Randomized (Online) Algorithms

Part 2

Bob Krekelberg

Algorithms for Decision Support 2024

Krekelberg, B. Rand. Alg. ADS 2024



Table of Contents

© Yao's Principle

e Paging

© Ski rental

Krekelberg, B. Rand. Alg. ADS 2024



Table of Contents

© Yao's Principle

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

o No! There still might be a "good” randomized algorithm that chooses
between them.

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

o No! There still might be a "good” randomized algorithm that chooses
between them.

@ Show that for every possible randomized algorithm, there exists a hard
instance?

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

o No! There still might be a "good” randomized algorithm that chooses
between them.

@ Show that for every possible randomized algorithm, there exists a hard
instance?

e Yes... but can be challenging.

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

o No! There still might be a "good” randomized algorithm that chooses
between them.

@ Show that for every possible randomized algorithm, there exists a hard
instance?

e Yes... but can be challenging.

@ Show that for a fixed probability distribution over the input, all deterministic
algorithms perform "bad” "on average"?

Krekelberg, B. Rand. Alg. ADS 2024



How to find a lower bound for all randomized algorithms for a problem?
@ Show that for every deterministic algorithm we can find a "bad” input?

o No! There still might be a "good” randomized algorithm that chooses
between them.

@ Show that for every possible randomized algorithm, there exists a hard
instance?

e Yes... but can be challenging.

@ Show that for a fixed probability distribution over the input, all deterministic
algorithms perform "bad” "on average"?

e Yao's Principle!
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Yao's Principle

Yao's Principle, informal

The worst-case performance of the best randomized algorithm is equal to the
average performance of the best deterministic algorithm on the worst distribution
of the inputs

@ Yao suggests that we look at the worst distribution on the inputs that we can
think of.

@ And claim that every deterministic algorithm does not have, on average, a
performance better than ¢ on this set of inputs.

@ Then, by Yao's Principle, this is a lower bound on the worst-case performance
of randomized algorithms.

Krekelberg, B. Rand. Alg. ADS 2024



Yao's Principle

Assumptions.
@ We have a finite class of deterministic algorithms A
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Assumptions.
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Yao's Principle

Assumptions.
@ We have a finite class of deterministic algorithms A

@ We have a finite class of instances 7.

Definitions.
o Let Prypy be a probability distribution over 7.
@ Let Prgr,\p be a probability distribution over A.

Algorithm ALG € A on instance | € T has cost ALG(/).

Algorithm ALG € A on the class of instances Z has expected cost
Eapy [ALG(Z)] = > Prapy (1) - Ara(/).
IeT

Algorithm RAND on instance | € 7 has expected cost
Erano [RAND(/)] = >~ Prraw (ALG) - ALG(/).
ALceA
Algorithm RAND on the class of instances Z has expected cost

Enpy [Erass [RAND(Z)]] = 32 Praoy (1) - Exaxo [RAND(/)].
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Yao's Principle

Yao's Principle

ArLrg;igAIEADV [ALc(Z)] -
Eapy [OPT(Z)] —

Then, for every randomized algorithm RAND, there exists an instance / € Z, such
that,

ERranp [RAND(/)]
orr(l) - °©
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Yao's Principle

Proof.
We first rewrite the expected cost of RAND with respect to Prypy.

Eapy [Erano [RAND(Z)]]

- Z Prapy (I) * Eraxp [RAND(I)]
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We first rewrite the expected cost of RAND with respect to Prypy.

Eapy [Eraxp [RAND(Z)]]
- Z Prapy (I) * Eraxp [RAND(I)]

leT
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Yao's Principle

Proof.
We first rewrite the expected cost of RAND with respect to Prypy.

Eapy [Eraxp [RAND(Z)]]
- Z Prapy (I) * Eraxp [RAND(I)]

Iez

:Z(PrADV > Prra (ALG) Am(/)
ez ALceA

—Z( Z PrADV PI’RAND (ALG ALG )
1eZ MLcgeA

= Z <ZPrADV(I)~PrRAND(ALG - Avrg(/ )
ALGeA MeT

= Z (PI’RAND(ALG ZPrADV(I ALG(/)
ALce A 1eT

= > Prrawn (ALG) - Eapy [ALG(T)]
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Now assume that - ALa(T
LG
amin, B [ALG(D)]
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Then it must hold for every deterministic algorithm ALG that,

Eapy [ALG(Z)] > ¢ - Expy [OPT(Z)]

>c

Thus,
Eapv [Erano [RAND(Z)]]
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Yao's Principle

Now assume that - ALa(T
LG
amin, B [ALG(D)]

>
Eapy [OPT(Z)] —
Then it must hold for every deterministic algorithm ALG that,

Eapy [ALG(Z)] > ¢ - Expy [OPT(Z)]

Cc

Thus,
Eapv [Erano [RAND(Z)]]
= > Prian (ALG) - Eapy [ALG(Z)]

ALce A
> > Prra (ALG) - ¢ - Eppy [OPT(Z)]
ALce A
= c-Eapy [OPT(Z Z Prrano (ALG)
ALceA
Equals 1

= c-Eapy [OPT(Z)]
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Yao's Principle

We are not quite there yet.
Assuming that

A%'QAEADV [ALc(T)] -,
We now have, Eapy [OPT(Z)]
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Yao's Principle

We are not quite there yet.
Assuming that
in E Ara(Z
AT B [ALG(D)

Eane [OPT(Z)] =

c
We now have,

Eapy [Erano [RAND(Z)]] > ¢ - Eapy [OPT(Z)]
Claim: There exists an instance | € Z such that,
Egaxo [RAND(/)] > ¢ - OPT(/)
Suppose aiming towards a contradiction that for every | € 7

Egaxo [RAND(/)] < ¢ - OPT(I)

It follows that Z Prapy (1) - Eranp [RAND(/)] < ¢ - Z Prapy (1) - OPT(/)

Iez L. lez
Contradiction! O
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Yao's Principle

Assuming that _
A?é'e”A]EADV [ALa(Z)]

Eane [OPT(Z)] =

C

There exists an instance | € 7 such that,

Egano [RAND(/)] > ¢ - OPT(/)

This proves Yao's Principle ]
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Last time we have seen that there exists a randomized algorithm for the online
paging problem that is 2H,-competitive in expectation.

Is it possible to do better?
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Last time we have seen that there exists a randomized algorithm for the online
paging problem that is 2H,-competitive in expectation.

Is it possible to do better?

@ Can we find a matching lower bound? Yao’s Principle!
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Coupon Collector

Harmonic number

1 1 1
Hi=1+=+--+-= -
SR ;/

Coupon Collector’s Problem

If each box of breakfast cereal contains a coupon, and there are n different
coupons, how many boxes do you need to buy in expectation to collect all n
coupons?
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Coupon Collector

Harmonic number

1 1 1
H=1+=-+--4+-= -
SR ;/

Coupon Collector’s Problem

If each box of breakfast cereal contains a coupon, and there are n different
coupons, how many boxes do you need to buy in expectation to collect all n
coupons?

For the Coupon Collector's problem, the expected value of purchases required in
order to collect each of the n coupons at least once is nH,,.
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Coupon Collector

Proof.

Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.
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Coupon Collector

Proof.

Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.

Le X; be the discrete random variable that represents the number of purchases,
after the (i — 1)-th distinct coupon is collected, to collect the i-th distinct coupon.

Then, n
X=>"X
i=1

Let & be the event that one of those coupons is collected in the next purchase.
Then,
n—(i—-1)

Pr (5,) = n
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Coupon Collector

Proof.
Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.
Le X; be the discrete random variable that represents the number of purchases,
after the (i — 1)-th distinct coupor = " ' 7 +h distinct coupon.
Then, After the (i — 1)-th distinct coupon
is collected, there are n — j + 1
coupons remaining to be collected.

Let & be the event that one of those co 15> cunceted I the next purchase.
Then,
n—(i—-1
Pr (E,) = 7( )
n
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Coupon Collector

Proof.

Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.

Le X; be the discrete random variable that represents the number of purchases,
after the (i — 1)-th distinct coupon is collected, to collect the i-th distinct coupon.

Then, n
X=>"X
i=1

Let & be the event that one of those coupons is collected in the next purchase.
Then,

—(i—1
Pr (&) = s X (;1 )
X; follows a geometric distribution.
1 n
aov [X] Pr(&) n—(i—1)

Krekelberg, B. Rand. Alg. ADS 2024



Coupon Collector

Proof.

Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.

Le X; be the discrete random variable that represents the number of purchases,
after the (i — 1)-th distinct coupon is collected, to collect the i-th distinct coupon.

Then, n
Yy -\ X
The probability distribution of the ]
Let & be number of tails one must flip before 'n the next purchase.
Then, the first head using a weighted coin.
Cr\Gj) — n =
X; follows a geometric distribution.
1 n
E Xi| = =
aov [Xi] Pr(&) n—(i—1)
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Coupon Collector

Proof.

Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.

Le X; be the discrete random variable that represents the number of purchases,
after the (i — 1)-th distinct coupon is collected, to collect the i-th distinct coupon.

Then, n
X=>"X
i=1

Let & be the event that one of those coupons is collected in the next purchase.
Then,

—(i—1
Pr (&) = s X (;1 )
X; follows a geometric distribution.
1 n
aov [X] Pr(&) n—(i—1)

Then,
EADV [X] = ]EADV

> %

i=1

n n n
1
ZEEADV[Xi]:Zln(’;l):nZi:nH"

i=
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A lowerbound for paging

No randomized online algorithm for paging is better than Hy-competitive in
expectation, even when M = k + 1.

Assumptions
@ Without loss of generality, OPT and ALG start with cache 1,2, ... k.

@ The first page requested by the adversary is page k + 1, causing a page fault
for both OPT and ALG.

Objective:

@ Show that every deterministic online algorithm has a large expected cost
compared to an optimal solution. Yao’s Principle!
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A lowerbound for paging

No randomized online algorithm for paging is better than Hy-competitive in
expectation, even when M = k + 1.

Input distribution
@ A phase is defined as before.
@ Ty is the set of all instances that contain N phases.
@ The adversary never requests the same page twice in a row.
@ The adversary requests each (other) page with probability 1/k.

Expected cost for optimal algorithm.
@ Since M = k + 1, LFD ensures a single page fault per phase.

o Eany [OPH(E)] = 3 Eann [OPH(R)] = 1= I

Jj=
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A lowerbound for paging

No randomized online algorithm for paging is better than Hy-competitive in
expectation, even when M = k + 1.

Expected page fault.
@ Every page that is requested in some time step (not time step 1) causes a
page fault with probability .
@ Let |Pj| be the expected size of phase P;.
° Eanv [ALG(P)] > [Py - £

Length of a phase.
e Phase P; ends right before the (k 4 1)-th distinct page, since the beginning
of phase P;, will be requested.
@ How long does it take in expectation until all pages 1,2,... k, k+ 1 are
requested?
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A lowerbound for paging

No randomized online algorithm for paging is better than Hy-competitive in
expectation, even when M = k + 1.

Expected page fault.
@ Every page that is requested in some time step (not time step 1) causes a
page fault with probability .
@ Let |Pj| be the expected size of phase P;.
o Ean [ALG(P))] > |P)|- 1= (k- Hy)- 1 = HL.

Length of a phase.
e Phase P; ends right before the (k 4 1)-th distinct page, since the beginning
of phase P;, will be requested.
@ How long does it take in expectation until all pages 1,2,... k, k+ 1 are
requested? Coupon Collector’s Problem!
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A lowerbound for paging

No randomized online algorithm for paging is better than Hy-competitive in
expectation, even when M = k + 1.

Expected cost for every deterministic algorithm.

N N
@ Eapv [ALG(Z,)] = > Eanv [ALG(P})] > > Hi = NH.
j=1 j=1

Yao’s Principle.

@ For every random algorithm RAND, there exists an instance /, € Z,, such that
Erano [RAND(/,)] S Eapv [ALG(Z,)] _ NH, _ Hi
Orpt(/,) ~ Eapy [OPT(Z,)] N
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Optimal paging

@ RMark algorithm

o Competitive ratio greater then Hj (see exercises).
o At most 2Hy-competitive.

@ Any randomized algorithm is at least Hi-competitive.

@ Does a randomized algorithm exist that is Hx-competitive in expectation?
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Optimal paging

@ RMark algorithm

o Competitive ratio greater then Hj (see exercises).
o At most 2Hy-competitive.
e RMark is (2Hx — 1)-competitive in expectation.

@ Any randomized algorithm is at least Hi-competitive.

@ Does a randomized algorithm exist that is Hx-competitive in expectation?
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Optimal paging

@ RMark algorithm

o Competitive ratio greater then Hj (see exercises).
o At most 2Hy-competitive.
e RMark is (2Hx — 1)-competitive in expectation.

@ Any randomized algorithm is at least Hi-competitive.

@ Does a randomized algorithm exist that is Hx-competitive in expectation?
e Yes, the Partition algorithm (McGeoch, Lyle, Sleator, Daniel 1991).
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Problem definition

@ Suppose you want to go skiing for as long as possible, but you do not own
any skis. You have two choices.

o Renting skis for 1 a day.
o Buying skis for B.

@ The only thing that would prevent you from skiing is the weather.

° You go skiing.

o %% You don't go skiing.

@ Objective: Minimize the amount of money you have to spend on skis.

Krekelberg, B. Rand. Alg. ADS 2024



Ski rental, so far...

o If there are less than B sunny days, OPT never buys.

o If there are more than B sunny days, OPT buys on day 1.

o There exists a (2 — & )-competitive algorithm.

o No deterministic algorithm can be better than (2 — 1 )-competitive.
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o If there are more than B sunny days, OPT buys on day 1.
o A good deterministic algorithm never buys later than day B.

o There exists a (2 — & )-competitive algorithm.
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Ski rental, so far...

o If there are less than B sunny days, OPT never buys.

o If there are more than B sunny days, OPT buys on day 1.
o A good deterministic algorithm never buys later than day B.

o There exists a (2 — & )-competitive algorithm.
o Strategy: buy on day B.

o No deterministic algorithm can be better than (2 — L )-competitive.
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A first attempt

How was the deterministic algorithm punished?
@ ALG buys on day B.

@ Then there are only B sunny days.
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A first attempt

How was the deterministic algorithm punished?
@ ALG buys on day B.

@ Then there are only B sunny days.

How can we use randomization?
@ RAND buys either on day B or earlier, say g.

@ Then the adversary should choose either B or g sunny days.
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A first attempt

How was the deterministic algorithm punished?
@ ALG buys on day B.

@ Then there are only B sunny days.

How can we use randomization?
@ RAND buys either on day B or earlier, say g.

@ Then the adversary should choose either B or g sunny days.

Is this an improvement?

o If there are B sunny days, buying on day £ (compared to buying on day B)
saves spending an extra £

o If there are g sunny days, waiting to buy on day B (compared to buying on
day g) saves spending an extra B.

>
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J
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A first attempt

Procedure GAMBLE

With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents B — 1 days, and then buys.

NI NI=
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents B — 1 days, and then buys.

NI NI=

1 B 1
Eranp [RAND(C/)] = 5(5 -1+ B) + E(B -1+ B)
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 3 RAND rents B — 1 days, and then buys.
1,B 1 7B
Egrano [RAND(d)] = 5(5 -1+B)+ E(B -1+B)= x " 1
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 3 RAND rents B — 1 days, and then buys.
1,B 1 7B
Eganp [RAND(d)| = (= -1+ B)+-(B-1+B)=— -1
2°2 2 4
@ OPT buys on day 1.
Opr(d) =B
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 3 RAND rents B — 1 days, and then buys.
1,B 1 7B
Eganp [RAND(d)| = (= -1+ B)+-(B-1+B)=— -1
2°2 2 4
@ OPT buys on day 1.
Opr(d) =B

Erao [RAND(d)] B -1

OprT(d) B
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents d days.

NI= N=
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents d days.

1B
=305

NI= N=

1
Egan [RAND(d)] ~1+B)+3d
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 3 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1 B 1 3B+2d -2
Eraxo [RAND(d)] = 5(5 —-1+B)+ Sd=—"0—
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 3 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 1 3B+2d -2
Eranp [RAND(d)] = 5(5 -1+ B)+ Ed =—
@ OPT rents for d days.
Opr(d)=d
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 3 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 1 3B+2d -2
Eranp [RAND(d)] = 5(5 -1+ B)+ Ed =—
@ OPT rents for d days.
Opr(d)=d

Erano [RAND(d)] . 35_’_4& . 3B+2d -2
Orpt(d) N d N 4d
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 3 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 1 3B+2d -2
Eranp [RAND(d)] = 5(5 -1+ B)+ Ed =—
@ OPT rents for d days.
Opr(d)=d

Erano [RAND(d)] . 35_’_4& . 3B+2d -2
Orpt(d) N d N 4d

The competitive ratio is maximized for d = g
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 3 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1 B 1 3B+2d -2
Ern [RAND(d)] = 5 (5 =14 B) + 5d = ===
@ OPT rents for d days.
Opr(d)=d
Erao [RAND(d)]  38429=2 3B 424 -2 J4B-2 1
Opr1(d) - d 4d - 2B B

The competitive ratio is maximized for d = g
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d

@ OPT rents for d days.
Opr(d) =d
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A first attempt

Procedure GAMBLE
With probability 2 we buy on day £, and also with probability 3 we buy on day B.J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d

@ OPT rents for d days.
Opr(d) =d

Egraxo [RAND(d)]

orr(d)  °
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A first attempt

Procedure GAMBLE
With probability % we buy on day %, and also with probability % we buy on day B.J

Egrano [RAND(d)] 7 1
C 1: d > B - _ =
ase l: d 2 OpT1(d) 4 B
B Erano [RAND(d)] 1
=< <92_
Case 2 27d<B Orr(d) <2 5
B Erano [RAND(d)]
: — =1
Case 3: d < > OPT(d)
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Case1l: d > B ERAN(D)[;{F‘?S;)M)] - % _ é
Case 2: g <d<B ER’ANDO[?T?S;)M)] <2 %
Case 3: d < g ERANE)[PP;/Z:;DM)] =1
For every instance /,
B [RAND()] _ ) 1

Opt(/) - B
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A first attempt

Procedure GAMBLE
With probability % we buy on day g, and also with probability % we buy on day B.J

Egrano [RAND(d)] 7 1
C 1: d > B _ . _ =
ase 1: d = OpT1(d) 4 B
B Erano [RAND(d)] 1
=< <92_
Case 2 27d<B Orr(d) <2 5
B Erano [RAND(d)]
H — = ]_
Case 3: d < > OP1(d)
For every instance /,
Erano [RAND(/)] <o_ 1
Opt(/) - B

No improvement over deterministic algorithm!
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A first attempt

Why did this not work?

@ We should not buy too early or early too often.
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A first attempt

Why did this not work?

@ We should not buy too early or early too often.

How can we improve?
@ Buy less early.
@ Buy early less.
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents B — 1 days, and then buys.

HIW D=
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 2 RAND rents B — 1 days, and then buys.
1B 3
ERAND [RAND(d)] = Z(E -1+ B) + Z(B -1+ B)
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 2 RAND rents B — 1 days, and then buys.
1B 3 15B
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 2 RAND rents B — 1 days, and then buys.
1B 3 15B
Egrano [RAND(d)] = =(= —1+B)+-(B—-1+B)=— -1
4°2 4 8
@ OPT buys on day 1.
Opr(d) =B
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 1: d > B.

@ With probability % RAND rents g — 1 days, and then buys.
e With probability 2 RAND rents B — 1 days, and then buys.
1B 3 15B
Egrano [RAND(d)] = =(= —1+B)+-(B—-1+B)=— -1
4°2 4 8
@ OPT buys on day 1.
Opr(d) =B

Opr1(d) B

Erao [RAND(d)]  HE -1 15
8

W/~
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents d days.

BIW p=
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability
o With probability

RAND rents g — 1 days, and then buys.
RAND rents d days.
1B

3
Enan [RAND(d)] = 7(5 — 1+ B) + 3

BIW p=
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 2 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1 B 3 3B +6d—2
Eraxo [RAND(d)] = Z(E —-1+B)+ =
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 2 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 3 3B+6d—2
Eranp [RAND(d)] = Z(E -1+ B)+ Zd =—s
@ OPT rents for d days.
Opr(d)=d
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 2 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 3 3B+6d—2
Eranp [RAND(d)] = Z(E -1+ B)+ Zd =—s
@ OPT rents for d days.
Opr(d)=d

Erap [RAND(d)]  3B489=2 3B 4 64 —2
OpT(d) T d 8d
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 2 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1B 3 3B+6d—2
Eranp [RAND(d)] = Z(E -1+ B)+ Zd =—s
@ OPT rents for d days.
Opr(d)=d

Erap [RAND(d)]  3B489=2 3B 4 64 —2
OpT(d) T d 8d

The competitive ratio is maximized for d = g
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Let d be the number of sunny days.
Case 2: g§d<B.

o With probability 2 RAND rents £ — 1 days, and then buys.
o With probability % RAND rents d days.
1 B 3, 3B+6d-2
Eran [RAND(d)] = 2(5 =1+ B) + 7d = ——————
@ OPT rents for d days.
Opr(d)=d
Erap [RAND(d)]  3B489=2 3B 4 64 —2 _68-2_3 1
Oor1(d) - d 8d - 4B 2 2B

The competitive ratio is maximized for d = g
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d

Krekelberg, B. Rand. Alg. ADS 2024



A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d

@ OPT rents for d days.
Opr(d) =d
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A second attempt

Procedure EDUCATED GUESS
With probability 2 we buy on day £, and with probability 3 we buy on day B. J

Let d be the number of sunny days.
Case 3: d < g.

o With probability 1 RAND rents d days.
Eranp [RAND(d)] = d

@ OPT rents for d days.
Opr(d) =d

Egraxo [RAND(d)]

orr(d)  °
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Egrawo [RAND(d)] 15 1

1: d > B - _ =
Case 1: d = Or1(d) g8 B
B Eranp [RAND(d)] 3 1
2: ~<d<B S
Case 2: 5 =d< Oorr(d)  ~2 2B
. B Egrano [RAND(d)]
Case 3: d < 5 Orr(d) =1
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Egrawo [RAND(d)] 15 1

1: d > B - _ =
Case 1: d = Or1(d) g8 B
B Eranp [RAND(d)] 3 1
2: ~<d<B S
Case 2: 5 =d< Oorr(d)  ~2 2B
. B Egrano [RAND(d)]
Case 3: d < 5 Orr(d) =1

For every instance /,
Egrano [RAND(/)] 15 1

< —
orr(l) ~— 8 B
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A second attempt

Procedure EDUCATED GUESS
With probability % we buy on day g, and with probability % we buy on day B. J

Egrawo [RAND(d)] 15 1

1: d > B - _ =
Case 1: d = Or1(d) g8 B
B Eranp [RAND(d)] 3 1
2: ~<d<B S
Case 2: 5 =d< Oorr(d)  ~2 2B
. B Egrano [RAND(d)]
Case 3: d < 5 Orr(d) =1

For every instance /,
Egrano [RAND(/)] 15 1

< —
ort(/) -8 B
Slightly better than the deterministic 2 — % algorithm!
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A lower bound for ski rental

Can we do better?

@ We need to see if there exists a matching lower bound.
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A lower bound for ski rental

Can we do better?

@ We need to see if there exists a matching lower bound.

Yao’s Principle.
@ What distribution over the input should we use?
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A lower bound for ski rental

Can we do better?

@ We need to see if there exists a matching lower bound.

Yao’s Principle.
@ What distribution over the input should we use?

@ Find a distribution over the inputs such that all deterministic algorithms are
equally bad.
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A lower bound for ski rental

Cost of the optimal algorithm.
For any input d, the cost of the optimal solution is easy to compute.

d ifd<B
B  otherwise

ort(d) = {
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A lower bound for ski rental

Cost of the optimal algorithm.
For any input d, the cost of the optimal solution is easy to compute.

OPT(d) = d ifd<B
| B otherwise

Let D be a probability distribution over the input. Then,

B—-1

Eapy [OPT(D)] = ) " d - Prapy (D =d) + B Prapy (D > B)
d=1
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A lower bound for ski rental

Cost of the optimal algorithm.
For any input d, the cost of the optimal solution is easy to compute.

OPT(d) = d ifd<B
| B otherwise

Let D be a probability distribution over the input. Then,

B—1
Eapy [OPT(D)] = ) " d - Prapy (D =d) + B Prapy (D > B)
d=1
B

= Z PrADv (D Z d)

d=1
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A lower bound for ski rental

Cost of deterministic algorithms.
Also the cost of any deterministic algorithm is easy to compute.

d if d <i
i—1+ B otherwise

ALG,’(d) = {
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A lower bound for ski rental

Cost of deterministic algorithms.
Also the cost of any deterministic algorithm is easy to compute.

ALci(d) = d if d <i
' "~ |li—1+B otherwise

Then,
i—1

Eaoy [ALGH(D)] = > d - Prapy (D =d)+ (i— 14 B)-Prap (D >i—1)
d=1
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A lower bound for ski rental

Cost of deterministic algorithms.
Also the cost of any deterministic algorithm is easy to compute.

ALci(d) = d if d <i
' "~ |li—1+B otherwise

Then,

i—1
Eaoy [ALGH(D)] = > d - Prapy (D =d)+ (i— 14 B)-Prap (D >i—1)
d=1
i—1

= Prapy (D>d)+ B-Prap (D >i—1)
d=1
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A lower bound for ski rental

Given that,
i-1
Eapy [ALG/(D)] = > Prapy (D > d) + B - Prap, (D >i—1)
d=1
In order to find a distribution such that for any i/, ALG; performs badly, we will
find the distribution which makes all algorithms perform the same in expectation.

Eapy [ALG/_1(D)] = Eapy [ALG;(D)]
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A lower bound for ski rental

Given that,
i-1
Eapy [ALG/(D)] = > Prapy (D > d) + B - Prap, (D >i—1)
d=1
In order to find a distribution such that for any i/, ALG; performs badly, we will
find the distribution which makes all algorithms perform the same in expectation.

Eapy [ALG/_1(D)] = Eapy [ALG;(D)]

Which means that,
i—2
ZPrADV(D > d)+ B'PI‘ADV(D > i—2)
d=1
i-1
:ZPrADV(D >d)+B-Pryyy (D>i—1)
d=1
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A lower bound for ski rental

Given that,
i-1
Eapy [ALG/(D)] = > Prapy (D > d) + B - Prap, (D >i—1)
d=1
In order to find a distribution such that for any i/, ALG; performs badly, we will
find the distribution which makes all algorithms perform the same in expectation.

Eapy [ALG/_1(D)] = Eapy [ALG;(D)]

Which means that,

i—2
> Prapy (D> d)+ B-Prap, (D >i—2)
d=1
i—1

:ZPrADV(D >d)+B-Pryyy (D>i—1)
d=1
i—2

= Prapy (D> d) +Prapy (D >i—1)+ B Prap (D >i—1)
d=1
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A lower bound for ski rental

Given that,

N

i—

PrADV(D > d)+ B- PI’ADV(D > i—2)

~. Q
(]
N =

= PI’ADV(DZCI)-FPI’ADV(DZi—1)+B-PrADV(D>i—1)
d=1

We need,

B Prapy(D>i—2)=Prap (D>i—1)+B-Prap (D>i—1)
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A lower bound for ski rental

Given that,

N

i—

PrADV(D > d)+ B- PI’ADV(D > i—2)

~. Q
(]
N =

= PI’ADV(DZCI)-FPI’ADV(DZi—1)+B-PrADV(D>i—1)
d=1

We need,

B Prapy(D>i—2)=Prap (D>i—1)+B-Prap (D>i—1)
=B Prapy(D>i—1)=Prap (D>i—1)+ B-Prap (D > i)
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A lower bound for ski rental

Given that,

N

i—

PrADV(D > d)+ B- PI’ADV(D > i—2)

~. Q
(]
N =

= PI’ADV(DZCI)-FPI’ADV(DZi—1)+B-PrADV(D>i—1)
d=1

We need,

B Prapy(D>i—2)=Prap (D>i—1)+B-Prap (D>i—1)
=B Prapy(D>i—1)=Prap (D>i—1)+ B-Prap (D > i)

< Prapy (D> 1) = (1—;) “Prapy (D>i-1)
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A lower bound for ski rental

Given that,

N

i—

PrADV(D > d)+ B- PI’ADV(D > i—2)

~. Q
(]
N =

= PI’ADV(DZCI)-FPI’ADV(DZi—1)+B-PrADV(D>i—1)
d=1

We need,

B Prapy(D>i—2)=Prap (D>i—1)+B-Prap (D>i—1)
=B Prapy(D>i—1)=Prap (D>i—1)+ B-Prap (D > i)

< Prapy (D> 1) = (1—;) “Prapy (D>i-1)

This is fulfilled when we set,

1\91
Prapy (D> d) = (1 - ) for all d > 1.
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A lower bound for ski rental

Given that,
1 d—1
PrADV(DZd): (1—8) for all d > 1.

The cost for OPT equals

B
Eapv [OPT Z PrADV D > d)
d=1
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A lower bound for ski rental

Given that,
1 d—1
PrADV(DZd): (1—8) for all d > 1.

The cost for OPT equals

B
Eapy [OPT(D)] = > Prapy (D > d)
d=
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A lower bound for ski rental

Given that,

1 d—1
Prapyv (D > d) = (1 — B) for all d > 1.

The cost for OPT equals
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A lower bound for ski rental

Given that,

1\91
Prapy (D > d) = (l - B) for all d > 1.

The cost for ALG; equals

i—1
Eaoy [ALGH(D)] = > Prapy (D > d)+ B-Pryyy (D >i—1)
d=1
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A lower bound for ski rental

Given that,

1\91
Prapy (D > d) = (l - B) for all d > 1.

The cost for ALG; equals

i—1
Eapv [ALGi(D)] = Prapy (D> d)+ B -Prapy (D> i—1)

1d—1 1i—l
1- = B-(1-=
(1-5) &(1-5)

Q.
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d=1
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A lower bound for ski rental

Given that,

1\91
Prapy (D > d) = (l - B) for all d > 1.

The cost for ALG; equals

Eapv [ALGi(D)] = Prapy (D> d)+ B -Prapy (D >i—1)

) e )
o ((-8) ) (d)
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A lower bound for ski rental

Using Yao’s Principle.

@ For every random algorithm RAND, there exists an instance d € D such that

Egraxo [RAND(d)]
Opt(d)
> min,- EADV [ALG,(D)]
Eapyv [OPT(D)]
B

B (1-(-3)°)

o)
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A lower bound for ski rental

Using Yao’s Principle.

@ For every random algorithm RAND, there exists an instance d € D such that

Egraxo [RAND(d)]
Opt(d)
> min,- EADV [ALG,(D)]
Eapyv [OPT(D)]
B

B (1-(-3)°)

)
(i (1)) e

For large B,
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A lower bound for ski rental

What did we do?

@ Computed an expression for the expected costs of ALG; and OPT.

@ Found the distribution that made the expected costs of all ALG; equal.

@ Computed the expected costs following this distribution for ALG; and OPT.

@ Applied Yao's Principle.
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A lower bound for ski rental

What did we do?

@ Computed an expression for the expected costs of ALG; and OPT.

@ Found the distribution that made the expected costs of all ALG; equal.

o If you know a (good) distribution, finding a lower bound using Yao's
Principle is not that hard. Try it out in the exercises!

@ Computed the expected costs following this distribution for ALG; and OPT.

@ Applied Yao's Principle.
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The optimal randomized algorithm

@ Our expected (%5 — é)—competitive approach was not optimal.

@ Optimal solution is (;%7)-competitive in expectation.

o It selects a day in {1,2,..., B} with increasing probability towards B.
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Overview

o For paging the RMARK algorithm is close to being optimal.
@ For ski rental, even with randomization, buying early is risky.

@ Yao’s Principle is a strong tool to compute lower bounds for
randomized algorithms.
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