
Algorithms for Decision Support 

Introduc)on to  
Algorithmic Game Theory

1



Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on 

• Vickrey-Clarke-Groves mechanism
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Prisoner’s Dilemma
• Two prisoners  and  are on trial for a crime 

• Each of them faces a choice of confessing to the 
crime or remaining silent 

• If both remain silent, they both serve a short 
prison term (  years) 

• If only one of them confesses, his term will be 
reduced to  year and the other get a sentence 
of  years 

• If both confess, they both serve prison 
sentence of  years
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Evening Together
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Evening Together
• Two players  and  are deciding on how to 

spend their evening 

• Possibili)es: going to a baseball game or going 
to a soRball game 

•  prefers baseball game and  prefers 
soRball 

• But they both would like to spend the 
evening together rather than separately
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Matching Pennies
• Two players, each having a penny 

• Two strategies: head ( ) or tail ( ) 

• The row player wins if the two pennies 
match 

• The column player wins if the two pennies 
do not match
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Tragedy of Commons
•  players want to have a part of  a shared channel 

• The channel maximum capacity is , but the quality of 
the channel deteriorates with the total bandwidth 
used  

• Each player has infinite set of strategies: sent  units 
of flow along the channel where    

• If  , no player gets any benefit 

• If  , player  gets a value of  

n
1

xi
xi ∈ [0,1]

∑
j

xj ≥ 1

∑
j

xj < 1 i xi (1− ∑
j

xj)
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Tragedy of Commons — Stable solu)on
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Tragedy of Commons — Stable solu)on

• Concentrate on player . Let       be the flow sent by all others 

• Player ’s strategy is to maximize             

• A set of strategies is stable if all players are playing their op)mal selfish 
strategy, given the strategies of all other players  

    for all   

    for all  

i t = Σj≠i xj < 1

i xi (1 − t − xi) ⇒ xi =
1 − t

2
=

1 − Σj≠ixj

2

⇒ xi =
1 − Σj≠ixj

2
i

⇒ xi =
1

n + 1
i
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Tragedy of Commons — Be[er solu)on

• Selfish strategy:    for all   

• Total bandwidth used is  

• For each player, the value is        

• (Centralized) be[er strategy: if the total bandwidth used is : 

•    for each player , and the value of each player is    

• The new value is  )mes the old value (!!)

xi =
1

n + 1
i

n
n + 1

xi(1−Σjxi) =
1

n + 1
(1−

n
n + 1

) =
1

(n + 1)2

1
2

⋅
n

n + 1

xi =
1

2(n + 1)
i

1
2(n + 1)

⋅(1−
n

2(n + 1)
) =

n + 2
4(n + 1)2

n + 2
4
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What happened

• Self-interested behavior in a decentralized environment can decrease 
the overall performance:  

• Agents are selfish (Prisoner’s dilemma) 

• Agents cannot communicate (Evening together, tragedy of commons)
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Vickrey-Clarke-Groves mechanism
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Games: Formal Defini)ons
• A game consists of a set of  self-interested players,  

• Each player  selects a strategy  

• The vector of strategies       selected by the players 
determine the outcome for each player 

• payoff/u2lity       

• cost      

n {1,2,⋯, n}
i si

⃗s = (s1, s2, ⋯, sn)

ui(s1, s2, ⋯, sn) ∈ ℝ

ci(s1, s2, ⋯, sn) ∈ ℝ
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• Each of them faces a choice of confessing to the 
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Evening Together
• Two players  and  are deciding on how to 

spend their evening 

• Possibili)es: going to a baseball game or going 
to a soRball game 

•  prefers baseball game and  prefers 
soRball 

• But they both would like to spend the 
evening together rather than separately
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Tragedy of Commons
•  players want to have a part of  a shared channel 

• The channel maximum capacity is , but the quality of 
the channel deteriorates with the total bandwidth 
used  

• Each player has infinite set of strategies: sent  units 
of flow along the channel where    

• If  , no player gets any benefit 

• If  , player  gets a value of  

n
1

xi
xi ∈ [0,1]

∑
j

xj ≥ 1

∑
j

xj < 1 i xi (1− ∑
j

xj)
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on  

• Vickrey-Clarke-Groves mechanism
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Nash Equilibrium
• Player  (weakly) prefers  to  if  prefers  to  or considers them as 

equally good outcomes. That is,    

•        

•            

• A strategy vector  is a Nash equilibrium if for all players  and each alternate 
strategy ,  

     

(or,     )

i ⃗sx ⃗sy i ⃗sx ⃗sy

ui( ⃗sx ) ≥ ui( ⃗sy )

⃗s−i = (s1, s2, ⋯, si−1, si+1, ⋯, sn)

⃗s = (s1, s2, ⋯, si−1, si, si+1, ⋯, sn) = (si, ⃗s−i )

⃗s i
s′ i

ui(si, ⃗s−i ) ≥ ui(s′ i, ⃗s−i )
ci(si, ⃗s−i ) ≤ ci(s′ i, ⃗s−i )
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⃗s−2 = (0.08, 0.2, 0.15, 0.08)
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Nash Equilibrium
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• Player  (weakly) prefers  to  if  prefers  to  or considers them as 

equally good outcomes. That is,    

•        

•            

• A strategy vector  is a Nash equilibrium if  

for all players  and each alternate strategy : 

     

(or,     )

i ⃗sx ⃗sy i ⃗sx ⃗sy

ui( ⃗sx ) ≥ ui( ⃗sy )

⃗s−i = (s1, s2, ⋯, si−1, si+1, ⋯, sn)

⃗s = (s1, s2, ⋯, si−1, si, si+1, ⋯, sn) = (si, ⃗s−i )

⃗s
i s′ i

ui(si, ⃗s−i ) ≥ ui(s′ i, ⃗s−i )
ci(si, ⃗s−i ) ≤ ci(s′ i, ⃗s−i )
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• Player  (weakly) prefers  to  if  prefers  to  or considers them as 

equally good outcomes. That is,    

•        

•            

• A strategy vector  is a Nash equilibrium if  

for all players  and each alternate strategy : 
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ui( ⃗sx ) ≥ ui( ⃗sy )
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i s′ i

ui(si, ⃗s−i ) ≥ ui(s′ i, ⃗s−i )
ci(si, ⃗s−i ) ≤ ci(s′ i, ⃗s−i )
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• A strategy vector  is a Nash equilibrium if  
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What happened

• Nash equilibrium: The stable state that no player can improve its 
wellbeing by changing its own strategy (given others’ strategies don’t 
change)
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on 

• Vickrey-Clarke-Groves mechanism
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Social Welfare/Cost
• Social choice: an aggrega)on of the preference of the different 

par)cipants toward a single joint decision 

• Let  be a preferences/strategies of the players 

• The social choice  is the ac)on given , and it has a social welfare 
(or social cost)

⃗s

f( ⃗s) ⃗s
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
the Price of Anarchy is 

  

or 

SNE

max ⃗s Social Welfare( ⃗s)
min ⃗s∈SNE Social Welfare( ⃗s)

max ⃗s∈SNE Social Cost( ⃗s)

min ⃗s Social Cost( ⃗s)
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
the Price of Anarchy is 
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
the Price of Anarchy is 

  

or 

SNE

max ⃗s Social Welfare( ⃗s)
min ⃗s∈SNE Social Welfare( ⃗s)

max ⃗s∈SNE Social Cost( ⃗s)

min ⃗s Social Cost( ⃗s)

67

6

5

1

1

2

2 6

5

baseball soRball

baseball

soRball

B
G



Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
the Price of Anarchy is 

  

or 

SNE

max ⃗s Social Welfare( ⃗s)
min ⃗s∈SNE Social Welfare( ⃗s)

max ⃗s∈SNE Social Cost( ⃗s)

min ⃗s Social Cost( ⃗s)

69

t
xi



Tragedy of Commons — Be[er solu)on

• Selfish strategy:    for all   

• Total bandwidth used is  

• For each player, the payoff is        

• (Centralized) be[er strategy: if the total bandwidth used is : 

•    for each player , and the payoff of each player is    

• The new value is  )mes the old value (!!)

xi =
1

n + 1
i

n
n + 1

xi(1−Σjxi) =
1

n + 1
(1−

n
n + 1

) =
1

(n + 1)2

1
2

⋅
n

n + 1

xi =
1

2(n + 1)
i

1
2(n + 1)

⋅(1−
n

2(n + 1)
) =

n + 2
4(n + 1)2

n + 2
4
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Price of Anarchy (PoA)
• Measure the inefficiency of equilibria 

• Given a game, let  be its set of equilibria (all stable strategies), 
the Price of Anarchy is 

  

or 

SNE

max ⃗s Social Welfare( ⃗s)
min ⃗s∈SNE Social Welfare( ⃗s)

max ⃗s∈SNE Social Cost( ⃗s)

min ⃗s Social Cost( ⃗s)
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n(n + 2)
4(n + 1)2

n
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=
n + 2
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t
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What happened

• Price of Anarchy measures the performance loss due to decentraliza)on 
in the worst case
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• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on  

• Vickrey-Clarke-Groves mechanism
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Load Balancing Game
• There are  jobs, each has processing )me  and 

belongs to a self-interested player  

• There are  machines 

• Game: the players want to schedule their jobs on the 
lowest-loaded machine 

• Load of machine :     

• Social cost:  

• An assignment  is a Nash equilibrium if and only if  

for all ,    for any 

n pi
i

m

k ℓk = Σj is assigned to machine k pj

max
k

ℓk

A
i ℓA(i) ≤ ℓk k
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Load Balancing Game
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belongs to a self-interested player  

• There are  machines 

• Game: the players want to schedule their jobs on the 
lowest-loaded machine 

• Load of machine :     

• Social cost:  

• An assignment  is a Nash equilibrium if and only if  

for all ,    for any 

n pi
i

m

k ℓk = Σj is assigned to machine k pj

max
k

ℓk

A
i ℓA(i) ≤ ℓk k

79

social cost



Load Balancing Game
• There are  jobs, each has processing )me  and 

belongs to a self-interested player  

• There are  machines 

• Game: the players want to schedule their jobs on the 
lowest-loaded machine 

• Load of machine :     

• Social cost:  

• An assignment  is a Nash equilibrium if and only if  

for all ,    for any 

n pi
i

m

k ℓk = Σj is assigned to machine k pj

max
k

ℓk

A
i ℓA(i) ≤ ℓk k

80

social cost



Load Balancing Game
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Load Balancing Game
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Load Balancing Game
• There are  jobs, each has processing )me  and 
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PoA of the Load Balancing Game
• Consider any instance of the load balancing game with  jobs of 

processing )me  and  machines. Let  denote any Nash 
equilibrium assignment. Then, it holds that  

  

n
p1, ⋯, pn m A

cost(A)
cost(OPT)

≤ 2 −
2

m + 1
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PoA of the Load Balancing Game
• Let  be the machine with the highest load under assignment  and  is the smallest job on  

• Without loss of generality, there are at least two tasks on  (otherwise, cost(OPT)  cost( ) and the theorem is proven)  

    

• Suppose there is a machine    with load less than   . Then, moving job  from  to  would decrease the cost 
of the agent 

• Since  is a Nash equilibrium, this cannot happen 

       cost( )     

• From the average bound, cost(OPT)        cost( ) 

        

̂k A ̂i ̂k
̂k = A

⇒ p ̂i ≤
cost(A)

2

k ≠ ̂k ℓ ̂k − p ̂i
̂i ̂k k

A

⇒ ℓk ≥ ℓ ̂k − p ̂i ≥ A −
cost(A)

2
=

cost(A)
2

≥
Σipi

m
=

Σkℓk

m
≥

cost(A) + (m − 1) ⋅ cost(A)
2

m
=

m + 1
2m

⋅ A

⇒
cost(A)

cost(OPT)
≤

2m
m + 1

= 2 −
2

m + 1
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• Let  be the machine with the highest load under assignment  and  is the smallest job on  

• Without loss of generality, there are at least two tasks on  (otherwise, cost(OPT)  cost( ) and the theorem is proven)  

    

• Suppose there is a machine    with load less than   . Then, moving job  from  to  would decrease the cost 
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• Since  is a Nash equilibrium, this cannot happen 
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What happened

• The PoA of the selfish load balancing game is at most 2 −
2

m + 1
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on 

• Vickrey-Clarke-Groves mechanism
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Auc)on Game
• Game: There is a valuable item. All players submit 

their bids in sealed envelopes to the seller, and the 
seller picks one winner. The winner has to pay some 
price  

• Each player (bidder)  has a value  for the good 
that he is “willing to pay” for the item and private 
to himself 

• Strategy of player : bid  

• U2lity of player  is  if he does not win, and  
   if he wins at a price of 

p ≥ 0
i v*i

i bi

i 0
v*i − p p
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Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

105



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

106



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

107

player  winsi



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

108



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

109

If player  wins,      

If player  loses, 

i ui( f( ⃗b )) = v*i − p

i ui( f( ⃗b )) = 0



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

110



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

111



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

112



Truthfulness?
• Given the bids   , the outcome of the game is    

• Given the bids, player  has u)lity      

• To maximize the social welfare, the seller wants to maximize 
  maximize   maximize  

• That is, the seller wants to find the maximum  among all players  

• However,  is a private value, and the seller doesn’t know them 

• Can players strategically manipulate the game?

b1, b2, ⋯, bn f(b1, b2, ⋯, bn)

i ui(f(b1, b2, ⋯, bn)) = ui(f( ⃗b ))

Σiui( f(b1, b2, ⋯, bn)) = uchoice−p = v*choice−p

v*i i

v*i

113



winner

Truthfulness?
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winner

Truthfulness?
• No payment ( ): We give the item for free to 

the player with highest  

• This method is easily manipulated: player can 
benefit by exaggera)ng his  by repor)ng bid 

  

p = 0
v*i

v*i
bi ≫ v*i
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winner

Truthfulness?
• Pay your bid ( , where  is the winner): 

• Fake winner  has u)lity        

• Winner  has u)lity        

• He should a[empt declaring a lower value 
   and gets new u)lity    

• The be[er scenario is that he knows the 
second-highest bid and make  a bit 
larger than it

p = bw w

i ui = v*i − bi < 0

w uw = v*w − bw = 0

bw < v*w u′ w > uw

bw
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Vickrey’s Second Price Auc)on
• Let the winner be the player  with the highest 

declared value of , and let  pay the second 
highest declared bid  

• That is,   

i
bi i

p = max
j≠i

bj
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Vickrey’s Second Price Auc)on
• Let the winner be the player  with the highest declared 

value of , and let  pay the second highest declared bid. 
That is,    

• For every  and , let  be s u)lity if it bids 

 and  his u)lity if he bids . Then,   . 

• If  is the winner: 

• If    or     : player  s)ll wins,     

   

• If    and : player  loses,     

i
bi i

p = max
j≠i

bj

b1, b2, ⋯, bn v*i u*i i′ 

v*i ui bi u*i ≥ ui

i
bi > v*i v*i > bi > p i ui = v*i −

p = u*i
bi < v*i p > bi i ui = 0 ≤ u*i
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Vickrey’s Second Price Auc)on
• Let the winner be the player  with the highest declared 

value of , and let  pay the second highest declared bid. 
That is,    
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What happened

• In the auc)on game, Vickrey’s second price auc)on (lecng the winner 
pays the second-highest bid) is strategy-proof 
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 

• Auc)on 

• Vickrey-Clarke-Groves mechanism
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Mechanism Design
• Social choice: an aggrega)on of the preference of the different 

par)cipants toward a single joint decision
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Mechanism Design
• Social choice: an aggrega)on of the preference of the different 

par)cipants toward a single joint decision 

• Mechanism Design a[empts implemen)ng desired social choices in a 
strategic secng 

• The different members of society act ra2onally in a game theore)c 
sense 

• The preference of the par)cipants are private 

• Examples: elec)ons, markets, auc)ons, government policy, etc
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Outline
• Fundamental concepts 

• Game, players, strategies, payoffs/costs 

• Nash Equilibrium 

• Price of Anarchy 

• Selfish load balancing 

• Mechanism design 
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Vickrey-Clarke-Groves Mechanism
• A mechanism   ) is called a Vickrey-Clarke-Groves (VCG) 

mechanism if  

•     , and 

• for some func)ons  , where  is a func)on of , we have 

that for all :      

(f, p1, p2,⋯, pn

f( ⃗s) ∈ arg max
a∈A

Σi si(a)

h1, h2,⋯, hn hi ⃗s−i

i pi( ⃗s) = hi( ⃗s−i ) − Σj≠i sj( f( ⃗s))

139
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Vickrey-Clarke-Groves Mechanism
• A mechanism   ) is called a Vickrey-Clarke-Groves (VCG) 

mechanism if  

•     , and 

• for some func)ons  , where  is a func)on of , we have 

that for all :      

(f, p1, p2,⋯, pn

f( ⃗s) ∈ arg max
a∈A

Σi si(a)

h1, h2,⋯, hn hi ⃗s−i
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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VCG Mechanism is strategy-proof
• Fix , , , and . We need to show that for player  with (true) valua)on , the u)lity when 

declaring  is not less than the u)lity when declaring  

• Let     and     

• U)lity of  when (truthfully) declaring  is  

          

• U)lity of  when (strategically) declaring  is  

          

• Since social welfare of          for any  

      

i ⃗s−i v*i si i v*i
v*i si

a* = f(v*i , ⃗s−i ) a = f(si, ⃗s−i )

i v*i
v*i (a*) − pi(a*) = v*i (a*) − hi( ⃗s−i ) + Σj≠i v*j (a*)

i si

v*i (a) − pi(a) = v*i (a) − hi( ⃗s−i ) + Σj≠i v*j (a)

a* = v*i (a*) + Σj≠isi(a*) ≥ v*i (a′ ) + Σj≠isi(a′ ) a′ 

v*i (a*) − pi(a*) ≥ v*i (a) − pi(a)
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Vickrey-Clarke-Groves Mechanism
• A mechanism   ) is called a Vickrey-Clarke-Groves (VCG) 

mechanism if  

•     , and 

• for some func)ons  , where  is a func)on of , we have 

that for all :       

• Clarke pivot rule:    

(f, p1, p2,⋯, pn

f( ⃗s) ∈ arg max
a∈A

Σi si(a)

h1, h2,⋯, hn hi ⃗s−i

i pi( ⃗s) = hi( ⃗s−i ) − Σj≠i sj( f( ⃗s))

pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))
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Vickrey-Clarke-Groves Mechanism
• A mechanism   ) is called a Vickrey-Clarke-Groves (VCG) 

mechanism if  

•     , and 

• for some func)ons  , where  is a func)on of , we have 

that for all :       

• Clarke pivot rule:    

(f, p1, p2,⋯, pn

f( ⃗s) ∈ arg max
a∈A

Σi si(a)

h1, h2,⋯, hn hi ⃗s−i

i pi( ⃗s) = hi( ⃗s−i ) − Σj≠i sj( f( ⃗s))

pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))
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Vickrey-Clarke-Groves Mechanism
• A mechanism   ) is called a Vickrey-Clarke-Groves (VCG) 

mechanism if  

•     , and 

• for some func)ons  , where  is a func)on of , we have 

that for all :       

• Clarke pivot rule:    

(f, p1, p2,⋯, pn

f( ⃗s) ∈ arg max
a∈A

Σi si(a)

h1, h2,⋯, hn hi ⃗s−i

i pi( ⃗s) = hi( ⃗s−i ) − Σj≠i sj( f( ⃗s))

pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))

152
others’ social welfare without i others’ social welfare with i



What happened
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• The Vickrey-Clarke-Groves (VCG) mechanism is strategy-proof 

• As long as a mechanism is a VCG, it is strategy-proof 

• Clarke pivot rule:    pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))



• Given a directed graph , where each edge 
 is owned by a player. The player  has a 

(private) value  

• The government wants to expropriate some edges to 
build a path from  to , where  

• If an edge  is used, the corresponding player 
considers to lose a cost of  

• To minimize the social cost, which is 
 , how should the 

government set a price for each player?

G = (V, E)
e ∈ E e

ve

s t s, t ∈ V
e

ve

Σe is expropriated −ve

Shortest Path
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 is owned by a player. The player  has a 

(private) value  

• The government wants to expropriate some edges to 
build a path from  to , where  

• If an edge  is used, the corresponding player 
considers to lose a cost of  

• To minimize the social cost, which is 
 , how should the 

government set a price for each player?

G = (V, E)
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ve
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ve
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Shortest Path
• Given a directed graph , where each edge 

 is owned by a player. The player  has a 
(private) value  

• The government wants to expropriate some edges to 
build a path from  to , where  

• If an edge  is used, the corresponding player 
considers to lose a cost of  

• To minimize the social cost, which is 
 , how should the 

government set a price for each player?

G = (V, E)
e ∈ E e

ve

s t s, t ∈ V
e

ve

Σe is expropriated −ve
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Shortest Path
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• Given a directed graph , where each edge 
 is owned by a player. The player  has a 

(private) value  

• The government wants to expropriate some edges to 
build a path from  to , where  

• If an edge  is used, the corresponding player 
considers to lose a cost of  

• To minimize the social cost, which is 
 , how should the 

government set a price for each player?

G = (V, E)
e ∈ E e

ve

s t s, t ∈ V
e

ve

Σe is expropriated −ve



• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

Shortest Path — Using VCG
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Shortest Path — Using VCG

159

s

t

c

ba

5 7

1

1

1

4

• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

1
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

       

    

p(a,b) = max
P′  in G′ 

Σe∈P′ 
(−ve) − Σ(a,b)≠e∈P (−ve)

= −7 − (−7) = 0

1
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

5



Shortest Path — Using VCG
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p(s,a) = max
P′  in G′ 

Σe∈P′ 
(−ve) − Σ(s,a)≠e∈P (−ve)

= −9 − (−2) = − 7

• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

5
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

1
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p(a,c) = max
P′  in G′ 

Σe∈P′ 
(−ve) − Σ(a,c)≠e∈P (−ve)

= −8 − (−6) = − 2

• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

1
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)
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• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

1



Shortest Path — Using VCG
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p(c,t) = max
P′  in G′ 

Σe∈P′ 
(−ve) − Σ(c,t)≠e∈P (−ve)

= −11 − (−6) = − 5

• Given a directed graph , where each edge  is 
owned by a player. The player  has a (private) value  

•     

• If ,       

• If ,    

G = (V, E) e ∈ E
e ve

pe( ̂P) = max
path P

Σj≠e and j∈P(−vj) − Σj≠e (−vj( ̂P))

e ∉ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) − Σj≠e (−vj( ̂P)) = 0

e ∈ ̂P pe( ̂P) = max
P′  in G′ 

Σj≠e and j∈P′ 
(−vj) + Σj≠e vj( ̂P)

1



Trade
• Seller has an item that costs , and a poten)al buyer values it at  

• If   , there is a grade. Otherwise (   ), there is no trade 

• How to make a price for the buyer (to pay) and a price for the seller (to 
receive) so the buyers and sellers report their value truthfully?

vs vb

vb > vs vb ≤ vs
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Trade — Using VCG mechanism
• Seller has an item that costs , and a poten)al buyer values it at  

• If   , there is a grade. Otherwise (   ), there is no trade 

• if   :            

                             

• if   :            

                            

vs vb

vb > vs vb ≤ vs

vb > vs ps(vs, vb) = max
d∈{0,1}

vb(d) − vb = vb − vb = 0

pb(vs, vb) = max
d∈{0,1}

− vs(d) − (−vs) = 0 + vs = vs

vb ≤ vs ps(vs, vb) = max
d∈{0,1}

vb(d) − 0 = vb − 0 = vb

pb(vs, vb) = max
d∈{0,1}

− vs(d) − 0 = 0 − 0 = 0
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Clarke pivot rule:    pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))



Trade — Using VCG mechanism
• Seller has an item that costs , and a poten)al buyer values it at  

• If   , there is a grade. Otherwise (   ), there is no trade 

• if   :            

                             

• if   :            

                            

vs vb

vb > vs vb ≤ vs

vb > vs ps(vs, vb) = max
d∈{0,1}

vb(d) − vb = vb − vb = 0

pb(vs, vb) = max
d∈{0,1}

− vs(d) − (−vs) = 0 + vs = vs

vb ≤ vs ps(vs, vb) = max
d∈{0,1}

vb(d) − 0 = vb − 0 = vb

pb(vs, vb) = max
d∈{0,1}

− vs(d) − 0 = 0 − 0 = 0
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Clarke pivot rule:    pi( ⃗s) = max
a∈A

Σj≠isi(a) − Σj≠i sj( f( ⃗s))


