transformation from ALG to ALG′ ∈ A is as follows. If ALG always buys the ski from SB

and rents the ski from Sr, ALG ∈ A. (That is, we can set ALG′ = ALG.) Otherwise, we set that
ALG′ buys the ski on the same day when ALG buys the ski but from SB . Similarly, if there is a day
when ALG rents the ski from the store 3 − Sr,† ALG′ rents the ski from the store Sr on the same
day. Since the cost of renting/buying for ALG′ is always lower than or equal to the cost paid by ALG,
ALG(σ) ≥ ALG′(σ) for any instance σ.

†It’s an unnecessary but fancy way to say that if Sr = 1, the other store is 2, and if Sr = 2, then the other store is 1.

1



Now, for any algorithm ALG that buys the ski on the k-th day, we set the adversary instance
σ′ = (r1, B1, r2, B2, k). That is, the adversary has k skiing days. In this case, ALG(σ) ≥ ALG′(σ) =
(k − 1) · rmin + Bmin, where ALG′ is the corresponding algorithm from the transformation mentioned
above. On the other hand, OPT(σ′) = min{k · rmin, Bmin}. Therefore, for any ALG, ALG(σ′)

OPT(σ′) ≥
ALG′(σ′)
OPT(σ′) ≥ (k−1)·rmin+Bmin

min{k·rmin,Bmin} ≥ max{ (k−1)·rmin+Bmin
k·rmin

, (k−1)·rmin+Bmin
Bmin

}. Letting k · rmin = Bmin gives an
lower bound of max{ (k−1)·rmin+Bmin

k·rmin
, (k−1)·rmin+Bmin

Bmin
} = Bmin−rmin+Bmin

Bmin
= 2 − rmin

Bmin
.‡

3 Online Load Balancing on Two Machines
Recall the online load balancing problem, where there are m machines. A sequence of n jobs arrives
where each job Ji has a processing load of ℓi. The goal is to assign the jobs so that the highest
load of the machines is minimized. Show that when m = 2, no online algorithm can be better than
1.5-competitive.

Given any algorithm ALG, the adversary σ first releases two unit-size jobs. The input sequence
stops if ALG assigns the two jobs on the same machine. In this case, OPT cost is 1 while ALG cost
is 2, and the ratio ALG(σ)

OPT(σ) = 2 > 1.5.
On the other hand, if ALG puts these two jobs on different machines, the adversary releases another

job with size 2. In this case, the OPT cost is 2 by putting the size-2 job on one machine and the other
two jobs on the other machine. However, ALG is 3, and the ratio between ALG and OPT is 3

2 .
That is, in either case, the ratio between the ALG cost and the OPT cost is at least 1.5.

4 Potential function of Ski-Rental
Recall the Ski-Rental problem and the algorithm that buys the ski on the B-th skiing day. Use the
potential function method to show that the algorithm is 2-competitive.

(Hint: In this problem, the parameters observable from outside are: if the algorithm/optimal have
a pair of ski, and how many skiing days are there so far.)

Let A ∈ {0, 1} (and B ∈ {0, 1}) indicate whether the algorithm (and the optimal solution) has a
ski (1) or not (0). We define the potential function Φk(A, B) at the end of the k-th day:

• Φk(0, 0) = k,

• Φk(0, 1) = 2B − k,

• Φk(1, 0) = 0, and

• Φk(1, 1) = 0.
There are three cases regarding the behavior of the algorithm and the optimal solution on each day

k:
1. Both the algorithm and optimal solution rent the ski: In this case, neither of the algorithms

has a pair of skis. The change of potential is Φk(0, 0) − Φk−1(0, 0) = k − (k − 1) = 1. Thus,
ALGk + ∆Φk = 1 + 1 = 2 ≤ r · OPTk = r · 1 for some r.

2. The Optimal solution is to buy a ski (no matter when it did this), and the algorithm rents. In
this case, Φk(0, 1) − Φk−1(0, 1) = (2B − k) − (2B − (k − 1)) = −1. Thus, ALGk + ∆Φk = 1 − 1 =
0 ≤ r · OPTk for some r.

3. The algorithm buys a ski. If the optimal solution does not buy the ski, Φk(1, 0) − Φk−1(0, 0) =
0−k = −k. Otherwise, if the optimal solution buys the ski, Φk(1, 1)−Φk−1(0, 1) = 0−(2B−k) =
k−2B. Since this must happen on the B-th day, k = B. Thus, ALGk +∆Φk ≤ B +max{−k, k−
2B} = B − B = 0 ≤ r · OPTk = r · 0 for some r.

Picking r = 2 is sufficient for all the cases. Hence, the algorithm is 2-competitive.
‡It is consistent with the original case, which can be seen as both stores have a renting price of 1 and a buying price

of B.

2


	Ever Given
	Two-store Ski-Rental
	Online Load Balancing on Two Machines
	Potential function of Ski-Rental

