
List Accessing and k-Server Problems
Hsiang-Hsuan (Alison) Liu

1 List Accessing Problem

List Accessing problem

We are given a list of ℓ items with a pointer pointing at the beginning of the list. The Access(x)
request is to find the item x in the list by moving the pointer through the list. Once the item
x is found, moving x to any position closer to the front of the list is free. Find a reorganization
rule that minimizes the search time for n Access operations.

1.1 The Move-to-Front Algorithm (MTF)

Move-to-Front Algorithm

After accessing an item, move it to the front of the list without changing the relative order of
the other items.

Theorem 1. MTF for the List Accessing problem is 2 − 1
ℓ -competitive.

Proof. Let the request sequence σ = {r1, r2, · · · , rn}. For any i ∈ {1, 2, · · · , n}, we denote ti as the
(actual) cost that MTF incurs for processing request Access(ri). We say that item i and j form an
inversion if i is before j in the MTF list but i is after j in the OPT list. A potential function Φi is defined
by the number of inversions in the MTF list and the OPT list after Access(ri). For completeness, we let
Φ0 be the number of inversions in the initial lists. Assume that the algorithms start from the same
list, Φ0 = 0. Let ai = ti + Φi − Φi−1 be the amortized cost for MTF processing request Access(ri). By
summing up all the amortized costs, we get

MTF(σ) =
n∑

i=1
ti = Φ0 − Φn +

n∑
i=1

ai ≤
n∑

i=1
ai.

The last inequality is from the fact that Φi ≥ 0 for any i and Φ0 = 0.
Next, we claim that ai ≤ 2 · OPTi − 1 for all i, where OPTi is the cost incurred by OPT on the

i-th request. If the claim is true, MTF(σ) ≤
∑n

i=1 ai ≤
∑n

i=1(2 · OPTi − 1) = 2 · OPT(σ) − n. Since
OPT(σ) ≤ ℓ · n, MTF(σ) ≤ 2 · OPT(σ) − n ≤ 2 · OPT(σ) − OPT(σ)

ℓ .
Now, the only task left is to show the correctness of the claim (that is, ai ≤ 2 · OPTi − 1 for all

i). For any request Access(ri), assume that the item ri is at the k-th position in the MTF list and
at the j-th position in the OPT list. Assume that right before Access(ri), there are g items before ri

in the MTF list but after ri in the OPT list. These g items contribute to Φi−1 but not to Φi due to
the fact that MTF moves ri to the front of the list after Access(ri). On the other hand, the rest of
k − 1 − g items in the MTF list that are in front of ri will be new inversions that contribute to Φi.
Since there are k − 1 items before ri in the MTF list, OPTi = j ≥ (k − 1 − g) + 1 = k − g. Therefore,
ai = k + Φi − Φi−1 = k + ((k − 1 − g) − g) = 2(k − r) − 1 ≤ 2 · OPTi − 1 as we desired.

Note that OPT might also move ri to somewhere closer to the front of the list or toward the end
by actively accessing an item b later in the list and swapping with b. In the front case, the potential
further decreased. In the latter case, the potential is increased by exactly the extra cost by OPT.

1

1.2 List Accessing problem lower bound
Theorem 2. The List Accessing problem is at least 2 − 2

ℓ+1 -competitive

Proof. Given any online algorithm ALG, we consider the adversary σ that keeps accessing the last
item in the list. The cost incurred by ALG is ℓ · n, where n is the number of requests.

Now, we consider ℓ! static algorithms, each starting with one of the ℓ! permutations of the items,
that never change their list ordering when serving the requests. Note that each static algorithm can
achieve its initial list configuration by at most ℓ2 swappings. For each request, the accessed item is at
the i-th position in (ℓ − 1)! of the static algorithms for all i ∈ {1, 2, · · · , n}. Therefore, the total cost
of serving all n requests of all static algorithms is

n ·
ℓ∑

i=1
i · (ℓ − 1)!.

The average cost of serving the n requests of a static algorithm is

n ·
∑ℓ

i=1 i · (ℓ − 1)!
ℓ! = n(ℓ + 1)

2 .

Thus, there is at least one static algorithm with a total cost of at most n(ℓ+1)
2 . Since the optimal

solution is at least as good as this static algorithm, the optimal cost is at most n(ℓ+1)
2 + ℓ2. In this

case,
ALG(σ)
OPT(σ) ≥ ℓn

n(ℓ+1)
2 + ℓ2

= 2 − 2
ℓ + 1 when n is large enough.

2

2 k-Server Problem
k-Server problem

Let k > 1 be an integer, and let (M, d) be a metric space where M is a set of points with
|M| > k and d is a metric over M. The algorithm is presented with a sequence σ = r1, r2, · · · , rn

of n requests where a request ri is a point in the space. We say that a request r is served if one
of the servers is located at r. An algorithm must serve all the requests sequentially by moving
the servers to the requests. The goal is to find a strategy that minimizes the total moving
distance of all servers in servicing σ.

2.1 Greedy is unbounded for k-Server

Greedy Algorithm

When there is a request r that is not served, move the closet server to r to serve it.

Theorem 3. Greedy algorithm has an unbounded competitive ratio

Proof. Consider the adversarial instance where there are 2 servers and M has three points a, b, and
c. Furthermore, let d(a, b) = 1, d(b, c) = 2, and d(a, c) = 3. Let the servers initially sit at a and
c. (This can be done by first requesting a and c.) Next, the requests sequence is b, a, b, a, b, a, · · · ,
repeating n times. The optimal strategy is to move the server at c to b, and the optimal cost is at
most 3 + 3 + 2 = 6. However, in the Greedy algorithm, the server at c will remain at c, while the
other server will move between a and b. The cost of Greedy algorithm is then at least n. When n is
arbitrarily large, the ratio Greedy(σ)

OPT(σ) ≥ n
6 ≈ n.

2.2 Double Coverage Algorithm (DC) on a line metric

Double Coverage Algorithm

If the request falls outside the convex hull of the servers, serve it with the nearest server
Otherwise, move the two closest servers toward the request at equal speeds until at least one
server reaches it

Theorem 4. Double Coverage algorithm is k-competitive

Proof. Let Mmin denote the cost of the minimum cost matching between OPT’s and DC’s servers.
Letting s1, s2, · · · , sk be the position of DC’s servers, we denote ΣDC =

∑
i<j d(si, sj). We define the

potential function Φ = k · Mmin +
∑

DC . Now, considering the special order where once a request is
released, OPT first moves its server, and then DC moves, we claim that:

1. If OPT moves a distance d, the potential change ∆Φi = Φi − Φi−1 ≤ kd, and

2. If DC moves d, the potential change ∆Φi = Φi − Φi−1 ≤ −d.

If we have the following claim, DCi + ∆Φi ≤ k · OPTi, and DC ≤ k · OPT as Φi ≥ 0 for any i.

Now, we prove the two claims.

1. Since the DC servers do not move,
∑

DC remains the same. On the other hand, Mmin cannot
increased by more than d. Therefore, ∆Mmin ≤ kd.

2. There are two cases where DC moves its servers:

3

(a) If DC moves a single server for a distance d, then ∆
∑

DC = (k − 1) · d since this server
must move away from other k − 1 servers. Moreover, ∆Mmin = −d because DC just served
this new request and has a server at this position. In total, ∆Φi = k · ∆Mmin + ∆

∑
DC =

−kd + (k − 1)d = −d

(b) If DC moves two servers, s1 and s2, each for a distance of d′ = d
2 , they move toward each

other. Without loss of generality, we assume that s1 is on the left of s2, and s2 serves the
request ri. The only change in

∑
DC is ∆d(s1, s2) = −2d′ since for any other server s,

∆d(s, s1) = −∆d(s, s2). For the change of Mmin, there are two cases. If the optimal server
matched with s1 is at ri or its right, the matching regarding s1 is decreased by d′, and
the matching regarding s2 is increased by d′. Thus, the ∆Mmin = 0 in this case. On the
other hand, if the optimal sever matched with s2 is at ri or its left, the matching regarding
s2 is decreased by d′, and the matching regarding s1 is increased by at most d′. Thus,
∆Mmin ≤ 0. Therefore, in the case where DC moves two servers, the change of potential
∆Φi ≤ k · 0 + 2d′ = d.

2.3 k-Server problem lower bound
Theorem 5. The k-Server problem is at least k-competitive

Proof. Consider a metric space with k +1 points, v0, v1, v2, · · · , vk. For any algorithm ALG, which has
its k servers at points v1, v2, · · · , vk, we design the adversary σ = r1, r2, · · · , rn that always requests
the position that there is no ALG server. The request sequence σ starts with requesting v0. The total
cost of ALG on the n requests is

∑n
i=1 d(ri, ri+1).

Let B1, B2, · · · Bk be k algorithms where the servers of Bh are at any points but vh initially. (Note
that each Bh has a server at r1 = v0.) Each Bh serves an uncovered request ri with the server
occupying ri−1. That is, if a server covers ri, Bh does nothing.

We claim that after each request is processed, different algorithms will always be in different
configurations. Then, the total cost incurred by all Bh serving σ is

n∑
i=2

d(ri−1, ri) =
n−1∑
i=1

d(ri, ri+1).

It follows that the average cost of these algorithms is∑n−1
i=1 d(ri, ri+1)

k
= ALG(σ)

k
.

By the average bound argument, ALG(σ)
OPT(σ) ≥ k.

Now, we prove the correctness of the claim by induction. By definition of Bh’s, initially, all Bh

algorithms have different configurations. Given any two algorithms Bh and Bℓ, letting Sj
h be the

configuration of Bh after request rj , there are three cases concerning request ri:

1. ri is in Si−1
h and Si−1

ℓ . In this case, both Bh and Bℓ do not move, and Si
n = Si−1

h ̸= Si−1
ℓ = Si

ℓ.

2. ri is in Si−1
h but not in Si−1

ℓ . In this case, Bh does not move, but Bℓ moves the server located
at ri−1 to ri. Thus, Si

h = Si−1
h contains ri−1 while Si

ℓ does not.

3. ri is in neither Si−1
h nor Si−1

ℓ . In this case, Si−1
h \ {ri−1} ≠ Si−1

ℓ \ {ri−1}. Thus, Si
h ̸= Si

ℓ.

4

	List Accessing Problem
	The Move-to-Front Algorithm (MTF)
	List Accessing problem lower bound

	k-Server Problem
	Greedy is unbounded for k-Server
	Double Coverage Algorithm (DC) on a line metric
	k-Server problem lower bound

