
Randomized (Online) Algorithms
Part 2

Bob Krekelberg

Algorithms for Decision Support 2024

Krekelberg, B. Rand. Alg. ADS 2024 1 / 44



Table of Contents

1 Yao’s Principle

2 Paging

3 Ski rental

Krekelberg, B. Rand. Alg. ADS 2024 2 / 44



Table of Contents

1 Yao’s Principle

2 Paging

3 Ski rental

Krekelberg, B. Rand. Alg. ADS 2024 3 / 44



Lower bounds

How to find a lower bound for all randomized algorithms for a problem?

Show that for every deterministic algorithm we can find a ”bad” input?

No! There still might be a ”good” randomized algorithm that chooses
between them.

Show that for every possible randomized algorithm, there exists a hard
instance?

Yes... but can be challenging.

Show that for a fixed probability distribution over the input, all deterministic
algorithms perform ”bad” ”on average”?

Yao’s Principle!
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Yao’s Principle

Yao’s Principle, informal

The worst-case performance of the best randomized algorithm is equal to the
average performance of the best deterministic algorithm on the worst distribution
of the inputs

Yao suggests that we look at the worst distribution on the inputs that we can
think of.

And claim that every deterministic algorithm does not have, on average, a
performance better than c on this set of inputs.

Then, by Yao’s Principle, this is a lower bound on the worst-case performance
of randomized algorithms.
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Yao’s Principle

Assumptions.

We have a finite class of deterministic algorithms A
We have a finite class of instances I.

Definitions.

Let PrAdv be a probability distribution over I.
Let PrRand be a probability distribution over A.

Algorithm Alg ∈ A on instance I ∈ I has cost Alg(I ).

Algorithm Alg ∈ A on the class of instances I has expected cost
EAdv [Alg(I)] =

∑
I∈I

PrAdv (I ) ·Alg(I ).

Algorithm Rand on instance I ∈ I has expected cost
ERand [Rand(I )] =

∑
Alg∈A

PrRand (Alg) ·Alg(I ).

Algorithm Rand on the class of instances I has expected cost
EAdv [ERand [Rand(I)]] =

∑
I∈I

PrAdv (I) · ERand [Rand(I )].
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Yao’s Principle

Yao’s Principle

If,
min

Alg∈A
EAdv [Alg(I)]

EAdv [Opt(I)]
≥ c

Then, for every randomized algorithm Rand, there exists an instance I ∈ I, such
that,

ERand [Rand(I )]

Opt(I )
≥ c
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Yao’s Principle

Proof.
We first rewrite the expected cost of Rand with respect to PrAdv.

EAdv [ERand [Rand(I)]]

=
∑
I∈I

PrAdv (I) · ERand [Rand(I )]

=
∑
I∈I

(
PrAdv (I) ·

∑
Alg∈A

PrRand (Alg) ·Alg(I )

)
=
∑
I∈I

( ∑
Alg∈A

PrAdv (I) · PrRand (Alg) ·Alg(I )

)
=

∑
Alg∈A

(∑
I∈I

PrAdv (I) · PrRand (Alg) ·Alg(I )

)
=

∑
Alg∈A

(
PrRand (Alg) ·

∑
I∈I

PrAdv (I) ·Alg(I )

)
=

∑
Alg∈A

PrRand (Alg) · EAdv [Alg(I)]
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Yao’s Principle

Now assume that
min

Alg∈A
EAdv [Alg(I)]

EAdv [Opt(I)]
≥ c

Then it must hold for every deterministic algorithm Alg that,

EAdv [Alg(I)] ≥ c · EAdv [Opt(I)]

Thus,

EAdv [ERand [Rand(I)]]

=
∑

Alg∈A
PrRand (Alg) · EAdv [Alg(I)]

≥
∑

Alg∈A
PrRand (Alg) · c · EAdv [Opt(I)]

= c · EAdv [Opt(I)] ·
∑

Alg∈A
PrRand (Alg)︸ ︷︷ ︸
Equals 1

= c · EAdv [Opt(I)]
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Yao’s Principle

We are not quite there yet.
Assuming that

min
Alg∈A

EAdv [Alg(I)]

EAdv [Opt(I)]
≥ c

We now have,

EAdv [ERand [Rand(I)]] ≥ c · EAdv [Opt(I)]

Claim: There exists an instance I ∈ I such that,

ERand [Rand(I )] ≥ c ·Opt(I )

Suppose aiming towards a contradiction that for every I ∈ I

ERand [Rand(I )] < c ·Opt(I)

It follows that
∑
I∈I

PrAdv (I ) · ERand [Rand(I )] < c ·
∑
I∈I

PrAdv (I ) ·Opt(I )

Contradiction!
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Yao’s Principle

Assuming that
min

Alg∈A
EAdv [Alg(I)]

EAdv [Opt(I)]
≥ c

There exists an instance I ∈ I such that,

ERand [Rand(I )] ≥ c ·Opt(I )

This proves Yao’s Principle

Krekelberg, B. Rand. Alg. ADS 2024 11 / 44



Table of Contents

1 Yao’s Principle

2 Paging

3 Ski rental

Krekelberg, B. Rand. Alg. ADS 2024 12 / 44



Paging

Last time we have seen that there exists a randomized algorithm for the online
paging problem that is 2Hk -competitive in expectation.

Is it possible to do better?

Can we find a matching lower bound? Yao’s Principle!
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Coupon Collector

Harmonic number

Hn = 1 +
1

2
+ · · ·+ 1

n
=

n∑
i=1

1

i

Coupon Collector’s Problem

If each box of breakfast cereal contains a coupon, and there are n different
coupons, how many boxes do you need to buy in expectation to collect all n
coupons?

Theorem
For the Coupon Collector’s problem, the expected value of purchases required in
order to collect each of the n coupons at least once is nHn.
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Coupon Collector

Proof.
Let X be the discrete random variable that represents the number of purchases
until each of the n coupons is collected.

Le Xi be the discrete random variable that represents the number of purchases,
after the (i − 1)-th distinct coupon is collected, to collect the i-th distinct coupon.
Then,

X =
n∑

i=1

Xi

Let Ei be the event that one of those coupons is collected in the next purchase.
Then,

Pr (Ei ) =
n − (i − 1)

n
Xi follows a geometric distribution.

EAdv [Xi ] =
1

Pr (Ei )
=

n

n − (i − 1)

Then,

EAdv [X ] = EAdv

[
n∑

i=1

Xi

]
=

n∑
i=1

EAdv [Xi ] =
n∑

i=1

n

n − (i − 1)
= n

n∑
i=1

1

i
= nHn
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A lowerbound for paging

Theorem
No randomized online algorithm for paging is better than Hk -competitive in
expectation, even when M = k + 1.

Assumptions

Without loss of generality, Opt and Alg start with cache 1, 2, . . . , k.

The first page requested by the adversary is page k + 1, causing a page fault
for both Opt and Alg.

Objective:

Show that every deterministic online algorithm has a large expected cost
compared to an optimal solution. Yao’s Principle!
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A lowerbound for paging

Theorem
No randomized online algorithm for paging is better than Hk -competitive in
expectation, even when M = k + 1.

Input distribution

A phase is defined as before.

IN is the set of all instances that contain N phases.

The adversary never requests the same page twice in a row.

The adversary requests each (other) page with probability 1/k.

Expected cost for optimal algorithm.

Since M = k + 1, Lfd ensures a single page fault per phase.

EAdv [Opt(In)] =
N∑
j=1

EAdv [Opt(Pj)] =
N∑
j=1

1 = N.
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A lowerbound for paging

Theorem
No randomized online algorithm for paging is better than Hk -competitive in
expectation, even when M = k + 1.

Expected page fault.

Every page that is requested in some time step (not time step 1) causes a
page fault with probability 1

k .

Let |Pj | be the expected size of phase Pj .

EAdv [Alg(Pj)] ≥ |Pj | · 1
k .

Length of a phase.

Phase Pj ends right before the (k + 1)-th distinct page, since the beginning
of phase Pj , will be requested.

How long does it take in expectation until all pages 1, 2, . . . , k, k + 1 are
requested?

Coupon Collector’s Problem!
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A lowerbound for paging

Theorem
No randomized online algorithm for paging is better than Hk -competitive in
expectation, even when M = k + 1.

Expected cost for every deterministic algorithm.

EAdv [Alg(In)] =
N∑
j=1

EAdv [Alg(Pj)] ≥
N∑
j=1

Hk = NHk .

Yao’s Principle.

For every random algorithm Rand, there exists an instance In ∈ In such that

ERand [Rand(In)]

Opt(In)
≥ EAdv [Alg(In)]

EAdv [Opt(In)]
=

NHk

N
= Hk
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Optimal paging

RMark algorithm

Competitive ratio greater then Hk (see exercises).
At most 2Hk -competitive.

RMark is (2Hk − 1)-competitive in expectation.

Any randomized algorithm is at least Hk -competitive.

Does a randomized algorithm exist that is Hk -competitive in expectation?

Yes, the Partition algorithm (McGeoch, Lyle, Sleator, Daniel 1991).
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Problem definition

Suppose you want to go skiing for as long as possible, but you do not own
any skis. You have two choices.

Renting skis for 1 a day.
Buying skis for B.

The only thing that would prevent you from skiing is the weather.

You go skiing.

You don’t go skiing.

Objective: Minimize the amount of money you have to spend on skis.
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Ski rental, so far...

If there are less than B sunny days, Opt never buys.

If there are more than B sunny days, Opt buys on day 1.

A good deterministic algorithm never buys later than day B.

There exists a (2− 1
B )-competitive algorithm.

Strategy: buy on day B.

No deterministic algorithm can be better than (2− 1
B )-competitive.
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A first attempt

How was the deterministic algorithm punished?

Alg buys on day B.

Then there are only B sunny days.

How can we use randomization?

Rand buys either on day B or earlier, say B
2 .

Then the adversary should choose either B or B
2 sunny days.

Is this an improvement?

If there are B sunny days, buying on day B
2 (compared to buying on day B)

saves spending an extra B
2 .

If there are B
2 sunny days, waiting to buy on day B (compared to buying on

day B
2 ) saves spending an extra B.
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A first attempt

Procedure GAMBLE

With probability 1
2 we buy on day B

2 , and also with probability 1
2 we buy on day B.

Let d be the number of sunny days.
Case 1: d ≥ B.

With probability 1
2 Rand rents B

2 − 1 days, and then buys.

With probability 1
2 Rand rents B − 1 days, and then buys.

ERand [Rand(d)] =
1

2
(
B

2
− 1 + B) +

1

2
(B − 1 + B) =

7B

4
− 1

Opt buys on day 1.

Opt(d) = B

ERand [Rand(d)]

Opt(d)
=

7B
4 − 1

B
=

7

4
− 1

B
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A first attempt

Procedure GAMBLE

With probability 1
2 we buy on day B

2 , and also with probability 1
2 we buy on day B.

Let d be the number of sunny days.
Case 2: B

2 ≤ d < B.

With probability 1
2 Rand rents B

2 − 1 days, and then buys.

With probability 1
2 Rand rents d days.

ERand [Rand(d)] =
1

2
(
B

2
− 1 + B) +

1

2
d =

3B + 2d − 2

4

Opt rents for d days.

Opt(d) = d

ERand [Rand(d)]

Opt(d)
=

3B+2d−2
4

d
=

3B + 2d − 2

4d

≤ 4B − 2

2B
= 2− 1

B

The competitive ratio is maximized for d = B
2
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A first attempt

Why did this not work?

We should not buy too early or early too often.

How can we improve?

Buy less early.

Buy early less.
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A second attempt

Procedure EDUCATED GUESS

With probability 1
4 we buy on day B

2 , and with probability 3
4 we buy on day B.

Let d be the number of sunny days.
Case 1: d ≥ B.

With probability 1
4 Rand rents B

2 − 1 days, and then buys.

With probability 3
4 Rand rents B − 1 days, and then buys.
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4
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B

2
− 1 + B) +
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4
(B − 1 + B) =

15B
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Opt buys on day 1.

Opt(d) = B

ERand [Rand(d)]

Opt(d)
=

15B
8 − 1

B
=
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A second attempt

Procedure EDUCATED GUESS

With probability 1
4 we buy on day B

2 , and with probability 3
4 we buy on day B.

Case 1: d ≥ B
ERand [Rand(d)]

Opt(d)
=
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8
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B
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B

2
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Opt(d)
≤ 3

2
− 1

2B

Case 3: d <
B

2

ERand [Rand(d)]

Opt(d)
= 1

For every instance I ,
ERand [Rand(I )]

Opt(I )
≤ 15

8
− 1

B

Slightly better than the deterministic 2− 1
B algorithm!
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A lower bound for ski rental

Can we do better?

We need to see if there exists a matching lower bound.

Yao’s Principle.

What distribution over the input should we use?

Find a distribution over the inputs such that all deterministic algorithms are
equally bad.
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A lower bound for ski rental

Cost of the optimal algorithm.
For any input d , the cost of the optimal solution is easy to compute.

Opt(d) =

{
d if d < B

B otherwise

Let D be a probability distribution over the input. Then,

EAdv [Opt(D)] =
B−1∑
d=1

d · PrAdv (D = d) + B · PrAdv (D ≥ B)

=
B∑

d=1

PrAdv (D ≥ d)
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A lower bound for ski rental

Cost of deterministic algorithms.
Also the cost of any deterministic algorithm is easy to compute.

Algi (d) =
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d if d < i

i − 1 + B otherwise
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A lower bound for ski rental

Given that,

EAdv [Algi (D)] =
i−1∑
d=1

PrAdv (D ≥ d) + B · PrAdv (D > i − 1)

In order to find a distribution such that for any i , Algi performs badly, we will
find the distribution which makes all algorithms perform the same in expectation.

EAdv [Algi−1(D)] = EAdv [Algi (D)]

Which means that,

i−2∑
d=1

PrAdv (D ≥ d) + B · PrAdv (D > i − 2)

=
i−1∑
d=1

PrAdv (D ≥ d) + B · PrAdv (D > i − 1)
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A lower bound for ski rental

Given that,
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We need,

B · PrAdv (D > i − 2) = PrAdv (D ≥ i − 1) + B · PrAdv (D > i − 1)

⇐⇒ B · PrAdv (D ≥ i − 1) = PrAdv (D ≥ i − 1) + B · PrAdv (D ≥ i)

⇐⇒ PrAdv (D ≥ i) =

(
1− 1

B

)
· PrAdv (D ≥ i − 1)

This is fulfilled when we set,

PrAdv (D ≥ d) =

(
1− 1

B

)d−1

for all d ≥ 1.
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A lower bound for ski rental

Given that,

PrAdv (D ≥ d) =

(
1− 1

B

)d−1

for all d ≥ 1.

The cost for Opt equals

EAdv [Opt(D)] =
B∑

d=1

PrAdv (D ≥ d)

=
B∑

d=1

(
1− 1

B

)d−1

= B ·

(
1−

(
1− 1

B

)B
)
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A lower bound for ski rental

Using Yao’s Principle.

For every random algorithm Rand, there exists an instance d ∈ D such that

ERand [Rand(d)]

Opt(d)

≥mini EAdv [Algi (D)]

EAdv [Opt(D)]

=
B

B ·
(
1−

(
1− 1

B

)B)
=

(
1−

(
1− 1

B

)B
)−1

For large B,

lim
B→∞

(
1−

(
1− 1

B

)B
)−1

=
e

e − 1
≈ 1.582
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A lower bound for ski rental

What did we do?

Computed an expression for the expected costs of Algi and Opt.

Found the distribution that made the expected costs of all Algi equal.

If you know a (good) distribution, finding a lower bound using Yao’s
Principle is not that hard. Try it out in the exercises!

Computed the expected costs following this distribution for Algi and Opt.

Applied Yao’s Principle.
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The optimal randomized algorithm

Our expected ( 158 − 1
B )-competitive approach was not optimal.

Optimal solution is ( e
e−1 )-competitive in expectation.

It selects a day in {1, 2, . . . ,B} with increasing probability towards B.
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Overview

For paging the RMark algorithm is close to being optimal.

For ski rental, even with randomization, buying early is risky.

Yao’s Principle is a strong tool to compute lower bounds for
randomized algorithms.
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