Algorithms for Decision Support

Beyond the Worst Case

Machine-Learned Advice



Outline

 How to “trust” an advice when there is no guarantee from the advice
* Searching

* Ski-rental problem
* 3 algorithms
* Bin packing
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Deal with Uncertainty

* Online algorithms deal with optimization under uncertainty (about future
input)

 How Iif the future information can be predicted or learned by machine-
learning?

 Example: weather forecast
* These predictions or learned information may not be 100% correct
 Completely trust the predictions may be a disaster

 How can we design online algorithms with this kind of (maybe)
untrusted advice?



Searching with Machine-Learned Advice

 Goal: Given an ordered sequence and a requested value, find the
requested value in minimum number of steps
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Consistency and Robustness

* We look for algorithms that

* Are consistent: given more accurate predictions, the online algorithm

should perform close to the optimal offline algorithm

36

Cost =1

* Are robust: if the prediction is wrong, the online algorithm performance

should be close to the online algorithm without predictions
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ldea

Use predictions to improve the
algorithm’s performance

(But the prediction can be wrong)



Ski Rental

* Imagine that you are having a ski holigay
 The price of renting a ski is 1 per day

« The buying price for ski is B.
* Cost: the total money you pay

e Suppose you want to spend money as little as possible. Should
you buy the ski or rent it?

24



* Imagine that you are having a ski holigay

 The price of renting a ski is 1 per da
There’ll be p

« The buying price for ski is B. sunny days!

* Cost: the total money you pay
« p:machine-learned prediction on the number of skiing days

e Suppose you want to spend money as little as possible. Should
you buy the ski or rent it?

25
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Ski Rental Algorithm 1

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B
@Good orediction ~ALG(B,d,p) B

OPT(B,d) B

I.IliBad prediction
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Ski Rental Algorithm 1

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)
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What Happened

* Blindly trusting the prediction can cause disasters!
* Especially when the prediction is wrong (that is, fail to be robust)



What Happened

ALG(/, p)

. Consistency: max min ———  The best prediction of the
/ p OPT(I)
INnput
ALG(Z, p) .
. Robustness: max max —————  The worst prediction of the

/ p OPT([ )
Input
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Ski Rental Algorithm 1.5
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Ski Rental Algorithm 1.5

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood oredicton ALG(B.d,p) B i ALG(B,d,p) _¢

— To be robust, we want an

Consistency OPT(B, d) B OPT(B, d) algorithm close to
Advice: p < B Advice: p > B 2-competitive in this case

l.ll % Bad prediction ALG(B,d,p) 2B -1 w=
Robustness OPT(B,d) B OPT(B,d) d

<— =B
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What Happened

* The robustness is still bad when the prediction is wrong
* Especially when the algorithm is tricked into buying the ski



Trustness Parameter

» We introduce a parameter k to indicate how much the algorithm trust the
advice

. ke |l,B]
 k = 1:the algorithm fully trusts the advice
» k = B: the algorithm does not trust the advice at alll
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Ski Rental Algorithm 2
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x-th Day

Ski Rental Algorithm 2
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Ski Rental Algorithm 2

&
k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B

B

Advice: p < B Advice:p > B
tlliBad prediction

56



Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B

B

Advice: p < B Advice:p > B
tlliBad prediction

57




x-th Day

Ski Rental Algorithm 2

&
k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B

B

Advice: p < B Advice:p > B
tlliBad prediction

58



x-th Day

Ski Rental Algorithm 2

&
k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad prediction

59




Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad prediction

60




x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
waood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad prediction

o1




x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad oredicion B-D+B 2 1

B B

62



Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad oredicion B-D+B ) 1

B B

63



x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad oredicion B-D+B 2 1

B B

o4



x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

B d

Advice: p < B Advice:p > B
tlliBad oredicion B-D+B 2 1 d

Advice:p > B Advice: p < B
waood orediction (k—1)+B d

B B d

65



x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d

B d

Advice: p < B Advice:p > B
tlliBad oredicion B-D+B 2 1

B B

60



x-th Day

Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood orediction (k—1)+B d
B d
Advice:p < B Advice:p > B
IIliBadprediction (B_1)+B_2_l (k—1)+B=1+B—1
B 7 B k k

67



Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice:p < B
WGood prediction (k—1)+B — 1+ k__l d

b b d
Advice:p < B Advice:p > B
IIliBadprediction (B_l)_l_B_z_l (k—1)+B=1+B—1
B - B k k

68



Ski Rental Algorithm 2

k
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What Happened

* Use a trust parameter to partially trust the prediction
. In this case, trust parameter k € [1,B]

. The smaller k is, the more the algorithm trusts the prediction

k—1 | B—-1
)-consistent and (1 +
B k

« When k = 1, the consistency is 1 and the robustness is B

., ALG2is (1 + )-robust

. When k = B, the consistency and the robustness are both

1
) —
B
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Prediction Error

. Absolute errorn; = |p — d
. Squared errorr, = |p — d\z



Prediction Error

Absolute errorn; = |p — dl

Squared error 1, = |p — d|”
Classification errory. = 1 if p #d
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ent for d — 1 days

Purchase a-B
>

ALG cost _ M — =1
i s

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

AdViCeipB< b = 1 =d—p > d—B AdV|Cep Z B # }71 :p_d
Ifdzl_a,ALGbuys =>B§d+r]1=OPT+}71
. B _a- B ALG buys
i (m=d—B 2= B = )
iBad prediction T 1-a T-a AG<B(l-a)+B
.'I" = ALG < B 1 l_aSOPTI » S(Z—a)(OPT+771)
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What Happened

 We can use the absolute error measure of the prediction to
represent the robustness

* More specifically, ALG3’s cost is a function of 1) the error
measure, 2) the trust parameter, and 3) OPT cost
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What Happened

» In a bi-criteria optimization problem (minimizing criteria a and f),
. ALGH1 is better than ALG2 if ¢y < a, and f; < f3,
. ALG is Pareto optimal if for all ALG", a < a’or f < [’
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Ski Rental Algorithm 2

k

Truth: d > B (OPT buy)  Truth: d < B (OPT rent)

Advice:p > B Advice: p < B
WGood prediction k-D+5 — 14 k-1 d B
Consistency B B i
Advice:p < B Advice:p > B
IIliBadprediction (B_l)+B=2+l (k—1)+B=1+B—1
Robustness B B k k
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(1, B)

k = B:
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ALG2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 4 B against prediction p > B must buy the ski before the k-th day

0 k B n
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ALG2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day

OPT=R

0 k B n

(SR
- B
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ALG2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day

_ k—1
OPT=258 ALG S (1+——) B

0 k B n

=
- B
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ALG2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day

_ k—1
OPT=258 AGS (1+——) B=B+k-1

0 k B n

=
- B

119



ALG2 is Pareto-optimal

k— 1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 5 )-consistent algorithm must buy before the d-th day where d < k
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ALG2 is Pareto-optimal

k— 1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 5 )-consistent algorithm must buy before the d-th day where d < k
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ALG2 is Pareto-optimal

k— 1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 )-consistent algorithm must buy before the d-th day where d < k

R

= When the prediction is incorrect
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ALG2 is Pareto-optimal

k— 1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 )-consistent algorithm must buy before the d-th day where d < k

B
= When the prediction is incorrect, OPT = d
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ALG2 is Pareto-optimal

k— 1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 )-consistent algorithm must buy before the d-th day where d < k

B
= When the prediction is incorrect, OPT = d, and robustness =

d—1+B
d

124



ALG2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 + B against prediction p > B must buy the ski before the k-th day
_ k—1
OPT=258 ALGS (1+-——) B=B+k-1
k—1
=> A (] 4 5 )-consistent algorithm must buy before the d-th day where d < k
d—1+B
= When the prediction is incorrect, OPT = d, and robustness = y > ] -

P m——
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G2 is Pareto-optimal

k—1

Any algorithm A with consistency of at most 1 +
B—-1
k

B

must have robustness of at least 1 +

B—1

nothing here

ki : -consistency
I+ B 126




«aLG2 is Pareto-optimal

k—1

Any algorithm A with consistency of at most 1 +
B—-1
k

B

must have robustness of at least 1 +

B—1

nothing here
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«mL.G2 is Pareto-optimal

k—1
Any algorithm A with consistency of at most 1 + B
B-1
must have robustness of at least 1 + .
1 + B - 1 USSR UPURIRPUPUPU . "
k

nothing here

-consistency
| +—p



-ALG2 1s Pareto-optimal

k—1

Any algorithm A with consistency of at most 1 4 B
B-1
k

must have robustness of at least 1 -

consistency
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