Bin Packing with Advice

Bin Packing with Advice

 $\frac{1}{3}$

Large items Critical items Small items Tiny items

0

Large items **Critical items** Small items Tiny items

Algorithm: **Reserve-Critical(***C***)**

Large bins

Small bins

Critical bins

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

• Theorem: If the number of critical items is known, **Reserve-Critical** is 1.5 -competitive

Reserve-Critical algorithm guarantees that every non-critical bin is at least —-full

(may with a constant number of exceptions)

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

Reserve-Critical algorithm guarantees that every non-critical

bin is at least —-full (may with a constant number of exceptions) **Critical items** Small items Tiny items Size $\frac{1}{2}$ 0

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

Reserve-Critical algorithm guarantees that every non-critical bin is at least —-full (may with a constant number of exceptions) $\frac{2}{3}$ For the critical bins, they are all at least $\frac{-}{2}$ -full, or the optimal also need all these critical bins

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

Reserve-Critical algorithm guarantees that every non-critical bin is at least —-full (may with a constant number of exceptions) $\frac{2}{3}$ For the critical bins, they are all at least $\frac{1}{2}$ -full, or the optimal also need all these critical bins

• Open c critical bins. In each critical bin, pack one critical

Reserve-Critical(*C***)**

- item and tiny items with total size $\leq 1/3$
- 1/3); otherwise, pack it into a tiny bin by First-Fit

-competitive

Reserve-Critical algorithm guarantees that every non-critical 3 bin is at least —-full (may with a constant number of exceptions) $\frac{2}{3}$ For the critical bins, they are all at least $\frac{1}{2}$ -full, or the optimal also need all these critical bins

• Open c critical bins. In each critical bin, pack one critical

What Happened

- the *advice* of critical items to improve the competitive ratio
 - 1.5-competitive

• Reserve-Critical Algorithm is a (semi-online) algorithm that uses

Robust-Reserve-Critical($r = ---, \alpha$ **)** c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- Large items and small items are packed into large bins and small bins respectively

// c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$

• When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • If there is no tiny bin, open a new bin B • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin

Robust-Reserve-Critical($r = \frac{c}{1}, \alpha$) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B
- respectively

• When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

Prediction: the number of critical bins and the number of tiny bins

c + t

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$

• When a critical item arrives, pack it into a critical bin • When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • If there is no tiny bin, open a new bin B • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$

• When a critical item arrives, pack it into a critical bin • When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • If there is no tiny bin, open a new bin B • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin

respectively

• When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • If there is no tiny bin, open a new bin B • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

24

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin

respectively

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

• When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

$$=\frac{2}{3} \Rightarrow \beta = r = \frac{1}{2}$$

Robust-Reserve-Critical always keep the ratio $\frac{c}{c'+t'}$ close to β

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

$$\frac{c'}{c'+t'} = \frac{1}{1+3} = \frac{1}{4}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- - If there is no tiny bin, open a new bin B

respectively

$$=\frac{1}{3} \Rightarrow \beta = \alpha = \frac{1}{3}$$

$$\frac{c'}{c'+t'} = \frac{1}{1+3} = \frac{1}{4}$$

Robust-Reserve-Critical($r = -\frac{c}{c}$, α) // c : number of critical bins, t : number of tiny bins, $\alpha \in [0,1]$ c+t

- Let $\beta = \min\{r, \alpha\}$
- When a critical item arrives, pack it into a critical bin
- respectively

Every critical bin has one critical item

• When a tiny item arrives, pack it into an available critical bin • If there is no available critical bin, pack it into a tiny bin • If there is no tiny bin, open a new bin B • B is a critical bin if $\frac{c'}{c'+t'} < \beta$, otherwise, it is a tiny bin • Large items and small items are packed into large bins and small bins

Prediction: the number of critical bins and the number of tiny bins

c + t

We my open too many critical bins

• Lemma: If every critical bin has one critical item, Robust-Reserve-Critical is at most 1.5+ $\frac{1-\beta}{4-3\beta}$ -competitive

By the algorithm, we can make sure that each bin is full enough

• Lemma: If there are some critical bins have no critical item, Robust-Reserve-**Critical** is at most $1.5 + \frac{9\beta}{8 - 6\beta}$ -competitive

 \Rightarrow at the time the tiny item arrives, the number of critical bins is low

The critical bin without a critical item must be opened because of a tiny item

• Theorem: If the prediction on $r = \frac{c}{c+t}$ is correct, **Robust-Reserve-Critical** is at most $1.5 + \frac{1-\alpha}{4-3\alpha}$ -competitive. Otherwise, **Robust-Reserve-Critical** is at most $1.5 + \max\{\frac{1}{4}, \frac{9\alpha}{8-6\alpha}\}$ -competitive.

What Happened

- Robust-Reserve-Critical Algorithm uses the Reserve-Critical Algorithm
 - Trust parameter $\alpha \in [0,1]$
 - Robustness: $1.5 + \frac{1 \alpha}{4 3\alpha}$

• Consistency: $1.5 + \max\{\frac{1}{4}, -\frac{1}{4}\}$

$$\frac{9\alpha}{8-6\alpha}$$