Algorithms for Decision Support

(Integer) Linear Programming (2/3)

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® |P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

2

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® |P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

3

Set Cover Problem

® Given a certain number of regions, the problem is to decide where to
install a set of emergency service centers. For each possible center the
cost of installing a service center, and which regions it can service are
known. The goal is to choose a minimum cost set of service centers so
that each region is covered.

Set Cover Problem

® Given a certain number of regions, the problem is to decide where to
install a set of emergency service centers. For each possible center the
cost of installing a service center, and which regions it can service are
known. The goal is to choose a minimum cost set of service centers so
that each region is covered.

® A more mathematical description:
let M = {1,2,---,m} be the set of regions, and N = {1,2,---, n} be the
set of potential centers. Let §; C /N be the centers j that can service set
1 € M, and C; its installation cost. Choose a minimum cost set of service

centers so that each region is covered.

5

Set Cover Problem

o letM = {1,2,---,m} be the set of regions, and be the set of potential
centers. Let 5; € NNV be the centers j that can service set i € M, and ¢; its installation

cost. Choose a minimum cost set of service centers so that each region is covered.

Set Cover Problem

o letM = {1,2,---,m} be the set of regions, and be the set of potential
centers. Let §; C N be the centers j that can service set1 € M, and

. Choose a minimum cost set of service centers so that each region is covered.

Cq Cs

Set Cover Problem

o letM = {1,2,---,m} be the set of regions, and be the set of potential
centers. Let §; C N be the centers j that can service set1 € M, and

. Choose a minimum cost set of service centers so that each region is covered.

Cq Cs

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of service centers so that each region is covered.

1
[5

€ HCs

S =13, 4}

2

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of service centers so that each region is covered.
2

5
W Cs

S =13, 4}
SZ= {113}

10

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and be the set of potential
centers. Let §; C N be the centers j that can service set1 € M, and

. Choose a minimum cost set of service centers so that each region is covered.

1
5
€l Cs
Sl — {3,4}
S, =1{1,3)

11

Set Cover Problem

o letM = {1,2,---,m} be the set of regions, and be the set of potential
centers. Let §; C N be the centers j that can service set1 € M, and

. Choose a minimum cost set of service centers so that each region is covered.

1
5
¢ Cs
Sl — {3,4}
S=1{1.3}
S.=1{1,4,5) 2
S,=1{2,3,4) €

12

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of ser
2

N region is covered.

S =13, 4}
Sz={1,3} 4
S3={1,4,5}

S.=12,3,4}

13

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of ser
2

N region is covered.

A5

S =13, 4}
S, =11, 3} A

S4= {2) 314} Cz xz

14

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of service centers so tha_.

2

5
.C5 X5

S1={3,4}
5, =11, 3} .

S4= {21 314} Cz xz

15

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. Choose a minimum cost set of service centers so tha_.

2

:c X For every region, there must
5 :
De at least one service center

5, =13,4] that can service it is selected
S, =11, 3} A

S4={21 314} Cz xz

16

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

> For every region, there must
- Cj X% _
e at least one service center

cost. Choose a minimum cost set of service centers so tha
2

5, =13,4] that can service it is selected
S, =11, 3} A

S4={21 314} 62 xz

17

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

cost. o thaw
5
" C5 X5

S, =13, 4}

S, =11, 3} ,

S;=1{1,4,5} 2 = 3

S4={21 314} 62 xz

18

Set Cover Problem

o let M = {1,2,---,m} be the set of regions, and /V = | |.”.---, 17| be the set of potential
centers. Let 5; € N be the centers j that can service seti € M, and ¢, its installation

min Z;l C.X:

=1"J7] 5
I65x5

SI={3'4}
5, =11, 3} .

S4={21 314} 62 xz

19

Set Cover Problem

o Variable: x; = 1 if center jis selected, and X; = 0 otherwise

o . o n
e Minimize Zj: CiX;

subject to Zj s X = lfori=1,---.m

x; € {0,1} forj = 1,---,n

20

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® |P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

21

Shortest paths

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length
£ ,,,- We want to find a path from s € Vtot € V with the shortest length.

23

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length
£ ,,,- We want to find a path from s € Vtor € V with the shortest length.

24

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length
£ ,,,- We want to find a path from s € Vtot € V with the shortest length.

25

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length
£ ,,,- We want to find a path from s € Vtot € V with the shortest length.

Aba 1

Decide if edge (i, v) is in the shortest path
x,, = 1if (u,v)isin the shortest path

x,,, = 0 otherwise

20

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

Decide if edge (i, v) is in the shortest path
= 1 if (u, v) is in the shortest path

’xl/tV

x,,, = 0 otherwise

27

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

Decide if edge (i, v) is in the shortest path
= 1 if (u, v) is in the shortest path

’xl/tV

x,,, = 0 otherwise

28

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

Decide if edge (i, v) is in the shortest path
= 1 if (u, v) is in the shortest path

’xl/tV

x,,, = 0 otherwise

29

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

VxI/tV

min z“(u,v)EE Lpu

Decide if edge (i, v) is in the shortest path
x,, = 1if (u,v) is in the shortest path

x,,, = 0 otherwise

30

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

a _
S For v not on the shortest path,
(kvere = 0

Decide if edge (i, v) is in the shortest path 3 2, et =0

x,, = 1 if (u,v)isin the shortest path

x,,, = 0 otherwise

31

Shortest paths

e Given a directed graph G = (V, E), each edge (u, v) has a non-negative length

L X

uv--uyv

For v on the shortest path,

2k yyeENy = 1

For v not on the shortest path,

Z(k,v)EExkv =0

Decide if edge (i, v) is in the shortest path / o perXr =0
x,, = 1 if (u,v)isin the shortest path

x,,, = 0 otherwise

32

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

Decide if edge (i, v) is in the shortest path
= 1 if (4, v) is in the shortest path

’xl/tV

x,,, = 0 otherwise

33

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length

Decide if edge (i, v) is in the shortest path
= 1 if (4, v) is in the shortest path

’xl/tV

x,,, = 0 otherwise

34

Shortest paths

e Given a directed graph G = (V,), each edge (i, v) has a non-negative length
- We want to find a path from s € Vtor € V with the shortest length.

e Variable: x,, = 1 if the edge (i, v) is in the s — 7 shortest path

e minimize 2, g€, X

uv--uy

subject to 2 iyep X = 1

Z(k,t)EE X = 1

Z(k,v)eExkv — Z(V,k)EEka — O for all v = V\{S, t}

x, € 10,1} forallu,v eV

35

Shortest paths

® Sometimes, the constraints are not explicitly stated and need to be
figured out by analyzing the desired solution’s property

® Trick:

® There are two types of vertices, depending on if it is on the shortest
path from sto ¢

e Different types vertices have different characterizations — observe
the property and make a set of constraints for any vertex v that does
not rely on whether v is in the shortest path

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® |P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

37

Traveling Salesperson Problem

® A salesperson must visit each of n cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city j is Cii- Find the order in which the salesperson should make their tour

so as to finish as quickly as possible.

33

Traveling Salesperson Problem

® A salesperson must visit each of n cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city j is Cii- Find the order in which the salesperson should make their tour

so as to finish as quickly as possible.

39

Traveling Salesperson Problem

® A salesperson must visit each of n cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city j is Cii- Find the order in which the salesperson should make their tour

so as to finish as quickly as possible.

Xda 1

40

Traveling Salesperson Problem

® A salesperson must visit each of n cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

41

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

42

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

43

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

44

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

45

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

Xda 1

46

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

any non-empty
subset of cities S X7, 1

47

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city j is Cji- Find the order in which the salesperson should make their tour

X, For every city 7, 2;,,x; = 1

For every city 7, 2;x; = 1

any non-empty
subset of cities S X7, 1

AG

The tour must be traveling
O between the cuts

ForS G Nand § # @, Zjcg2igsX;; 2 1

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city j is Cji- Find the order in which the salesperson should make their tour

X, For every city 7, 2;,,x; = 1

For every city 7, 2;x; = 1

any non-empty
subset of cities S X7, 1

AQ

The tour must be traveling
O between the cuts

ForS G Nand § # @, Zjcg2igsX;; 2 1

Traveling Salesperson Problem

® A salesperson must visit each of 7z cities exactly once and then return to the starting point. The time
taken to travel from city 1 to city J is Cii- Find the order in which the salesperson should make their tour

any non-empty
subset of cities S X7, 1

X JANN

The tour must be traveling
O between the cuts

50

Traveling Salesperson Problem

® A salesperson must visit each of a set NV of n cities exactly once and then return to the starting point. The
time taken to travel from city i to city J is Cjj- Find the order in which the salesperson should make their

tour so as to finish as quickly as possible.

® Decision: which edges to take, and the order of taking the edges

° X = 1 if the salesperson goes directly from town i to town j, and Xji = O otherwise

e Objective: min X X7 | ¢;x;

® Constraint: Each city is visited exactly once

o Leavecityionce 2 x; = lfori=1,--,n
e Arrive cityionce 2 ,;x; = 1 fori = 1,---,n
e ForS§ S Nand S # ¢, Zjcg2igsX;; 2 1

° X; € {0,1}fori=1,---,n,j=1,---,n

51

Traveling Salesperson Problem

® Find the ordering is automatically done by “choosing a cycle”

® Sometimes, the naive formulated constraints are only necessary
conditions, but not sufficient

= find alternative formulations to rule out the exceptions

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

53

Different Linear Programming Problems

® [inear programming ® [nteger Linear programming

® decisions can be real numbers ® decisions must be integral

54

Different Linear Programming Problems

® [inear programming ® [nteger Linear programming

® decisions can be real numbers ® decisions must be integral

Different Linear Programming Problems

® [inear programming ® [nteger Linear programming

® decisions can be real numbers ® decisions must be integral

LP relaxation

LP relaxation

® |nteger Linear programming

® decisions must be integral

maximize S0x + 32y

subject to S0x + 31y < 250
3x—=2y > -4
x,y €N

58

LP relaxation

® Linear programming ® |nteger Linear programming
® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y
subject to 50x + 31y < 250 subject to 50x + 31y < 250
3x—2y>—4 3x—2y>—4

x,y >0 X,y €N

59

LP relaxation

® Linear programming ® |nteger Linear programming
® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y
subject to 50x + 31y < 250 subject to 50x + 31y < 250
3x—2y>—4 3x—2y>—4
x,y >0 < X,y €N

Relax the restriction that
x and y should be integral

60

LP relaxation

® Linear programming ® |nteger Linear programming
® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y
subject to 50x + 31y < 250 subject to 50x + 31y < 250
3x—=2y>—4f - = - - - 3x—-2y>—4
x,y >0 X,y €N

LP relaxation

® Linear programming ® |nteger Linear programming

® decisions can be real numbers ® decisions must be integral

maximize 50x + 32y maximize 50x + 32y

subject to 50x + 31y < 250 subject to 50x + 31y < 250
3x =2y > —4f o - - - 3x—-2y>—4
x,y >0 x,y €N

fractional optimum 254.92227 /|

_ 376 _ 950 ‘ .

X ;Y

193 193 62

LP relaxation

® Linear programming ® |nteger Linear programming
® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y
subject to 50x + 31y < 250 subject to 50x + 31y < 250
3x—2y>—4 /\ 798 3x—2y2—4
x,y >0 L L MEAYEA vy e N
fractional optimum 254.92227 ‘
376 950
— — —

X ;Y

193 193 63

LP relaxation

® Linear programming ® |nteger Linear programming

® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y

subject to 50x + 31y < 250 subject to 50x + 31y < 250

x=2y=%xyeN

fractional optimum 254.92227 [TN integral optimum 250
376 950 ‘ ~ _ _
X = Yy = ¥=2y=0

193° 193 64

LP relaxation

® Linear programming ® |nteger Linear programming
® decisions can be real numbers ® decisions must be integral
maximize 50x + 32y maximize 50x + 32y
subject to 50x + 31y < 250 subject to 50x + 31y < 250
3 X — 2y Z — 4 ° \ o o o 598 3 X — 2y Z — 4
x,y >0 . L =AY =4x y e N

fractional optimum 254.92227 | integral optimum 250
376 950 X = 5 Yy = O

— , y — ’
193 193 65 N 50x + 32y = 250

X

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

OOOOO

OOOOO

Any integral solution can be seen as a

006

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

Lﬁ

Any integral solution can be seen as a

If an optimal happens to be integral, it is an optimal integral solution

67

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

—— s -

objective value

63

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

feasible integral instance

(x,y) = (0,1)
R T ———— ——

objective value

69

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

feasible integral instance

(x,y) =(0,1)
-
feasible integral instance objective value

(x,y) = (1,0)

70

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

We want to find the position of the right-most value

\ 4

- - - -

objective value

71

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

We want to find the position of the right-most value

objective value

(2

LP relaxation and upper/lower bound

® For maximization ILP problemes, its LP relaxation gives an upper bound of
the optimal (integral) value

We want to find the position of the right-most value

objective value

The of the LP relaxation
is always an upper bound of the optimal integral solution

73

LP relaxation and upper/lower bound

® For minimization ILP problems, its LP relaxation gives an lower bound of
the optimal (integral) value

4

LP relaxation and upper/lower bound

® For minimization ILP problems, its LP relaxation gives an lower bound of
the optimal (integral) value

el e —

objective value

lgs

LP relaxation and upper/lower bound

® For minimization ILP problems, its LP relaxation gives an lower bound of
the optimal (integral) value

We want to find the position of the left-most value

\ 4

- - - -

objective value

/0

LP relaxation and upper/lower bound

® For minimization ILP problems, its LP relaxation gives an lower bound of
the optimal (integral) value

We want to find the position of the left-most value

objective value

’r’

LP relaxation and upper/lower bound

® For minimization ILP problems, its LP relaxation gives an lower bound of
the optimal (integral) value

We want to find the position of the left-most value

objective value

The of the LP relaxation
is always an lower bound of the optimal integral solution

/3

What happened

® [t’s tricky to find the optimal integral solution, but the optimal fractional
solution of the ILP’s relaxation provides an upper (lower) bound of the
optimal integral solution in the maximization (minimization) problem

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

80

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

t

Formulation 1

L

 ——

31

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

_ o o o o
Formulation 1
(o] O (o (o
We cannot directly say that Formulation 1
is better or is better
O (@) O O
O O O O

L

 ——

82

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

83

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

is better than Formulation 1

_ o o o o
Formulation 1
(o] O (o] (o)
O (o) (o) (o)
e O (@ (o)

34

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of

formulations

® How can we choose between them?

Formulation 1

O

85

o

is better than Formulation 1

(Maximization)
If the
is fully inside the feasible region
of Form. 1, an

is always a
feasible solution to Form. 1

——p = OPT|p1 2 > OPTyp

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

ldeal formulation

86

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

w lllegal formulation

>

87

Different formulations of ILP

® Geometrically, we can see that there must be an infinite number of
formulations

® How can we choose between them?

Formulation 1

w lllegal formulation

>

83

Modeling choice

® There are alternative formulations, and some might be “better” than
others

® That is, it more accurately/efficiently capture the optimal (integral)
solution

89

Modeling choice

® There are alternative formulations, and some might be “better” than
others

® That is, it more accurately/efficiently capture the optimal (integral)

solution
We want to find the position of the right-most value

- - —

objective value

The of the LP relaxation
is always an upper bound of the optimal integral solution

90

Modeling choice

® There are alternative formulations, and some might be “better” than
others

® That is, it more accurately/efficiently capture the optimal (integral)

solution
We want to find the position of the right-most value
* formulation 2
-0 — 0 —0— e —

objective value

The of the LP relaxation
is always an upper bound of the optimal integral solution

91

Modeling choice

® There are alternative formulations, and some might be “better” than
others

® That is, it more accurately/efficiently capture the optimal (integral)

solution
We want to find the position of the left-most value

e ————

formulation 2 objective value

The of the LP relaxation
Is always an upper bound of the optimal integral solution

92

What happened

e Different formulation (via different sets of constraints) might provide
different optimal fractional solutions

® The different formulations shouldn’t exclude any feasible integral
solution or include any infeasible integral solution

Outline

® More modeling optimization problems to (integer) programming
problems

® Set cover
® Shortest paths

® Traveling Salesperson Problem
® |P relaxation and upper/lower bound

® Solving ILP: Branch and bound method

94

Branch-and-Bound

Branch-and-Bound

® Solve integer programming problems

e Listing every feasible solution (x;, x,, ---,x,) = (0,1,---,0) solves the
problem (not efficiently)

® |dea: Use divide and conquer via an enumeration tree

® Divide the solution set into subsets

® Find the upper bound and lower bound of the optimal solution within
each subset

® “Cut” the branch if the bounds provide enough information

96

Branch-and-Bound

. all possible solutions (feasible or infeasible)

Branch-and-Bound

Maximization

98

Branch-and-Bound

Maximization

objective value

99

Branch-and-Bound

Maximization |]

S —————————_—

objective value

100

Branch-and-Bound

Maximization [12, 2 7]

o

S —————————_—

objective value

101

Branch-and-Bound

Maximization

S —————————_—

12 objective value

X, 102

Branch-and-Bound

Maximization

S —————————_—

12 objective value

X 103

Branch-and-Bound

Maximization

S —————————_—

12 objective value

104

Branch-and-Bound

Maximization

S —————————_—

12 objective value

105

Branch-and-Bound

Maximization

S —————————_—

12 objective value

106

Branch-and-Bound

Maximization

e ————————

objective value

107

Branch-and-Bound

Maximization

]

e ————————

21 objective value

108

Branch-and-Bound

Maximization

]

e ————————

21 objective value

109

Branch-and-Bound

Maximization

e —————————

21 objective value

110

Branch-and- Bound

[21,
Maximization

e —————————

21 objective value

111

Branch-and- Bound

[21,
Maximization

e —————————

21 objective value

112

Branch-and-Bound

Maximization

S —————————_—

12 objective value

X 113

Branch-and-Bound

Maximization

S —————————_—

12 objective value
20

X 114

Branch-and-Bound

Maximization

.0
.0
L 4

’0
.0
L 4

’0
.0
L 4

0..
*

S —————————_—

12 objective value

X 115

Branch-and-Bound

Maximization

.0
.0
L 4

’0
.0
L 4

’0
.0
L 4

*
*
*
*
*
’0
*

0..
*

e e ———————

objective value

116

Branch-and-Bound

Maximization

]

.0
.0
*

.0
*
.0
*
*
.0
L 4

’0
.0
L 4

*
*
*
*
*
’0
*

.0
.0
*

0..
*

e e ———————

15 objective value

117

Branch-and-Bound

Maximization

]

.0
.0
L 4

’0
.0
L 4

’0
.0
L 4

*
*
*
*
*
’0
*

.0
‘0
*

0..
*

e e ———————

15 objective value

118

Branch-and-Bound

Maximization

]

.0
.0
*

.0
*
’0
*
*
L 4
’0
*
L 4
.0
L 4

*
*
*
*
L 4
’0
*

*
*
*
*
*
*
.0
*

e ————————

15 objective value

119

Branch- and Bound

Maximization

.0
.0
*

.0
*
.0
*
*
.0
L 4

’0
.0
L 4

.0
‘0
*

0..
*

e ———————

15 objective value

120

Branch-and-Bound

® Branch-and-bound method solves ILPs by gradually narrowing down the
range of optimal solutions

® Branching: divide the solution space via choices of specific variables

® Bound: improve the range of the optimal value via pruning a branch
or merging the bounds from different branches

Use Branch-and-Bound to solve Knapsack

project | 2 3 J
% % budget
outlay a; a, s ay A5 b
expected - - - - -
return : 2 3 4)

e There is a budget b available for investment in projects during the coming

vear, and n projects are under consideration, where a; Is the outlay for

project 7, and C; s its expected return. The goal is to choose a set of projects

so that the budget is not exceeded and the expected return is maximized

122

Use Branch-and-Bound to solve Knapsack

ltem 1 2 3 4 5
return 3 12 / 15 12
outlay 4 8 3 6 5

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

123

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

124

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

125

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

120

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

127

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

128

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

129

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

130

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

|
o OPT;=[8,12.7.15,12][0.1 L.1]'=

131

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

maximize 8X1 + 12.X2 + 7.X3 + 15X4 + 12x5
subject to 4x; + 8x, + 3x;3 + 6x4 + Sx5 < 15
X1 X9, X3, X4, X5 € 10,1}

e Optimal fractional solution can be found by greedily selecting the item with the highest outlay/return value without
exceeding the budget

|
o OPT/= [8,12,7,15,12]-[Z,O,l,l,l]T= _and there is a feasible integral solution [8,12,7,15,12]-[0,0,1,1,1] = 34

132

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

34, 36]

O

|
o OPT/= [8,12,7,15,12]-[Z,O,l,l,l]T= _and there is a feasible integral solution [8,12,7,15,12]-[0,0,1,1,1] = 34

133

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

34, 36] % = ¢

134

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

34, 36] % = ¢

135

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

34, 36] % = ¢

130

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

34, 36] % = ¢

137

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

34, 36] % = ¢

133

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 0 5
outlay/return 2 1.5 2.333 2.5 2.4

[,31.5]

34, 36] % = ¢

139

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 0 3 1 6 0 5 1
outlay/return 2 1.5 2.333 2.5 2.4

140

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

141

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

142

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

143

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

144

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

145

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

146

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 1 5
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

147

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

148

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

149

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

150

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

151

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

152

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

153

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

1564

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 0 3 1 6 1 5 0
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

155

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

156

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

157

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

158

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

159

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

160

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

161

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

L ptl®
[34, 36]

x, = 1
’ @ 34, 36]

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 0 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

(34, 36] 14 =2 @ 30, 33] @
6 ..‘ = 0 @ X3 = 0
[34, 36]

o
x, =1
’ @ 34,
x5=1 163

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 0 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27,] [, 35]

(34, 36] 14 =2 @ 30, 33] @
6 ..‘ = 0 @ X3 = 0
[34, 36]

o
x, =1
’ @ 34,
x5=1 164

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 0 3 0 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 25]

(34, 36] 14 =2 @ 30, 33] @
6 .“ = 0 @ X3 = 0
[34, 36]

()
x, =1
! @ 34,
x5=1 165

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

(34, 36] 14 =2 @ 30, 33] @
6 .“ = 0 @ X3 = 0
[34, 36]

()
x, =1
4 @ 34, @
— X3 =1
¥s =1 @ 166

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

[34, 36] 4 =2 @ 30, 33] @
6 .“ = 0 @ X3 = 0
[34, 36] [, 36]

(U
x, =1
4 @ 34, @
— X3 =1
¥s =1 @ 167

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 25]

(34, 36] 14 =2 @ 30, 33] @
6 .“ = 0 @ X3 = 0
[34, 36] [34, 36]

()
x, =1
4 @ 34, @
— X3 =1
Xs =1 @ 168

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 25]

(34, 36] 14 =2 @ 30, 33] @
6 .“ = 0 @ X3 = 0
[34, 36] [34, 36]

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 25]

135, 36]
34,]X4—0 30, 33] @

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

35, 36]
34,]X4=0

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

35, 36]
34,]X4=0

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

135, 36]
34,]X4—° 30, 33]

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

35, 36]
34,]X4=0

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

(27, 31.5]

35, 36]
34,]X4=0

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

o 5 e
34, 36] ™~ 30, 33]

Infeasible
.xl — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

o 5 e
34, 36] ™~ 30, 33]

Infeasible
1 — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

o 5 e
34, 36] ™~ 30, 33]

Infeasible
1 — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 1 8 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 35]

35, 35.5]
34 =X4=0 30, 33] @ Py
e 3;5,’]]x5=0@ x,=0/34,355] x=0 @
! ’] ..‘)] [)
X4=1 |[:)]

Infeasible
1 — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 0 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27,] [35, 25]

35, 35.5]
32 =X4=° 30, 33] @ S el
e 3:5’;]]X5=O@ x3 =0 /134,] =0 @/

34, 36] 34,

$135,]
Xg = 1 @ |[:)]

Infeasible
1 — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 0 8 0 3 1 6 1 5 1

outlay/return 2 1.5 2.333 2.5 2.4
[27,] [35, 35] [34, 34]

35, 35.5]
32 =X4=° 30, 33] @ S el
e 3:5’;]]X5=O@ x3 =0 /134,] =0 @/

34, 36] 34,

$135,]
Xg = 1 @ |[:)]

Infeasible
1 — 1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27, 31.5] 35, 35] 34, 34]

[35, 35.5]
34 =X4=° 30, 23] @ o R
e 3;5,’]]x5=0@ x, =0 /34,] x=0 @<
Py B135,] o X, =1
x, = 1 @ { , 36] Infeasible i

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27, 31.5] 35, 35] 34, 34]

[35, 35.5]
34 =X4=° 30, 23] @ o R
e 3;5,’]]x5=0@ x, =0 /34,] x=0 @<
Py B135,] o X, =1
x, = 1 @ { , 36] Infeasible i

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27, 31.5] 35, 35] 34, 34]

[35,]
34, 36]* ‘0 30, 3] @ i
| =
e o 3;5,’]]x5=0@ x; =034,] x=0 @\?{\mfeasible
v o133,] o x, =1
x4=1 { , 36} Infeasible i

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27, 31.5] 35, 35] 34, 34]

[35, 35.5])
34 TX4=° 30, 37] @ | =
e o 3;5,’]]x5=0@ x; =034,] x=0 @\?{\mfeasible
v o135,] e X, =1
X =1 @ { , 36} Infeasible i

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5

return 3 12 7/ 15 12

outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4

[27, 31.5] 35, 35] 34, 34]

[35, 35.5])
E i =X4=° 30, 33] @ | -
| Y 41]
e S 3:5,’]]x5=0@ x; =0 : | x=0 @\?{\mfeasible
| | 34, ‘Iil’
) =]
Infeasible g

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 0 8 1 3 1 6 1 5 1
outlay/return 2 1.5 2.333 2.5 2.4
35,]] 27,] (35, 35] [34, 34]

. X =1
Infeasible

e O
34,201 %=%e B4 [30,33]
°‘" ,] 41] .
' Xe = 3 X3 = , X| = nfeasible
e 35, % ! S/,] 0 [] 0 Inf bl

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4
[27, 31.5] 35, 35] 34, 34]

[341] Xy = 0
=0
[35, 351 "4~ [30, 33]
e . xe =0 @ x; =0 x; =0 Infeasible
[35, 35] [34, 34]

x, = 1 Infeasible
[35,

1=1

Use Branch-and-Bound to solve Knapsack

Item 1 2 3 4 5
return 3 12 7/ 15 12
outlay 15 4 8 3 6 5
outlay/return 2 1.5 2.333 2.5 2.4

(27,] 35, ? [34, 34]

[341] Xy = 0
=0
[35, 351 "4~ [30, 33]
e . xe =0 @ x; =0 x; =0 Infeasible
[35, 35] [34, 34]

x, = 1 Infeasible
[35,

1=1

