Randomized (Online) Algorithms Part 2

Bob Krekelberg

Algorithms for Decision Support 2024

• Show that for every deterministic algorithm we can find a "bad" input?

- Show that for every deterministic algorithm we can find a "bad" input?
 - **No!** There still might be a "good" randomized algorithm that chooses between them.

- Show that for every deterministic algorithm we can find a "bad" input?
 - **No!** There still might be a "good" randomized algorithm that chooses between them.
- Show that for every possible randomized algorithm, there exists a hard instance?

- Show that for every deterministic algorithm we can find a "bad" input?
 - **No!** There still might be a "good" randomized algorithm that chooses between them.
- Show that for every possible randomized algorithm, there exists a hard instance?
 - Yes... but can be challenging.

- Show that for every deterministic algorithm we can find a "bad" input?
 - **No!** There still might be a "good" randomized algorithm that chooses between them.
- Show that for every possible randomized algorithm, there exists a hard instance?
 - Yes... but can be challenging.
- Show that for a fixed probability distribution over the input, all deterministic algorithms perform "bad" "on average"?

- Show that for every deterministic algorithm we can find a "bad" input?
 - **No!** There still might be a "good" randomized algorithm that chooses between them.
- Show that for every possible randomized algorithm, there exists a hard instance?
 - Yes... but can be challenging.
- Show that for a fixed probability distribution over the input, all deterministic algorithms perform "bad" "on average"?
 - Yao's Principle!

Yao's Principle, informal

The worst-case performance of the best randomized algorithm is equal to the average performance of the best deterministic algorithm on the worst distribution of the inputs

- Yao suggests that we look at the worst distribution on the inputs that we can think of.
- And claim that every deterministic algorithm does not have, on average, a performance better than *c* on this set of inputs.
- Then, by Yao's Principle, this is a lower bound on the worst-case performance of randomized algorithms.

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- We have a **finite** class of instances \mathcal{I} .

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- \bullet We have a finite class of instances $\mathcal{I}.$

Definitions.

- Let $\textbf{Pr}_{\mathrm{ADV}}$ be a probability distribution over $\mathcal{I}.$
- Let $\textbf{Pr}_{\rm RAND}$ be a probability distribution over $\mathcal{A}.$

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- \bullet We have a finite class of instances $\mathcal{I}.$

Definitions.

- Let $\textbf{Pr}_{\mathrm{ADV}}$ be a probability distribution over $\mathcal{I}.$
- Let $\textbf{Pr}_{\rm RAND}$ be a probability distribution over $\mathcal{A}.$

Algorithm $ALG \in \mathcal{A}$ on instance $I \in \mathcal{I}$ has cost ALG(I).

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- We have a **finite** class of instances \mathcal{I} .

Definitions.

- Let $\textbf{Pr}_{\mathrm{ADV}}$ be a probability distribution over $\mathcal{I}.$
- Let $\textbf{Pr}_{\rm RAND}$ be a probability distribution over $\mathcal{A}.$

Algorithm $ALG \in \mathcal{A}$ on instance $I \in \mathcal{I}$ has cost ALG(I).

Algorithm $A_{LG} \in \mathcal{A}$ on the class of instances \mathcal{I} has expected cost $\mathbb{E}_{A_{DV}}[A_{LG}(\mathcal{I})] = \sum_{I \in \mathcal{I}} \mathbf{Pr}_{A_{DV}}(I) \cdot A_{LG}(I).$

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- We have a **finite** class of instances \mathcal{I} .

Definitions.

- Let $\textbf{Pr}_{\mathrm{ADV}}$ be a probability distribution over $\mathcal{I}.$
- Let $\textbf{Pr}_{\rm RAND}$ be a probability distribution over $\mathcal{A}.$

Algorithm $ALG \in \mathcal{A}$ on instance $I \in \mathcal{I}$ has cost ALG(I).

Algorithm $A_{LG} \in \mathcal{A}$ on the class of instances \mathcal{I} has expected cost $\mathbb{E}_{A_{DV}}[A_{LG}(\mathcal{I})] = \sum_{l \in \mathcal{I}} \mathbf{Pr}_{A_{DV}}(l) \cdot A_{LG}(l).$

Algorithm RAND on instance $I \in \mathcal{I}$ has expected cost $\mathbb{E}_{\text{RAND}}[\text{RAND}(I)] = \sum_{\text{ALG} \in \mathcal{A}} \Pr_{\text{RAND}}(\text{ALG}) \cdot \text{ALG}(I).$

Assumptions.

- \bullet We have a finite class of deterministic algorithms ${\cal A}$
- We have a **finite** class of instances \mathcal{I} .

Definitions.

- Let $\textbf{Pr}_{\mathrm{ADV}}$ be a probability distribution over $\mathcal{I}.$
- \bullet Let $\textbf{Pr}_{\rm RAND}$ be a probability distribution over $\mathcal{A}.$

Algorithm $ALG \in \mathcal{A}$ on instance $I \in \mathcal{I}$ has cost ALG(I).

Algorithm $A_{LG} \in \mathcal{A}$ on the class of instances \mathcal{I} has expected cost $\mathbb{E}_{A_{DV}}[A_{LG}(\mathcal{I})] = \sum_{l \in \mathcal{I}} \mathbf{Pr}_{A_{DV}}(l) \cdot A_{LG}(l).$

Algorithm RAND on instance $I \in \mathcal{I}$ has expected cost $\mathbb{E}_{\text{RAND}}[\text{RAND}(I)] = \sum_{\text{ALG} \in \mathcal{A}} \Pr_{\text{RAND}}(\text{ALG}) \cdot \text{ALG}(I).$

Algorithm RAND on the class of instances \mathcal{I} has expected cost $\mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right] = \sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right].$

lf,

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{Opt}(\mathcal{I})
ight]}\geq c$$

Then, for every randomized algorithm RAND, there exists an instance $I \in \mathcal{I}$, such that,

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(I)]}{\text{OPT}(I)} \geq c$$

Proof.

We first rewrite the expected cost of RAND with respect to $\boldsymbol{\mathsf{Pr}}_{\mathrm{ADV}}.$

$$\begin{split} & \mathbb{E}_{\text{ADV}}\left[\mathbb{E}_{\text{RAND}}\left[\text{RAND}(\mathcal{I})\right]\right] \\ & = \sum_{I \in \mathcal{I}} \mathsf{Pr}_{\text{ADV}}\left(I\right) \cdot \mathbb{E}_{\text{RAND}}\left[\text{RAND}(\mathcal{I})\right] \end{split}$$

Proof.

We first rewrite the expected cost of RAND with respect to $\boldsymbol{\mathsf{Pr}}_{\mathrm{ADV}}.$

$$\begin{split} & \mathbb{E}_{\text{ADV}} \left[\mathbb{E}_{\text{RAND}} \left[\text{RAND}(\mathcal{I}) \right] \right] \\ &= \sum_{\text{I} \in \mathcal{I}} \mathsf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \mathbb{E}_{\text{RAND}} \left[\text{RAND}(I) \right] \\ &= \sum_{\text{I} \in \mathcal{I}} \left(\mathsf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \sum_{\text{ALG} \in \mathcal{A}} \mathsf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \text{ALG}(I) \right) \end{split}$$

Proof.

We first rewrite the expected cost of RAND with respect to Pr_{ADV} .

F

$$\begin{split} & \mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right] \\ &= \sum_{I \in \mathcal{I}} \mathsf{Pr}_{ADV} \left(I \right) \cdot \mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \\ &= \sum_{I \in \mathcal{I}} \left(\mathsf{Pr}_{ADV} \left(I \right) \cdot \sum_{ALG \in \mathcal{A}} \mathsf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{I \in \mathcal{I}} \left(\sum_{ALG \in \mathcal{A}} \mathsf{Pr}_{ADV} \left(I \right) \cdot \mathsf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \end{split}$$

Proof.

We first rewrite the expected cost of RAND with respect to $\boldsymbol{\mathsf{Pr}}_{\mathrm{ADV}}.$

r ----

r -----

(-) 11

$$\begin{split} &\mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right] \\ &= \sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \\ &= \sum_{I \in \mathcal{I}} \left(\mathbf{Pr}_{ADV} \left(I \right) \cdot \sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{I \in \mathcal{I}} \left(\sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{ALG \in \mathcal{A}} \left(\sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \end{split}$$

Proof.

We first rewrite the expected cost of RAND with respect to $\boldsymbol{\mathsf{Pr}}_{\mathrm{ADV}}.$

$$\begin{split} & \mathbb{E}_{\text{ADV}} \left[\mathbb{E}_{\text{RAND}} \left[\text{RAND}(\mathcal{I}) \right] \right] \\ &= \sum_{\text{I} \in \mathcal{I}} \mathbf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \mathbb{E}_{\text{RAND}} \left[\text{RAND}(I) \right] \\ &= \sum_{\text{I} \in \mathcal{I}} \left(\mathbf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \sum_{\text{ALG} \in \mathcal{A}} \mathbf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \text{ALG}(I) \right) \\ &= \sum_{\text{I} \in \mathcal{I}} \left(\sum_{\text{ALG} \in \mathcal{A}} \mathbf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \mathbf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \text{ALG}(I) \right) \\ &= \sum_{\text{ALG} \in \mathcal{A}} \left(\sum_{\text{I} \in \mathcal{I}} \mathbf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \mathbf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \text{ALG}(I) \right) \\ &= \sum_{\text{ALG} \in \mathcal{A}} \left(\mathbf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \sum_{\text{I} \in \mathcal{I}} \mathbf{Pr}_{\text{ADV}} \left(\text{I} \right) \cdot \text{ALG}(I) \right) \end{split}$$

Proof.

We first rewrite the expected cost of RAND with respect to $\boldsymbol{\mathsf{Pr}}_{\mathrm{ADV}}.$

$$\begin{split} & \mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right] \\ &= \sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \\ &= \sum_{I \in \mathcal{I}} \left(\mathbf{Pr}_{ADV} \left(I \right) \cdot \sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{I \in \mathcal{I}} \left(\sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{ALG \in \mathcal{A}} \left(\sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot \mathbf{Pr}_{RAND} \left(ALG \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{ALG \in \mathcal{A}} \left(\mathbf{Pr}_{RAND} \left(ALG \right) \cdot \sum_{I \in \mathcal{I}} \mathbf{Pr}_{ADV} \left(I \right) \cdot ALG(\mathcal{I}) \right) \\ &= \sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right) \cdot \mathbb{E}_{ADV} \left[ALG(\mathcal{I}) \right] \end{split}$$

Now assume that

 $\frac{\min_{\mathrm{Alg}\in\mathcal{A}}\mathbb{E}_{\mathrm{Adv}}[\mathrm{Alg}(\mathcal{I})]}{\mathbb{E}_{\mathrm{Adv}}[\mathrm{Opt}(\mathcal{I})]} \geq c$

Now assume that

$$\frac{\min\limits_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})\right]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})\right]}\geq c$$

Then it must hold for every deterministic algorithm ALG that,

 $\mathbb{E}_{\text{Adv}}\left[\text{Alg}(\mathcal{I})\right] \geq c \cdot \mathbb{E}_{\text{Adv}}\left[\text{Opt}(\mathcal{I})\right]$

Now assume that

$$\frac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})\right]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})\right]}\geq c$$

Then it must hold for every deterministic algorithm $\ensuremath{\operatorname{ALG}}$ that,

$$\mathbb{E}_{ ext{Adv}}\left[ext{Alg}(\mathcal{I})
ight] \geq \pmb{c} \cdot \mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

$$\begin{split} \mathbb{E}_{\text{Adv}} \left[\mathbb{E}_{\text{Rand}} \left[\text{Rand}(\mathcal{I}) \right] \right] \\ = \sum_{\text{Alg} \in \mathcal{A}} \mathsf{Pr}_{\text{Rand}} \left(\text{Alg} \right) \cdot \mathbb{E}_{\text{Adv}} \left[\text{Alg}(\mathcal{I}) \right] \end{split}$$

Now assume that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{Opt}(\mathcal{I})
ight]}\geq c$$

Then it must hold for every deterministic algorithm ALG that,

$$\mathbb{E}_{ ext{Adv}}\left[ext{Alg}(\mathcal{I})
ight] \geq \pmb{c} \cdot \mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

$$\begin{split} \mathbb{E}_{\text{ADV}} \left[\mathbb{E}_{\text{RAND}} \left[\text{RAND}(\mathcal{I}) \right] \right] \\ &= \sum_{\text{ALG} \in \mathcal{A}} \mathsf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot \mathbb{E}_{\text{ADV}} \left[\text{ALG}(\mathcal{I}) \right] \\ &\geq \sum_{\text{ALG} \in \mathcal{A}} \mathsf{Pr}_{\text{RAND}} \left(\text{ALG} \right) \cdot c \cdot \mathbb{E}_{\text{ADV}} \left[\text{OPT}(\mathcal{I}) \right] \end{split}$$

Now assume that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{Opt}(\mathcal{I})
ight]}\geq c$$

Then it must hold for every deterministic algorithm ALG that,

$$\mathbb{E}_{ ext{Adv}}\left[ext{Alg}(\mathcal{I})
ight] \geq \pmb{c} \cdot \mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

$$\mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right]$$

$$= \sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right) \cdot \mathbb{E}_{ADV} \left[ALG(\mathcal{I}) \right]$$

$$\geq \sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right) \cdot c \cdot \mathbb{E}_{ADV} \left[OPT(\mathcal{I}) \right]$$

$$= c \cdot \mathbb{E}_{ADV} \left[OPT(\mathcal{I}) \right] \cdot \underbrace{\sum_{ALG \in \mathcal{A}} \mathbf{Pr}_{RAND} \left(ALG \right)}_{Equals 1}$$

Now assume that

$$\frac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})\right]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})\right]}\geq c$$

Then it must hold for every deterministic algorithm ALG that,

$$\mathbb{E}_{ ext{Adv}}\left[ext{Alg}(\mathcal{I})
ight] \geq \pmb{c} \cdot \mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

$$\begin{split} \mathbb{E}_{ADV} \left[\mathbb{E}_{RAND} \left[RAND(\mathcal{I}) \right] \right] \\ &= \sum_{ALG \in \mathcal{A}} \mathsf{Pr}_{RAND} \left(ALG \right) \cdot \mathbb{E}_{ADV} \left[ALG(\mathcal{I}) \right] \\ &\geq \sum_{ALG \in \mathcal{A}} \mathsf{Pr}_{RAND} \left(ALG \right) \cdot c \cdot \mathbb{E}_{ADV} \left[OPT(\mathcal{I}) \right] \\ &= c \cdot \mathbb{E}_{ADV} \left[OPT(\mathcal{I}) \right] \cdot \underbrace{\sum_{ALG \in \mathcal{A}} \mathsf{Pr}_{RAND} \left(ALG \right)}_{Equals 1} \\ &= c \cdot \mathbb{E}_{ADV} \left[OPT(\mathcal{I}) \right] \end{split}$$

We are not quite there yet. Assuming that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})
ight]}\geq c$$

We now have,

$$\mathbb{E}_{\text{Adv}}\left[\mathbb{E}_{\text{Rand}}\left[\text{Rand}(\mathcal{I})\right]\right] \geq c \cdot \mathbb{E}_{\text{Adv}}\left[\text{Opt}(\mathcal{I})\right]$$

We are not quite there yet. Assuming that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})
ight]}\geq c$$

We now have,

$$\mathbb{E}_{ ext{Adv}}\left[\mathbb{E}_{ ext{Rand}}\left[ext{Rand}(\mathcal{I})
ight]
ight] \geq c\cdot\mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

Claim: There exists an instance $I \in \mathcal{I}$ such that,

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(I)] \geq c \cdot \text{Opt}(I)$

We are not quite there yet. Assuming that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})
ight]}\geq c$$

We now have,

$$\mathbb{E}_{ ext{Adv}}\left[\mathbb{E}_{ ext{Rand}}\left[ext{Rand}(\mathcal{I})
ight]
ight] \geq c\cdot\mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

Claim: There exists an instance $I \in \mathcal{I}$ such that,

 $\mathbb{E}_{\text{RAND}}\left[\text{RAND}(I)\right] \geq c \cdot \text{Opt}(I)$

Suppose aiming towards a contradiction that for every $I \in \mathcal{I}$

 $\mathbb{E}_{\text{Rand}}\left[\text{Rand}(\textit{I})\right] < \textit{c} \cdot \text{Opt}(\text{I})$

We are not quite there yet. Assuming that

$$rac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})
ight]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})
ight]}\geq c$$

We now have,

$$\mathbb{E}_{ ext{Adv}}\left[\mathbb{E}_{ ext{Rand}}\left[ext{Rand}(\mathcal{I})
ight]
ight] \geq c\cdot\mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{I})
ight]$$

Claim: There exists an instance $I \in \mathcal{I}$ such that,

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(I)] \geq c \cdot \text{Opt}(I)$

Suppose aiming towards a contradiction that for every $I \in \mathcal{I}$

$$\mathbb{E}_{\text{Rand}}\left[\text{Rand}(I)\right] < c \cdot \text{Opt}(I)$$

It follows that

$$\sum_{l \in \mathcal{I}} \mathsf{Pr}_{ADV}(l) \cdot \mathbb{E}_{RAND}[RAND(l)] < c \cdot \sum_{l \in \mathcal{I}} \mathsf{Pr}_{ADV}(l) \cdot OPT(l)$$
Contradiction!

Assuming that

$$\frac{\min_{\mathrm{ALG}\in\mathcal{A}}\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}(\mathcal{I})\right]}{\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{OPT}(\mathcal{I})\right]}\geq c$$

There exists an instance $I \in \mathcal{I}$ such that,

 $\mathbb{E}_{\text{RAND}}\left[\text{RAND}(I)\right] \geq c \cdot \text{Opt}(I)$

This proves Yao's Principle

Last time we have seen that there exists a randomized algorithm for the online paging problem that is $2H_k$ -competitive in expectation.

Is it possible to do better?

Last time we have seen that there exists a randomized algorithm for the online paging problem that is $2H_k$ -competitive in expectation.

Is it possible to do better?

• Can we find a matching lower bound? Yao's Principle!

Harmonic number

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{i=1}^n \frac{1}{i}$$

Harmonic number

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{i=1}^n \frac{1}{i}$$

Coupon Collector's Problem

If each box of breakfast cereal contains a coupon, and there are n different coupons, how many boxes do you need to buy in expectation to collect all n coupons?

Harmonic number

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{i=1}^n \frac{1}{i}$$

Coupon Collector's Problem

If each box of breakfast cereal contains a coupon, and there are n different coupons, how many boxes do you need to buy in expectation to collect all n coupons?

Theorem

For the Coupon Collector's problem, the expected value of purchases required in order to collect each of the *n* coupons at least once is nH_n .

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon.

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon. Then, n

$$X = \sum_{i=1}^{n} X_i$$

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon. Then, n

$$X = \sum_{i=1} X_i$$

Let \mathcal{E}_i be the event that one of those coupons is collected in the next purchase. Then,

$$\Pr\left(\mathcal{E}_i\right) = \frac{n - (i - 1)}{n}$$

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is a final product of the distinct coupon. Then, After the (i - 1)-th distinct coupon

is collected, there are n - i + 1coupons remaining to be collected.

Let \mathcal{E}_i be the event that one of those compositions connected in the next purchase. Then,

$$\operatorname{Pr}\left(\mathcal{E}_{i}\right)=rac{n-(i-1)}{n}$$

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon. Then, n

$$X = \sum_{i=1}^{n} X_i$$

Let \mathcal{E}_i be the event that one of those coupons is collected in the next purchase. Then,

$$\Pr\left(\mathcal{E}_i\right) = \frac{n - (i - 1)}{n}$$

 X_i follows a **geometric distribution**.

$$\mathbb{E}_{ADV}\left[X_{i}\right] = \frac{1}{\Pr\left(\mathcal{E}_{i}\right)} = \frac{n}{n - (i - 1)}$$

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon. Then, $X = \sum_{i=1}^{n} X_i$

Let \mathcal{E}_i be Then, The probability distribution of the number of tails one must flip before the first head using a weighted coin.

in the next purchase.

 X_i follows a **geometric distribution**.

$$\mathbb{E}_{ ext{ADV}}\left[X_{i}
ight] = rac{1}{\operatorname{\mathbf{Pr}}\left(\mathcal{E}_{i}
ight)} = rac{n}{n-(i-1)}$$

 $\mathbf{r}(c_i) = \frac{1}{n}$

Proof.

Let X be the discrete random variable that represents the number of purchases until each of the n coupons is collected.

Le X_i be the discrete random variable that represents the number of purchases, after the (i - 1)-th distinct coupon is collected, to collect the *i*-th distinct coupon. Then, n

$$X = \sum_{i=1}^{N} X_i$$

Let \mathcal{E}_i be the event that one of those coupons is collected in the next purchase. Then,

$$\operatorname{Pr}\left(\mathcal{E}_{i}
ight)=rac{n-(i-1)}{n}$$

 X_i follows a **geometric distribution**.

$$\mathbb{E}_{\text{ADV}}\left[X_{i}\right] = \frac{1}{\Pr\left(\mathcal{E}_{i}\right)} = \frac{n}{n - (i - 1)}$$

Then,

$$\mathbb{E}_{ADV}[X] = \mathbb{E}_{ADV}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}_{ADV}[X_i] = \sum_{i=1}^{n} \frac{n}{n - (i-1)} = n \sum_{i=1}^{n} \frac{1}{i} = n H_n$$

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Assumptions

- Without loss of generality, OPT and ALG start with cache $1, 2, \ldots, k$.
- The first page requested by the adversary is page k + 1, causing a page fault for both OPT and ALG.

Objective:

• Show that every deterministic online algorithm has a large expected cost compared to an optimal solution. **Yao's Principle!**

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Input distribution

- A phase is defined as before.
- \mathcal{I}_N is the set of all instances that contain N phases.
- The adversary never requests the same page twice in a row.
- The adversary requests each (other) page with probability 1/k.

Expected cost for optimal algorithm.

• Since M = k + 1, LFD ensures a single page fault per phase.

•
$$\mathbb{E}_{ADV}[OPT(\mathcal{I}_n)] = \sum_{j=1}^{N} \mathbb{E}_{ADV}[OPT(\mathcal{P}_j)] = \sum_{j=1}^{N} 1 = N.$$

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Expected page fault.

- Every page that is requested in some time step (not time step 1) causes a page fault with probability ¹/_k.
- Let $|P_j|$ be the expected size of phase P_j .
- $\mathbb{E}_{ADV}[ALG(P_j)] \ge |P_j| \cdot \frac{1}{k}$.

Length of a phase.

- Phase P_j ends right before the (k + 1)-th distinct page, since the beginning of phase P_j , will be requested.
- How long does it take in expectation until all pages 1, 2, ..., k, k + 1 are requested?

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Expected page fault.

- Every page that is requested in some time step (not time step 1) causes a page fault with probability ¹/_k.
- Let $|P_j|$ be the expected size of phase P_j .
- $\mathbb{E}_{ADV}[ALG(P_j)] \ge |P_j| \cdot \frac{1}{k}$.

Length of a phase.

- Phase P_j ends right before the (k + 1)-th distinct page, since the beginning of phase P_j , will be requested.
- How long does it take in expectation until all pages 1, 2, ..., k, k + 1 are requested? Coupon Collector's Problem!

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Expected page fault.

- Every page that is requested in some time step (not time step 1) causes a page fault with probability ¹/_k.
- Let $|P_j|$ be the expected size of phase P_j .
- $\mathbb{E}_{ADV}[ALG(P_j)] \ge |P_j| \cdot \frac{1}{k} = (k \cdot H_k) \cdot \frac{1}{k} = H_k.$

Length of a phase.

- Phase P_j ends right before the (k + 1)-th distinct page, since the beginning of phase P_j , will be requested.
- How long does it take in expectation until all pages 1, 2, ..., k, k + 1 are requested? Coupon Collector's Problem!

No randomized online algorithm for paging is better than H_k -competitive in expectation, even when M = k + 1.

Expected cost for every deterministic algorithm.

•
$$\mathbb{E}_{ADV}[ALG(\mathcal{I}_n)] = \sum_{j=1}^{N} \mathbb{E}_{ADV}[ALG(P_j)] \ge \sum_{j=1}^{N} H_k = NH_k.$$

Yao's Principle.

• For every random algorithm RAND, there exists an instance $I_n \in \mathcal{I}_n$ such that $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(I_n)]}{\text{OPT}(I_n)} \geq \frac{\mathbb{E}_{\text{ADV}}[\text{ALG}(\mathcal{I}_n)]}{\mathbb{E}_{\text{ADV}}[\text{OPT}(\mathcal{I}_n)]} = \frac{NH_k}{N} = H_k$

- RMark algorithm
 - Competitive ratio greater then H_k (see exercises).
 - At most $2H_k$ -competitive.

• Any randomized algorithm is at least H_k -competitive.

• Does a randomized algorithm exist that is H_k -competitive in expectation?

RMark algorithm

- Competitive ratio greater then H_k (see exercises).
- At most $2H_k$ -competitive.
- RMark is $(2H_k 1)$ -competitive in expectation.

• Any randomized algorithm is at least H_k -competitive.

• Does a randomized algorithm exist that is H_k -competitive in expectation?

RMark algorithm

- Competitive ratio greater then H_k (see exercises).
- At most $2H_k$ -competitive.
- RMark is $(2H_k 1)$ -competitive in expectation.

• Any randomized algorithm is at least H_k -competitive.

- Does a randomized algorithm exist that is H_k -competitive in expectation?
 - Yes, the Partition algorithm (McGeoch, Lyle, Sleator, Daniel 1991).

- Suppose you want to go skiing for as long as possible, but you do not own any skis. You have two choices.
 - Renting skis for 1 a day.
 - Buying skis for B.
- The only thing that would prevent you from skiing is the weather.
 - You go skiing.
 - **III** You don't go skiing.
- Objective: Minimize the amount of money you have to spend on skis.

• If there are less than B sunny days, OPT never buys.

• If there are more than B sunny days, OPT buys on day 1.

• There exists a $(2 - \frac{1}{B})$ -competitive algorithm.

• No deterministic algorithm can be better than $(2 - \frac{1}{B})$ -competitive.

• If there are less than B sunny days, OPT never buys.

- If there are more than B sunny days, OPT buys on day 1.
 - A good deterministic algorithm never buys later than day *B*.

• There exists a $(2 - \frac{1}{B})$ -competitive algorithm.

• No deterministic algorithm can be better than $(2 - \frac{1}{B})$ -competitive.

• If there are less than B sunny days, OPT never buys.

- If there are more than B sunny days, OPT buys on day 1.
 - A good deterministic algorithm never buys later than day *B*.

- There exists a $(2 \frac{1}{B})$ -competitive algorithm.
 - Strategy: buy on day *B*.

• No deterministic algorithm can be better than $(2 - \frac{1}{B})$ -competitive.

A first attempt

How was the deterministic algorithm punished?

- ALG buys on day *B*.
- Then there are only *B* sunny days.

A first attempt

How was the deterministic algorithm punished?

- ALG buys on day *B*.
- Then there are only *B* sunny days.

How can we use randomization?

- RAND buys either on day B or earlier, say $\frac{B}{2}$.
- Then the adversary should choose either B or $\frac{B}{2}$ sunny days.

A first attempt

How was the deterministic algorithm punished?

- ALG buys on day *B*.
- Then there are only *B* sunny days.

How can we use randomization?

- RAND buys either on day B or earlier, say $\frac{B}{2}$.
- Then the adversary should choose either B or $\frac{B}{2}$ sunny days.

Is this an improvement?

- If there are *B* sunny days, buying on day $\frac{B}{2}$ (compared to buying on day *B*) saves spending an extra $\frac{B}{2}$.
- If there are $\frac{B}{2}$ sunny days, waiting to buy on day *B* (compared to buying on day $\frac{B}{2}$) saves spending an extra *B*.

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let d be the number of sunny days.

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents B-1 days, and then buys.

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}(B - 1 + B)$$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}(B - 1 + B) = \frac{7B}{4} - 1$$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}(B - 1 + B) = \frac{7B}{4} - 1$$

• OPT buys on day 1.

$$OPT(d) = B$$
With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}(B - 1 + B) = \frac{7B}{4} - 1$$

• OPT buys on day 1.

$$OPT(d) = B$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{OPT}(d)} = \frac{\frac{7B}{4} - 1}{B} = \frac{7}{4} - \frac{1}{B}$$

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents *d* days.

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}d$$

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

- With probability $\frac{1}{2}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}d = \frac{3B + 2d - 2}{4}$$

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \leq d < B$.

- \bullet With probability $\frac{1}{2}~{\rm RAND}$ rents $\frac{\textit{B}}{2}-1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}d = \frac{3B + 2d - 2}{4}$$

• OPT rents for *d* days.

OPT(d) = d

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{2}~{\rm RAND}$ rents $\frac{\textit{B}}{2}-1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}d = \frac{3B + 2d - 2}{4}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = \frac{\frac{3B+2d-2}{4}}{d} = \frac{3B+2d-2}{4d}$$

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{2}~{\rm RAND}$ rents $\frac{\textit{B}}{2}-1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{2}(\frac{B}{2} - 1 + B) + \frac{1}{2}d = \frac{3B + 2d - 2}{4}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = \frac{\frac{3B+2d-2}{4}}{d} = \frac{3B+2d-2}{4d}$$

The competitive ratio is maximized for $d = \frac{B}{2}$

Procedure GAMBLE

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{2}~{\rm RAND}$ rents $\frac{\it B}{2}-1$ days, and then buys.
- With probability $\frac{1}{2}$ RAND rents d days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = rac{1}{2}(rac{B}{2} - 1 + B) + rac{1}{2}d = rac{3B + 2d - 2}{4}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{Opt}(d)} = \frac{\frac{3B+2d-2}{4}}{d} = \frac{3B+2d-2}{4d} \le \frac{4B-2}{2B} = 2 - \frac{1}{B}$$

The competitive ratio is maximized for $d = \frac{B}{2}$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents *d* days.

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents d days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents d days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

• OPT rents for *d* days.

OPT(d) = d

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents d days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{Opt}(d)} = 1$$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Case 1:
$$d \ge B$$
 $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = \frac{7}{4}$ Case 2: $\frac{B}{2} \le d < B$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} \le 2$ Case 3: $d < \frac{B}{2}$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = 1$

 $\frac{1}{B}$

 $\frac{1}{B}$

(1)]

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Case 1:
$$d \ge B$$
 $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = \frac{7}{4} - \frac{1}{B}$ Case 2: $\frac{B}{2} \le d < B$ $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} \le 2 - \frac{1}{B}$ Case 3: $d < \frac{B}{2}$ $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = 1$

For every instance I,

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(I)\right]}{\text{OPT}(I)} \leq 2 - \frac{1}{B}$$

With probability $\frac{1}{2}$ we buy on day $\frac{B}{2}$, and also with probability $\frac{1}{2}$ we buy on day B.

Case 1:
$$d \ge B$$
 $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = \frac{7}{4} - \frac{1}{B}$ Case 2: $\frac{B}{2} \le d < B$ $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} \le 2 - \frac{1}{B}$ Case 3: $d < \frac{B}{2}$ $\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} = 1$

For every instance I,

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(I)\right]}{\text{OPT}(I)} \leq 2 - \frac{1}{B}$$

No improvement over deterministic algorithm!

Why did this not work?

• We should not buy too early or early too often.

Why did this not work?

• We should not buy too early or early too often.

How can we improve?

- Buy less early.
- Buy early less.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let d be the number of sunny days.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents B-1 days, and then buys.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right] = \frac{1}{4}\left(\frac{B}{2} - 1 + B\right) + \frac{3}{4}(B - 1 + B)$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}(B - 1 + B) = \frac{15B}{8} - 1$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}(B - 1 + B) = \frac{15B}{8} - 1$$

• OPT buys on day 1.

$$OPT(d) = B$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 1: $d \ge B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents B-1 days, and then buys.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}(B - 1 + B) = \frac{15B}{8} - 1$$

• OPT buys on day 1.

$$OPT(d) = B$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{OPT}(d)} = \frac{\frac{15B}{8} - 1}{B} = \frac{15}{8} - \frac{1}{B}$$

A second attempt

Procedure EDUCATED GUESS

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right] = \frac{1}{4}\left(\frac{B}{2} - 1 + B\right) + \frac{3}{4}d$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}d = \frac{3B + 6d - 2}{8}$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- With probability $\frac{1}{4}$ RAND rents $\frac{B}{2} 1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}d = \frac{3B + 6d - 2}{8}$$

• OPT rents for *d* days.

OPT(d) = d

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{4}~{\rm RAND}$ rents $\frac{\textit{B}}{2}-1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = \frac{1}{4}(\frac{B}{2} - 1 + B) + \frac{3}{4}d = \frac{3B + 6d - 2}{8}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{OPT}(d)} = \frac{\frac{3B+6d-2}{8}}{d} = \frac{3B+6d-2}{8d}$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{4}~{\rm RAND}$ rents $\frac{\it B}{2}-1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = rac{1}{4}(rac{B}{2} - 1 + B) + rac{3}{4}d = rac{3B + 6d - 2}{8}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{OPT}(d)} = \frac{\frac{3B+6d-2}{8}}{d} = \frac{3B+6d-2}{8d}$$

The competitive ratio is maximized for $d = \frac{B}{2}$

Krekelberg, B

ADS 2024

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 2: $\frac{B}{2} \le d < B$.

- \bullet With probability $\frac{1}{4}~{\rm RAND}$ rents $\frac{\it B}{2}-1$ days, and then buys.
- With probability $\frac{3}{4}$ RAND rents *d* days.

$$\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = rac{1}{4}(rac{B}{2} - 1 + B) + rac{3}{4}d = rac{3B + 6d - 2}{8}$$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{OPT}(d)} = \frac{\frac{3B+6d-2}{8}}{d} = \frac{3B+6d-2}{8d} \le \frac{6B-2}{4B} = \frac{3}{2} - \frac{1}{2B}$$

The competitive ratio is maximized for $d = \frac{B}{2}$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

- Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.
 - With probability 1 RAND rents d days.

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents *d* days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents d days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

• OPT rents for *d* days.

OPT(d) = d

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Let *d* be the number of sunny days. Case 3: $d < \frac{B}{2}$.

• With probability 1 RAND rents d days.

 $\mathbb{E}_{\text{RAND}}[\text{RAND}(d)] = d$

• OPT rents for *d* days.

$$OPT(d) = d$$

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(d)\right]}{\text{Opt}(d)} = 1$$

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Case 1:
$$d \ge B$$

Case 2: $\frac{B}{2} \le d < B$
Case 3: $d < \frac{B}{2}$

$$rac{\mathbb{E}_{ ext{RAND}}\left[ext{RAND}(d)
ight]}{ ext{OPT}(d)} = rac{15}{8} - rac{1}{B}$$
 $rac{\mathbb{E}_{ ext{RAND}}\left[ext{RAND}(d)
ight]}{ ext{OPT}(d)} \leq rac{3}{2} - rac{1}{2B}$
 $rac{\mathbb{E}_{ ext{RAND}}\left[ext{RAND}(d)
ight]}{ ext{OPT}(d)} = 1$
Procedure EDUCATED GUESS

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Case 1:
$$d \ge B$$
 $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = \frac{15}{8} - \frac{1}{B}$ Case 2: $\frac{B}{2} \le d < B$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} \le \frac{3}{2} - \frac{1}{2B}$ Case 3: $d < \frac{B}{2}$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = 1$

For every instance *I*,

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(l)\right]}{\text{Opt}(l)} \leq \frac{15}{8} - \frac{1}{B}$$

Procedure EDUCATED GUESS

With probability $\frac{1}{4}$ we buy on day $\frac{B}{2}$, and with probability $\frac{3}{4}$ we buy on day B.

Case 1:
$$d \ge B$$
 $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = \frac{15}{8} - \frac{1}{B}$ Case 2: $\frac{B}{2} \le d < B$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} \le \frac{3}{2} - \frac{1}{2B}$ Case 3: $d < \frac{B}{2}$ $\frac{\mathbb{E}_{\text{RAND}} [\text{RAND}(d)]}{\text{OPT}(d)} = 1$

For every instance I,

$$\frac{\mathbb{E}_{\text{RAND}}\left[\text{RAND}(I)\right]}{\text{OPT}(I)} \leq \frac{15}{8} - \frac{1}{B}$$

Slightly better than the deterministic $2 - \frac{1}{B}$ algorithm!

Can we do better?

• We need to see if there exists a matching lower bound.

Can we do better?

• We need to see if there exists a matching lower bound.

Yao's Principle.

• What distribution over the input should we use?

Can we do better?

• We need to see if there exists a matching lower bound.

Yao's Principle.

- What distribution over the input should we use?
- Find a distribution over the inputs such that all deterministic algorithms are equally bad.

Cost of the optimal algorithm.

For any input d, the cost of the optimal solution is easy to compute.

$$OPT(d) = \begin{cases} d & \text{if } d < B \\ B & \text{otherwise} \end{cases}$$

Cost of the optimal algorithm.

For any input d, the cost of the optimal solution is easy to compute.

$$OPT(d) = \begin{cases} d & \text{if } d < B \\ B & \text{otherwise} \end{cases}$$

Let $\ensuremath{\mathcal{D}}$ be a probability distribution over the input. Then,

$$\mathbb{E}_{\text{ADV}}\left[\text{OPT}(\mathcal{D})\right] = \sum_{d=1}^{B-1} d \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} = d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \geq B\right)$$

Cost of the optimal algorithm.

For any input d, the cost of the optimal solution is easy to compute.

$$OPT(d) = \begin{cases} d & \text{if } d < B \\ B & \text{otherwise} \end{cases}$$

Let ${\mathcal D}$ be a probability distribution over the input. Then,

$$\begin{split} \mathbb{E}_{\text{ADV}}\left[\text{OPT}(\mathcal{D})\right] &= \sum_{d=1}^{B-1} d \cdot \mathsf{Pr}_{\text{ADV}} \left(\mathcal{D} = d\right) + B \cdot \mathsf{Pr}_{\text{ADV}} \left(\mathcal{D} \geq B\right) \\ &= \sum_{d=1}^{B} \mathsf{Pr}_{\text{ADV}} \left(\mathcal{D} \geq d\right) \end{split}$$

Cost of deterministic algorithms.

Also the cost of any deterministic algorithm is easy to compute.

$$ALG_i(d) = \begin{cases} d & \text{if } d < i \\ i - 1 + B & \text{otherwise} \end{cases}$$

Cost of deterministic algorithms.

Also the cost of any deterministic algorithm is easy to compute.

$$ALG_i(d) = \begin{cases} d & \text{if } d < i \\ i - 1 + B & \text{otherwise} \end{cases}$$

Then,

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} d \cdot \mathbf{Pr}_{\text{ADV}}\left(\mathcal{D} = d\right) + (i-1+B) \cdot \mathbf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

Cost of deterministic algorithms.

Also the cost of any deterministic algorithm is easy to compute.

$$ALG_i(d) = \begin{cases} d & \text{if } d < i \\ i - 1 + B & \text{otherwise} \end{cases}$$

Then,

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} d \cdot \Pr_{\text{ADV}}\left(\mathcal{D} = d\right) + (i-1+B) \cdot \Pr_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$
$$= \sum_{d=1}^{i-1} \Pr_{\text{ADV}}\left(\mathcal{D} \ge d\right) + B \cdot \Pr_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

Given that,

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \geq d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

In order to find a distribution such that for any i, ALG_i performs badly, we will find the distribution which makes all algorithms perform the same in expectation.

 $\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i-1}(\mathcal{D})\right] = \mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i}(\mathcal{D})\right]$

Given that,

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \geq d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

In order to find a distribution such that for any i, ALG_i performs badly, we will find the distribution which makes all algorithms perform the same in expectation.

$$\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i-1}(\mathcal{D})\right] = \mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i}(\mathcal{D})\right]$$

Which means that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$
$$= \sum_{d=1}^{i-1} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

Given that,

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \geq d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

In order to find a distribution such that for any i, ALG_i performs badly, we will find the distribution which makes all algorithms perform the same in expectation.

$$\mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i-1}(\mathcal{D})\right] = \mathbb{E}_{\mathrm{ADV}}\left[\mathrm{ALG}_{i}(\mathcal{D})\right]$$

Which means that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$

=
$$\sum_{d=1}^{i-1} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

=
$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + \mathbf{Pr}_{ADV} (\mathcal{D} \ge i-1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

Given that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$

=
$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + \mathbf{Pr}_{ADV} (\mathcal{D} \ge i-1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

We need,

$$B \cdot \mathbf{Pr}_{ADV} \left(\mathcal{D} > i - 2 \right) = \mathbf{Pr}_{ADV} \left(\mathcal{D} \ge i - 1 \right) + B \cdot \mathbf{Pr}_{ADV} \left(\mathcal{D} > i - 1 \right)$$

Given that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$

=
$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + \mathbf{Pr}_{ADV} (\mathcal{D} \ge i-1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

We need,

$$B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 2) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 1)$$

$$\iff B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i)$$

Given that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$

=
$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + \mathbf{Pr}_{ADV} (\mathcal{D} \ge i-1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

We need,

$$B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 2) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 1)$$

$$\iff B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i)$$

$$\iff \mathbf{Pr}_{ADV} (\mathcal{D} \ge i) = \left(1 - \frac{1}{B}\right) \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1)$$

Given that,

$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-2)$$

=
$$\sum_{d=1}^{i-2} \mathbf{Pr}_{ADV} (\mathcal{D} \ge d) + \mathbf{Pr}_{ADV} (\mathcal{D} \ge i-1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i-1)$$

We need,

$$B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 2) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} > i - 1)$$

$$\iff B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) = \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1) + B \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i)$$

$$\iff \mathbf{Pr}_{ADV} (\mathcal{D} \ge i) = \left(1 - \frac{1}{B}\right) \cdot \mathbf{Pr}_{ADV} (\mathcal{D} \ge i - 1)$$

This is fulfilled when we set,

$$\mathsf{Pr}_{ ext{ADV}}\left(\mathcal{D}\geq d
ight)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1.$

Given that,

$$\operatorname{\mathbf{Pr}}_{\operatorname{ADV}}(\mathcal{D} \geq d) = \left(1 - rac{1}{B}
ight)^{d-1}$$
 for all $d \geq 1$.

The cost for OPT equals

$$\mathbb{E}_{ ext{Adv}}\left[ext{Opt}(\mathcal{D})
ight] = \sum_{d=1}^{B} \mathsf{Pr}_{ ext{Adv}}\left(\mathcal{D} \geq d
ight)$$

Given that,

$$\mathsf{Pr}_{ ext{ADV}}\left(\mathcal{D}\geq d
ight)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1.$

The cost for OPT equals

$$\mathbb{E}_{ ext{ADV}}\left[ext{OPT}(\mathcal{D})
ight] = \sum_{d=1}^{B} \mathbf{Pr}_{ ext{ADV}}\left(\mathcal{D} \ge d
ight)$$
 $= \sum_{d=1}^{B} \left(1 - rac{1}{B}
ight)^{d-1}$

Given that,

$$\mathsf{Pr}_{ ext{ADV}}\left(\mathcal{D}\geq d
ight)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1$.

The cost for OPT equals

$$egin{split} \mathbb{E}_{ ext{ADV}}\left[ext{OPT}(\mathcal{D})
ight] &= \sum_{d=1}^{B} \mathbf{Pr}_{ ext{ADV}}\left(\mathcal{D} \geq d
ight) \ &= \sum_{d=1}^{B} \left(1 - rac{1}{B}
ight)^{d-1} \ &= B \cdot \left(1 - \left(1 - rac{1}{B}
ight)^{B}
ight) \end{split}$$

Given that,

$$\operatorname{\mathsf{Pr}}_{\operatorname{ADV}}(\mathcal{D}\geq d)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1.$

The cost for ALG_i equals

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \geq d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$

Given that,

$$\operatorname{\mathsf{Pr}}_{\operatorname{ADV}}(\mathcal{D}\geq d)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1.$

The cost for ALG_i equals

$$\mathbb{E}_{\text{ADV}}\left[\text{ALG}_{i}(\mathcal{D})\right] = \sum_{d=1}^{i-1} \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} \ge d\right) + B \cdot \mathsf{Pr}_{\text{ADV}}\left(\mathcal{D} > i-1\right)$$
$$= \sum_{d=1}^{i-1} \left(1 - \frac{1}{B}\right)^{d-1} + B \cdot \left(1 - \frac{1}{B}\right)^{i-1}$$

Given that,

$$\operatorname{\mathsf{Pr}}_{\operatorname{ADV}}(\mathcal{D}\geq d)=\left(1-rac{1}{B}
ight)^{d-1}$$
 for all $d\geq 1.$

The cost for ALG_i equals

$$\mathbb{E}_{ADV} \left[ALG_i(\mathcal{D}) \right] = \sum_{d=1}^{i-1} \mathbf{Pr}_{ADV} \left(\mathcal{D} \ge d \right) + B \cdot \mathbf{Pr}_{ADV} \left(\mathcal{D} > i-1 \right)$$
$$= \sum_{d=1}^{i-1} \left(1 - \frac{1}{B} \right)^{d-1} + B \cdot \left(1 - \frac{1}{B} \right)^{i-1}$$
$$= B \cdot \left(1 - \left(1 - \frac{1}{B} \right)^{i-1} \right) + B \cdot \left(1 - \frac{1}{B} \right)^{i-1}$$
$$= B$$

Using Yao's Principle.

ullet For every random algorithm RAND , there exists an instance $d\in\mathcal{D}$ such that

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} \ge \frac{\min_{i} \mathbb{E}_{\text{ADV}}[\text{ALG}_{i}(\mathcal{D})]}{\mathbb{E}_{\text{ADV}}[\text{OPT}(\mathcal{D})]} = \frac{B}{B \cdot \left(1 - \left(1 - \frac{1}{B}\right)^{B}\right)} = \left(1 - \left(1 - \frac{1}{B}\right)^{B}\right)^{-1}$$

Using Yao's Principle.

ullet For every random algorithm RAND, there exists an instance $d\in\mathcal{D}$ such that

$$\frac{\mathbb{E}_{\text{RAND}}[\text{RAND}(d)]}{\text{OPT}(d)} \ge \frac{\min_{i} \mathbb{E}_{\text{ADV}}[\text{ALG}_{i}(\mathcal{D})]}{\mathbb{E}_{\text{ADV}}[\text{OPT}(\mathcal{D})]} = \frac{B}{B \cdot \left(1 - \left(1 - \frac{1}{B}\right)^{B}\right)} = \left(1 - \left(1 - \frac{1}{B}\right)^{B}\right)^{-1}$$

For large B,

$$\lim_{B \to \infty} \left(1 - \left(1 - \frac{1}{B} \right)^B \right)^{-1} = \frac{e}{e - 1} \approx 1.582$$

What did we do?

- Computed an expression for the expected costs of ALG_i and OPT.
- Found the distribution that made the expected costs of all ALG_i equal.

- Computed the expected costs following this distribution for ALG_i and OPT.
- Applied Yao's Principle.

What did we do?

- Computed an expression for the expected costs of ALG_i and OPT.
- Found the distribution that made the expected costs of all ALG_i equal.
 - If you know a (good) distribution, finding a lower bound using Yao's Principle is not that hard. **Try it out in the exercises!**
- Computed the expected costs following this distribution for ALG_i and OPT.
- Applied Yao's Principle.

• Our expected $(\frac{15}{8} - \frac{1}{B})$ -competitive approach was not optimal.

• Optimal solution is $\left(\frac{e}{e-1}\right)$ -competitive in expectation.

• It selects a day in $\{1, 2, \ldots, B\}$ with increasing probability towards B.

 \bullet For paging the $\rm RMARK$ algorithm is close to being optimal.

• For ski rental, even with randomization, buying early is risky.

• Yao's Principle is a strong tool to compute lower bounds for randomized algorithms.