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Machine learning and online algorithms both deal with decision making under uncertainty. When
the future input is unknown, online algorithms make decisions based on the prefix of input and previous
decisions. The goal of an online algorithm is to perform not too much worse than the optimal solution
with hindsight. On the other hand, machine learning tries to predict the future input based on
historical data. Recently from 2017, people started combining online algorithms with machine-learned
advice. The idea is, suppose that the future input can be predicted, how (and how much) can online
algorithms’ decision quality be improved?

Although it looks promising that machine learning techniques can predict the future input quite
well if there are sufficient data, the prediction can hardly be completely correct. The online algorithm,
which has only one shot for making decision upon a piece of revealed input, can be fooled if the
prediction has even a small amount of error.

Take the Ski-Rental problem as an example, the prediction can be the weather forecast, which tells
us how many skiing days we will have. If the forecast tells that there will be at least B skiing days
(where B is the buying price for a pair of skis), a fully-trusting online algorithm may decided to buy
the ski on the first day. In a worst case, the weather will not be better anymore in the future, and the
online algorithm pay B times of the optimal cost.

Apart from the error, the prediction quality can also be affected if there are malicious data fed by
adversarial components. The goal of an online algorithm with access to machine-learned advice is to
be:

• consistent: given more accurate predictions, the online algorithm should perform close to the
optimal offline algorithm, and

• robust: if the prediction is wrong, the online algorithm performance should be close to the online
algorithm without predictions.

1 A simple example: Searching
We first have a basic idea about how an algorithm can accommodate the prediction that may contain
errors. Consider the following searching problem, where given a sorted (but elements are unknown)
array, the algorithm wants to access a requested value within a minimum number of queries (that is,
accessing some element in A):

Searching problem

Given a sorted array A and a request r, access the element in A that contains r.

This problem can be seen as an online problem, our aim is minimizing the competitive ratio. That
is, we hope to minimize the ratio between the number of queries incurred by our algorithm to the
offline optimal one.

Now, consider that we are given a prediction p, which is the position of r in A. The prediction
is not necessary to be correct. That is, A[p] may not be r. We have the following algorithm with
request r and prediction p:

∗This lecture note is based on three papers published from 2018 to 2020 [1, 2, 3].
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Algorithm 1 A searching algorithm with prediction of the position of the requested value in the array
1: Access A[p]
2: if A[p] = r then
3: Return p
4: else
5: Return Binary Search r in range A[1 · · · p] or A[p · · ·n] according to the value of

element A[p]

Analysis of Algorithm 1. To analyze algorithms with predictions, we consider two cases: 1)
the prediction is correct, and 2) the prediction includes errors. If the prediction is correct, that is,
A[p] = r, the algorithm needs one access to find the request. On the other hand, if the prediction is
wrong, the algorithm will then perform a binary search, and it costs at most O(log n) accesses in the
worst case.

Note that the optimal solution, which knows where exactly the requested number r is, only needs 1
access. On the other hand, the binary-search strategy of the pure online algorithm, which knows
nothing about the array but the fact that it is sorted, needs O(log n) accesses to find r in the worst
case. In fact, binary search is the best strategy for an algorithm which knows nothing about the
instance.

You can see that when the prediction is correct, the online algorithm with prediction performs as
well as the offline solution, which means that it is consistent. When the prediction is wrong, the online
algorithm performs as well as the (best) pure online strategy, which means that it is robust.

2 Trusting the prediction is not always good
In the searching problem, we saw that with the prediction, a binary-search algorithm easily achieves
consistency and robustness at the same time. However, in a more complicated setting, trusting the
prediction completely causes a disaster.

Ski-Rental with prediction on the number of skiing days problem

Assume that the price for buying a pair of ski is B and the renting price is 1 per day. There
is a weather forecast predicting that there will be p skiing days. At which day of skiing should
you buy a ski?

Now, consider the naive strategy that follows the prediction. That is, if p ≥ B, the online algorithm
with prediction buys the ski on the first day; otherwise, it keeps renting:

Algorithm 2 A trusting online algorithm for the Buy-or-Rent problem with prediction
1: if p ≥ B then
2: Buy on the first day
3: else
4: Keep renting for all skiing days

Analysis of Algorithm 2. For the consistency, there are two cases of the actual number of skiing
days S: 1) S ≥ B, and 2) S < B. When S ≥ B, the optimal solution buys the ski on the first day and
pays B. A correct prediction will suggest the algorithm to buy the ski. Algorithm 2 follows the advice
and buy the ski on the first day. In this case, the algorithm behaves as well as the optimal solution.
When S < B, the optimal solution keeps renting. Algorithm 2 follows the (correct) advice and keeps
renting the ski. Therefore, it behaves as well as the optimal solution. The algorithm behaves exactly
the same as the optimal solution as long as the prediction is correct and has good consistency.

For the robustness, there are again two cases of the actual number of skiing days. When S ≥ B,
a bad prediction may suggest the algorithm to keep renting the ski. In this case, Algorithm 2 pays S
while the optimal solution pays B. On the other hand, when S < B, a bad prediction may suggest
the algorithm to buy the ski. Algorithm 2 buys the ski on the first day and pays B. In the worst case,
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there is only one skiing day, and the optimal solution is to rent the ski for one day and to pay 1. Thus,
the competitive ratio of Algorithm 2 under the wrong prediction is max{ S

B , B}, which can be infinite
when S tends to infinity. The algorithm has a bad robustness.

A small improvement. One can improve Algorithm 2 by modifying its behavior when the
prediction tells us we should not buy the ski:

Algorithm 3 A modified trusting online algorithm for the Buy-or-Rent problem with prediction
1: if p ≥ B then
2: Buy on the first day
3: else
4: Keep renting until the B-th skiing day

Algorithm 3 performs better than Algorithm 2 when the prediction is wrong, and there are at
least B skiing days. In this case, the algorithm buys the ski on the B-th day and pays (B − 1) + B.
The robustness is improved to max{2− 1

B , B}. Unfortunately, it is still an increasing function of the
instance.

3 Balance the trustness and the risk
In the previous section, we saw the unfortunate outcome of fully trusting the advice. More specifically,
the online algorithm performance may be extremely bad when the prediction is wrong. Therefore, we
have to balance our trustness of the prediction and the robustness.

Trustness parameter. To express the non-binary trustness of the algorithm to the prediction,
we introduce the concept of trustness parameter, which indicates how much the algorithm trusts the
prediction. In practical, the range of the trustness parameter can be defined for the convenience of
the online algorithm. For example, it can be between [0, 1], where 1 means fully trusting and 0 means
not trusting the advice at all. By tuning the value of the trustness parameter, one can tune the level
of trustness and the behavior of the online algorithm.

Take the Ski-Rental algorithm as an example. We can introduce the trustness parameter k ∈ [1, B]
and have the following algorithm:

Algorithm 4 An online algorithm with a trustness parameter k

1: if p ≥ B then
2: Buy on the k-th day
3: else
4: Keep renting until the B-th skiing day

You can see that when k = 1, the algorithm buys the ski on the first day when the advice says that
one should buy the ski. On the other hand, when k = B, the algorithm buys the ski on the ski on the
B-th day even when the advice tells it to buy the ski. That is, the online algorithm does not trust the
prediction at all and behaves like the pure online algorithm without advice.

Analysis of Algorithm 4. For the consistency, Algorithm 4 pays (k − 1) + B if there are at
least B skiing days and pays S if there are S < B skiing days. In these cases, the competitive ratio of
the online algorithm with prediction is max{B+k−1

B , S
S } = 1 + k−1

B .
For the robustness, Algorithm 4 pays (B − 1) + B when there are at least B skiing days, but the

prediction says that there will be fewer than B skiing days. On the other hand, Algorithm 4 pays
(k − 1) + B, while the optimal pays k in the worst case when there are fewer than B skiing days. In
the worst case, the competitive ratio of the algorithm is max{2− 1

B , k−1+B
k } ≤ max{2− 1

B , 1 + B−1
k }.

4 A more complicated online algorithm with prediction
The huge difficulties for making online decisions are irrevocability and the uncertainty of instance.
Some researchers study the effect of uncertainty by studying semi-online algorithms, which knows
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partial information of the instance. These semi-online algorithms may perform better than the pure
online algorithms, given that they know more than the pure online algorithms. For example, no pure
deterministic online algorithm can be better than 1.5-competitive for the Bin-Packing problem. But
with a small piece of information, a semi-online algorithm can achieve 1.5-competitiveness:

Online algorithm with trusted prediction. First, we classify the items by their size:
• Tiny items: items with size in (0, 1

3 ],
• Small items: items with size in ( 1

3 , 1
2 ],

• Critical items: items with size in ( 1
2 , 2

3 ], and
• Large items: items with size in ( 2

3 , 1].
The Reserve-Critical Algorithm 5 also labels the bins by tiny, small, critical, and large. With the
information about the number of critical items will be in the instance, c, the algorithm first open c
critical bins, reserved for critical items. In principle, the algorithm is very similar to First-Fit but with
some other rules. Once a bin is opened by a large item, the algorithm will not put any other item in
it. Similarly, once a bin is opened by a small/tiny item, the algorithm only put small/tiny items in it.
The critical bins are the most complicated. In each of the critical bins, there will be one critical item.
Meanwhile, in each critical bin, there will be a space of size 1

6 reserved for tiny items. More specifically,
when a tiny item arrives, the algorithm first seeks if there is a critical bin that can accommodate it.
A tiny bin is opened only when no critical bin or tiny bin can accommodate the released tiny item.

Algorithm 5 Reserve-Critical(c): A semi-online algorithm knowing the number of critical items c

1: Open c critical bins. In each critical bin, pack one critical item and tiny items with total size ≤ 1
6

2: while Item i arrives do
3: if i is a large item then
4: Open a large bin and pack i into it
5: if i is a small item then
6: pack i into a small bin by First-Fit
7: if i is a critical item then
8: pack i into an opened critical bin that has no critical item
9: if i is a tiny item then

10: if There is a critical bin with total size of tiny items less than 1
6 − size(i) then

11: pack i into that bin
12: else
13: pack i into a tiny bin by First-Fit

With the (correct) information of the number of critical items, the algorithm performs very well:
Theorem 1. The Reserve-Critical Algorithm is 1.5-competitive.

Now, let’s see what happens if the information of the number of critical items is learned by machine-
learning and may contains errors. The risk of trusting the machine-learned prediction of the number
of critical items is that, if we open too many critical bins and reserved them for the (never arriving)
critical items, they may only contain tiny items and be at least 5

6 -empty. On the other hand, if we
don’t use this piece of prediction, we can only perform as good as the pure online algorithm.

The following Robust-Reserve-Critical Algorithm is given the prediction c
c+t , where c is the number

of critical bins, and t is the number of tiny bins of Reserve-Critical Algorithm, respectively. The
trustness parameter α is in the range [0, 1].

You can see that Robust-Reserve-Critical Algorithm is more reserved about opening critical bins
than Reserved-Critical Algorithm. Instead of opening c critical bins in the very beginning as Reserved-
Critical Algorithm, Robust-Reserve-Critical Algorithm sets a “threshold” β according to the predicted

c
c+t and the trustness parameter α and tries to keep the ratio of the number of critical bins and the
number of tiny bins closed to β.

The detailed analysis can be found in the paper by Angelopoulos et al. [1].
Theorem 2. If the prediction on r = c

c+t is correct, Robust-Reserve-Critical is at most (1.5 + 1−α
4−3α )-

competitive. Otherwise, it is at most (1.5 + max{ 1
4 , 9α

8−6α})-competitive.

4



Algorithm 6 Robust-Reserve-Critical(r = c
c+t , α)

1: Let β ← min{r, α}
2: When a critical item arrives, pack it into a critical bin
3: When a tiny item arrives, pack it into an available critical bin
4: if There is no available critical bin then
5: Pack it into a tiny bin
6: if There is no available tiny bin then
7: Open a new bin B
8: Let c′ and t′ be the number of currently opened critical bins and tiny bins, respectively
9: B is a critical bin if c′

c′+t′ < β; otherwise, B is a tiny bin
10: Large items and small items are packed into large bins and small bins respectively

5 Competitiveness analysis taking learning error into account
For analyzing the performance of online algorithms with prediction, one can take the quality of the
prediction into account. More specifically, we want quantify the effect of the wrong prediction on the
robustness of the online algorithm.

The most common ways to measure the prediction error are (where p is the prediction, and t is the
true value of the predicted thing):

• Absolute error η1 = |p− t|,
• Squared error η2 = |p− t|2, and
• Classifica error ηc = 1 if p ̸= t.

Next, we use the absolute error to analysis the robustness of the Ski-Rental algorithm. For the
sake of analysis, we modify the algorithm as follows:

Algorithm 7 An online algorithm with a trustness parameter α ∈ (0, 1)
1: if p ≥ B then
2: Buy on the ⌈B(1− α)⌉-th day
3: else
4: Keep renting until the ⌈ B

1−α⌉-th skiing day

Figure 1 is an illustration of Algorithm 7. If the prediction suggests that the algorithm should
buy the ski, the algorithm with trustness parameter α will buy the ski on the day marked by teal;
otherwise, the algorithm will keep renting until the day marked by blue. If the trustness parameter
is closer to 0, both the teal day and the blue day will be closer to B. That is, the algorithm behaves
more similar to the pure online algorithm.

Figure 1: Illustration of Algorithm 7

Analysis of Algorithm 7. For the consistency, the algorithm pays B(1 − α) − 1 + B when the
actual skiing day S ≥ B and pays S otherwise. In this case, the algorithm has competitive ratio
B(1−α)−1+B

B = 2− α− 1
B .

For the robustness, there are two cases: 1) S < B, and S ≥ B. In the first case, OPT = S, and
B ≤ p = S + η1 (see Figure 2). The algorithm buys the ski on day ⌈B(1− α)⌉. In the worst case, the
online algorithm cost can be charged to OPT + (OPT + η1). More precisely the online algorithm pays
at most (2− α)(η1 + OPT).
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Figure 2: Illustration of the case where S < B, but p ≥ B. The length of the red bar visualizes the
optimal cost, while the blue bars visualize the algorithm cost.

In the second case, p < B, and there are three sub-cases depending on the actual number of
skiing days: S < B, B ≤ S < ⌈ B

1−α⌉, and S ≥ ⌈ B
1−α⌉. The first sub-case is simple as the algorithm

behaves the same with the optimal solution. In the second sub-case, η1 = S − p. The algorithm keep
renting, while the optimal solution buys the ski on the first day. Thus, the algorithm pays at most
S = p + η1 ≤ OPT + η1. (See Figure 3.)

Figure 3: Illustration of the case where S ≥ B, but B ≤ S < ⌈ B
1−α⌉.

In the third sub-case, η1 ≥ B
1−α−B. The algorithm first rents the ski for B

1−α−1 days and eventually
buys the ski. In total, the algorithm pays B

1−α − 1 + B, which can be charge to OPT + (OPT + η1).
More precisely, the algorithm cost is at most OPT + η1

α since η1 + B ≥ B
1−α .

Figure 4: Illustration of the case where S ≥ B, but S ≥ ⌈ B
1−α⌉
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