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Organization

Today and Tueseday’s lecture by me.

No office hours on Monday.

Questions via Teams message or after lecture.
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When deterministic algorithms do not suffice

Motivation

Natural hard inputs may exist, that always cause a deterministic algorithm to
perform poorly.

It may be acceptable if we can guarantee that, for every given input, the
algorithm performs well ”on average”.

Average-case analysis?

The performance of the algorithm, averaged over all possible inputs.

Need a probability distribution over the inputs.

Not useful if the natural hard input occurs often.

Randomized algorithms

”Flip a coin” and continue computation based on the outcome.

Algorithm performs different each time on natural hard input.
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When deterministic algorithms do not suffice

Is well ”on average” good enough?

If we consider a deterministic algorithm to be bad, there are infinitely many
inputs for which it always produces some output of low quality.

If a randomized algorithm performs well ”on average”, it performs bad on
some inputs, but only for some random decisions it makes.

There are no hard instances that always cause a good randomized algorithm
to fail, but on each instance it fails ”sometimes”.
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Definition

Deterministic Algorithm

Algorithm
Input Output

Input I = (x1, x2, . . . , xn).

Output Alg(I ) = (y1, y2, . . . , yn).

yi depends on x1, x2, . . . , xi and
y1, y2, . . . yi−1.

Randomized Algorithm

Algorithm
Input Output

Random Bits

Input I = (x1, x2, . . . , xn).

Output Rand(I ) = (y1, y2, . . . , yn).

ψ binary string, each bit randomly
chosen with probability 1/2.

yi depends on x1, x2, . . . , xi ,
y1, y2, . . . yi−1 and ψ.
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Random bits

Real random bits are hard to obtain.

Computers are deterministic
machines.

Instead often pseudo-random
number generators are used.

Linear Feedback Shift Registers

Each iteration shift all bits to the
right.

XOR certain bits to obtain a new
leftmost bit.

Each iteration the rightmost bit is
the output random bit.

+

Output
1 0 0 1 1

1

1 1 0 0 0

Output is statistically very random, however, if you know the state you can
predict the next random bit!
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Random bits

Neglect difficulty of obtaining ”real”
randomness.

Like on a Turing Machine, random
bits are read from a tape in
sequential manner.

Tape has unbounded length and has
an infinite binary string ψ written
on it.

Each bit of ψ is either 1 or 0 with a
probability of 1/2 each.
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Adversaries

Deterministic Algorithm
Adversary can see the algorithm.
(Full knowledge, very strong)

Randomized Algorithm

Oblivious Adversary
Can see the algorithm.

Is oblivious to the the random choices
made by the algorithm.

Adaptive Online Adversary
Can see the algorithm.

Learns the decisions of Rand adaptively.
Before generating xi it must compute yi .

Adaptive Offline Adversary
Can see the algorithm.

Learns the decisions of Rand adaptively.
Computes y1, . . . yn after generating full

input.
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Adaptive Offline Adversary

TIME

Adversary

Algorithm

Creates

Input

Decides

Output

Learns

Ouput

Decides

Output

Creates

Input
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Expected competitive ratio

Expected competitive ratio against an offline adaptive adversary.

Rand is c-competitive in expectation against an offline adaptive adversary, if
for all instances I

ERand [Rand(I )]

ERand [Opt(I )]
≤ c
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Adaptive Online Adversary

TIME

Adversary

Algorithm

Creates

Input

Decides

Output

Learns

Ouput

Decides
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Oblivious Adversary

TIME

Adversary

Algorithm

Creates

Input

Decides

Output

Decides

Output

Creates

Input

Creates

Input

Decides

Output

Since the adversary cannot react to the output of the algorithm, this is equivalent
to the adversary preparing the input in advance.
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Expected competitive ratio

Expected competitive ratio against an oblivious adversary.
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Relationship between adversaries

The oblivious adversary is weaker than the online adaptive adversary.

It is easier to get a low expected competitive ratio against an oblivious
adversary than against an online adaptive adversary.
RObl ≤ RAdOn.

The online adaptive adversary is weaker than the offline adaptive adversary.

It is easier to get a low expected competitive ratio against an online
adaptive adversary than against an offline adaptive adversary.
RAdOn ≤ RAdOff.

The offline adaptive adversary is weaker than the deterministic adversary.

It is easier to get a low expected competitive ratio against an offline
adaptive adversary than a low competitive ratio against a deterministic
adversary.
RAdOff ≤ RDet.

Although the oblivious adversary is the weakest, often it precisely models the
problem.

E.g. whether or not you buy ski’s has not effect on the weather.
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A randomized algorithm is a set of deterministic algorithms

Observation

Every randomized algorithm Rand, that uses at most b(n) random bits for inputs
of length n, can be viewed as a set strat(Rand, n) = {Alg1,Alg2, . . .Alg2b(n)}
(not necessarily distinct) deterministic online algorithms, from which Rand
chooses one uniformly at random with probability 1/2b(n).

Limitations

For (most) online algorithms n is not known in advance, so we cannot
compute b(n) before the execution.

However, we can compute b(n) when analysing the algorithm.
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A randomized algorithm is a set of deterministic algorithms

Suppose algorithm RandSki is a randomized algorithm for the ski rental problem.

Procedure RandSki

We choose a day i , uniformly at random from {1, 2, . . . ,B}, such that we rent
skis until day i − 1 and, if there are at least i sunny days, we buy skis on day i .

Suppose Algi is a deterministic algorithm for the ski rental problem.

Procedure Algi

For the first i − 1 sunny days rent skis, and buy skis on day i .

Clearly strat(RandSki) = {Alg1,Alg2, . . . ,AlgB}, where we pick a
deterministic algorithm Algi with probability 1

B .
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A randomized algorithm is a set of deterministic algorithms

Suppose algorithm RandSki2 is another randomized algorithm for the ski rental
problem.

Procedure RandSki2

Every sunny day, until we have bought skis, we decide with probability 1
B if we

buy skis this day, or keep renting.

Suppose Algi is a deterministic algorithm for the ski rental problem.

Procedure Algi

For the first i − 1 sunny days rent skis, and buy skis on day i .
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B if we

buy skis this day, or keep renting.

Suppose Algi is a deterministic algorithm for the ski rental problem.

Procedure Algi

For the first i − 1 sunny days rent skis, and buy skis on day i .

Let Ei be the event where we buy on day i . Then,
Pr (Ei ) = 1

B (1−
1
B )

i−1 = 1
B (

B−1
B )i−1
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B if we

buy skis this day, or keep renting.

Suppose Algi is a deterministic algorithm for the ski rental problem.

Procedure Algi

For the first i − 1 sunny days rent skis, and buy skis on day i .

Then, strat(RandSki) = {Alg1, . . . ,Alg1︸ ︷︷ ︸
( B
B−1 )

N−1

,Alg2, . . . ,Alg2︸ ︷︷ ︸
( B
B−1 )

N−2

, . . . ,AlgN}, where

N is the number of sunny days, and we pick a deterministic algorithm Algi with
uniformly at random with probability 1

N∑
i=1

( B
B−1 )

i−1

.
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No 1-competitive randomized algorithm

Theorem
If for some online problem there exists a 1-competitive randomized online
algorithm, then there also exists a 1-competitive deterministic online algorithm.

Proof.
Suppose that Rand is a 1-competitive randomized algorithm for the problem.
Now suppose that we fix a bit string ψ′. By the previous observation this
corresponds to a deterministic algorithm Algi . Since the randomized algorithm is
1-competitive, for every input and every bit string, it should return a
1-competitive result. Then, also, the result for every input and fixed bit string ψ′

is 1-competitive. Thus algorithm Algi is 1-competitive.

As a consequence, if we shown that there exists no 1-competitive deterministic
online algorithm for some online problem, we can conclude that there also exists
no 1-competitive randomized one.
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Overview

Randomized algorithms are dependent on both input and random string.

A randomized algorithm is a probability distribution over all deterministic
algorithms.

3 types of adversaries, Oblivious, Adaptive Online and Adaptive Offline.

A 1-competitive randomized algorithm implies the existence of a
1-competitive deterministic algorithm.
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Paging problem

Paging.

Given a computer system with two-level memory, main memory and cache.

When the processor needs a page pi

If pi is in the cache, the system does not do anything. (cost 0)

If pi is not in the cache, the system must copy the page pi from main memory
to the cache. (cost 1)

Cache 1 2 34 1Main Memory 2 3 4 5 61 4
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Paging, so far...

We have seen:

Two deterministic algorithms for paging.

Lfu (Least-Frequently-Used).

Unbounded competitive ratio.

Lru (Least-Recently-Used).

k-competitive.

Optimal offline algorithm for paging.

Lfd (Longest-Forward-Distance).

Problem competitive ratio lower bound.

k-competitive.

Only for deterministic algorithms!
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A first attempt at randomization

Procedure Random
Whenever a page fault occurs, remove a page from the cache chosen uniformly at
random.
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A first attempt at randomization

Procedure Random
Whenever a page fault occurs, remove a page from the cache chosen
uniformly at random

Each page is chosen
with equal probability

.
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Analysis of RANDOM

Theorem
Algorithm Random is at least k-competitive in expectation, even when
M = k + 1.

To show that algorithm Random is at least k-competitive in expectation we will
construct an input where Random removes in expectation k pages from the
cache where it suffices for Opt to only remove a single page.
Proof.
Assume without loss of generality that Random en Opt start with a cache
containing pages 1, . . . , k.
Now consider the input sequence (2, . . . k, k + 1, 2, . . . , k, k + 1, 2, . . . ).
Clearly Opt removes page 1 at the first request and never has to remove a page
again.
We now need to determine when Random in expectation removes page 1.
Let X be the random variable that counts the number of page faults until
Random removes page 1.
Random has probability 1

k to remove the right page at each page fault.
Since X follows a geometric distribution, it follows that E [X ] = k.
This gives a competitive ratio of Random

Opt = k
1 = k.
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The probability distribution of the
number of tails one must flip before
the first head using a weighted coin.
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A second attempt at randomization

Just making a random decision does not always work.

Adapt competitive deterministic strategies.

Let’s take a closer look into the Lru algorithm.
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Phase partitioning

Phase Partioning: Partition the request sequence into phases.

Phase 0 contains all requests untill the first page fault (that is, requests that
are already in the cache).

Phase i is the maximal sequence following phase i − 1 that contains exactly k
distinct page requests (that is, phase i + 1 begins on the request that is the
(k + 1)-th distinct page).

Phase N contains at most k distinct page requests.

For k = 3:

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

1, 3, 3, 5,Request: 4, 3, 2, 5, 2, 1, 1, 3, 2, 3, 1, 3, 3, 5, 3, 5, 2
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Marking algorithm

Works in phases.

In each phase:

Mark a page when requested.

Only remove unmarked pages.

How do we choose which one?

When all pages are marked:

Unmark all pages.

Start a new phase.
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LRU is a marking algorithm

Theorem
Lru is a marking algorithm.

Proof.
For a contradiction, suppose that Lru is not a marking algorithm. Then there
exists some instance I such that Lru removes a marked page. Let p be the page
for which this happens for the first time, at time step tj in some phase Pi . Since p
is marked, it must have been requested before in phase Pi , say at time tj′ , with
j ′ < j . Because p was most recently used at time tj , there must have been k
distinct request, all different from p, after time tj′ . Then Pi consists of at least
k + 1 distinct requests, which is a contradiction.
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Marking algorithm

Procedure Marking

mark all pages in the cache //first page fault starts a new phase
for every requests x do

if x is in the cache
if x is unmarked
mark x

else
if there is no unmarked page
unmark all pages in the cache //start new phase

p ← somehow chosen page among all unmarked cached pages
remove p
insert x at the old position of p
mark x

Request: 1 ,4 ,2 ,4 ,5

Cache 1 2 34 5 1Main Memory 2 3 4 5 61 2 44 5
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Competitive marking algorithms

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

1, 3, 3, 5,Request: 4, 3, 2, 5, 2, 1, 1, 3, 2, 3, 1, 3, 3, 5, 3, 5, 2

Theorem
Every deterministic marking algorithm is k-competitive.

Proof.
Consider the k-phase partition P1,P2, . . . ,PN of the input I .
Observe that Opt makes at least N page faults.
Furthermore, consider the phase partition PAlg,1,PAlg,2, . . .PAlg,N′ . Since the
marking algorithm makes at most k page faults per phase of the algorithm, and
thus, kN ′ page faults in total. It remains to show that N = N ′.
This follows, if for every 1 ≤ i ≤ N, Pi = PAlg,i .
P1 and PAlg,1 both start with the first request that causes a page fault.
If k distinct pages were requested within phase PAlg,i , all pages in the cache are
marked. Then with the (k + 1)-th distinct page, the algorithm starts a new phase
PAlg,i+1.
By definition, also Pi+1 starts after (k + 1) distinct requests.
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marked. Then with the (k + 1)-th distinct page, the algorithm starts a new phase
PAlg,i+1.
By definition, also Pi+1 starts after (k + 1) distinct requests.
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How to randomize

How did the adversary manage to beat the deterministic algorithm?

Every page the algorithm removed from the cache was the wrong choice.

Rand Cache

Opt Cache

1 2 36 1 2

1 2 36
1Main Memory 2 3 4 5 661 2

How can we avoid this?

Select a page to remove from the cache randomly.

The adversary now has to guess which page was removed by the algorithm.

Adversary guesses correctly with probability 1/(cache size−#marked pages).
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Randomized marking algorithm

Procedure Random marking

mark all pages in the cache //first page fault starts a new phase
for every requests x do

if x is in the cache
if x is unmarked
mark x

else
if there is no unmarked page
unmark all pages in the cache //start new phase

p ← somehow chosen page among all unmarked cached pages
remove p
insert x at the old position of p
mark x
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Harmonic numbers

Harmonic number The n-th harmonic number is the sum of multiplicative
inverses of the first n natural numbers.

Hn = 1 +
1

2
+ · · ·+ 1

n
=

n∑
i=1

1

i

Does not converge but grows slowly.

Hn = ln(n) + 1
2 + 1

2n + 0.077 ≈ ln(n).
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The RMark algorithm

For the randomized marking algorithms we did not specify how we decide which
page to replace, i.e., what distribution we pick.

Let RMark be a randomized marking algorithm that replaces unmarked pages
uniformly at random.
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RMark analysis

Theorem
The RMark algorithm is 2Hk -competitive in expectation.

Assumptions

The phases of the k-phase partition and the partition by the marking
algorithm line up. (As we showed in the proof that deterministic marking is
k-competitive).

In a single phase, no page is requested more then once.

The adversary first requests all new pages, and then old ones.

Let us analyze a single phase Pj with 1 ≤ j ≤ N.

Definitions

New pages: pages that entered the cache during phase Pj .

Old pages: pages that were in the cache at the start of phase Pj .

ℓj : the number of new pages requested in phase Pj .

k − ℓj : the number old pages are requested in phase Pj .
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The phases of the k-phase partition

Note that the phases only depend
on the input and not on the random
decisions of the RMark algorithm.
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A page that is requested for a
second time during a phase never
causes a page fault, since the first
time the page will be marked.
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algorithm line up. (As we showed in the proof that deterministic marking is
k-competitive).

In a single phase, no page is requested more then once.

The adversary first requests all new pages,

This is the best strategy for
the adversary, as this max-
imizes the probability of a
page fault on the old pages.
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RMark analysis

Theorem
The RMark algorithm is 2Hk -competitive in expectation.

Let Ei be the event that the i-th old page requested is not in the cache at the
moment it is requested. Then,

Pr (E1) = 1− k − ℓj
k

Pr (E2) = 1− k − ℓj − 1

k − 1

Then, in general, for the i-th requested old page,

Pr (Ei ) = 1− k − ℓj − (i − 1)

k − (i − 1)
=

ℓj
k − (i − 1)
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k − ℓj : the number of un-
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been removed from the cache.

k: the number of un-
marked old pages.
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RMark analysis

Theorem
The RMark algorithm is 2Hk competitive in expectation.

Let Cj be a random variable that is equal tot the cost of the RMark algorithm in
phase Pj .
Since the cost for the algorithm is 1 in the case of a page fault, the expected cost
equals

E [Cj ] = ℓj +

k−ℓj∑
i=1

ℓj
k − (i − 1)

= ℓj + ℓj

(
1

k
+

1

k − 1
+ · · ·+ 1

ℓj + 1

)

= ℓj + ℓj

(
1

k
+

1

k − 1
+ · · ·+ 1︸ ︷︷ ︸

Hk

−
(
1

ℓj
+

1

ℓj − 1
+ · · ·+ 1

)
︸ ︷︷ ︸

Hℓj

)

= ℓj(Hk − Hℓj + 1) ≤ ℓjHk

Then,

E [Rand] =
N∑
j=1

E [Cj ] =
N∑
j=1

ℓjHk
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E [Rand] =
N∑
j=1

E [Cj ] =
N∑
j=1

ℓjHk
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RMark analysis

Theorem
The RMark algorithm is 2Hk -competitive in expectation.

For the cost of Opt, consider two consecutive phases Pj−1 and Pj .

At least k + ℓj distinct pages were requested.
Thus Opt needs to make ℓj page faults in these two phases.

Either P1,P2︸ ︷︷ ︸
ℓ2 faults

,P3,P4︸ ︷︷ ︸
ℓ4 faults

,P5, . . . or P1,P2,P3︸ ︷︷ ︸
ℓ3 faults

,P4,P5︸ ︷︷ ︸
ℓ5 faults

, . . .

Moreover, Opt causes ℓ1 page faults in phase P1 since Opt and Rand start with
the same cache contents. Then,

Opt ≥
⌊N/2⌋∑
j=1

ℓ2j and Opt ≥
⌈N/2⌉∑
j=1

ℓ2j−1

Opt ≥ max


⌊N/2⌋∑
j=1

ℓ2j ,

⌈N/2⌉∑
j=1

ℓ2j−1

 ≥ 1

2

⌊N/2⌋∑
j=1

ℓ2j +

⌈N/2⌉∑
j=1

ℓ2j−1

 =
N∑
j=1

1

2
ℓj
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RMark analysis

Theorem
The RMark algorithm is 2Hk -competitive in expectation.

Thus we conclude that the expected competitive ratio of the RMark algorithm
equals

E [Rand]

Opt
≤

N∑
j=1

ℓjHk

N∑
j=1

1
2ℓj

=

Hk

N∑
j=1

ℓj

1
2

N∑
j=1

ℓj

= 2Hk
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Overview

Deterministic marking algorithms are k-competitive.

RMark algorithms are Hk -competitive in expectation.

How much did we gain?

Hk ∈ O(log k), thus randomization allows for an exponential improvement!

Can we do better?

Next lecture we will see that this is the best we can hope for asymptotically.
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