
A Domino Game
• Consider these dominos, can you find a permuta8on of them, so the text on the 

upper part is exactly the same as the text on the lower part?  
(You can use one domino more than once, but not put them upside down.) 
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Algorithms for Decision Support 

NP-Completeness (3/3)
Op8miza8on problems
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• Problem  with input  

• Return yes if    

• Return no if   

A w
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Polynomial-Time Reduce  to A B

3

• Problem  with input  

• Return yes if    

• Return no if   

B w′ 

w′ ∈ B

w′ ∉ B

Bw′ 

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w′ ∈ B

w A

3. Show that for any  
no-instance   ,  
the corresponding instance  

 is also a no-instance of 

w′ ∉ B

w A

3. Show that for any  
yes-instance   ,  
the corresponding instance  

 is also a yes-instance of 

w ∈ A

w′ B

1. Show that there is a func8on  
that transforms every  to   
in polynomial 8me

w w′ 



Instance Transforma8on
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Show that the reduc8on works
• That is,  is a yes-instance of  if and only if  is a yes-instance to  
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Show that the reduc8on works
• That is,  is a yes-instance of  if and only if  is a yes-instance to  

• So we can rely on the yes/no answer of    to decide if   

w A w′ B

w′ ∈ B w ∈ A

• Argue that: 

• If  is a yes-instance of , there is a solu8on  to   

• Using , we can construct a solu8on  to   

• Argue by how we construct  

➡    

w A Sw w

Sw Sw′ 
w′ 

w′ 

w′ ∈ B
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Outline
• More NP-Hardness proofs 

• 3SAT  VERTEX-COVER 

• VERTEX-COVER  INDEPENDENT SET 

• VERTEX-COVER  FEEDBACK-VERTEX-SET 

• VERTEX-COVER  Integer Linear Program 

• Pseudo-polynomial 8me algorithms 

• NP and Co-NP 

• Turing undecidable languages

≤p

≤p

≤p

≤p
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Vertex Cover
• Given a graph    , a vertex cover is a subset  of ver8ces such that for 

every edge ,  

• That is, every edge is covered by at least one of its endpoints 

• Removing all ver8ces in  leaves no edge  

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
(u, v) |{u, v} ∩ U | ≥ 1

U
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Vertex Cover
• Minimum vertex cover problem: Given a graph , what is the size of the 

minimum vertex cover in ? 

• Decision version: Given a graph , is there a vertex cover of size at most  in ? 

• An instance of VERTEX-COVER is ,  

• VERTEX-COVER is NP-complete

G
G

G k G

⟨⟨G⟩ k⟩
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New parameter!



3SAT  VERTEX-COVER≤p
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3SAT  VERTEX-COVER≤p
• 3SAT  

• VERTEX-COVER

= {⟨ϕ⟩ |ϕ is a sa8sfiable 3cnf-formula}

= {⟨G, k⟩ |graph G has a vertex cover of size at most k}

17



3SAT  VERTEX-COVER≤p
• Construc8on:  

• For each variable , there are 
two ver8ces  and  forming 
an edge in  

• For each clause , 
there is a triangle in  

• For each clause , 
there are three edges from 

 to the 
corresponding variable vertex 

•

xi
vi vi

G
(la, lb, lc)

G
(la, lb, lc)

la, lb,  and lc

k = 2 ⋅ number of clauses + number of ver8ces
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3SAT  VERTEX-COVER≤p

19

v1 v1 v2 v2 v3 v3
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x2 x3

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}
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3SAT  VERTEX-COVER≤p
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3SAT  VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3
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x1 x2
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x2 x3
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x2 x2

x1

x2 x3
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ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}



3SAT  VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3
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x1 x2
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x2 x3

x1

x2 x2

x1

x2 x3
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ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

•  is sa8sfiable  there is a truth assignment 
that makes  TRUE 
• Pick the variable ver8ces corresponding to 

the true literals 
• Since the truth assignment is valid, 

every variable-variable edge is 
covered, and each clause has at least 
one variable-clause edge is covered 

• Pick the ver8ces in each clause that 
incident to the not covered variable-
clause edges  
• There are at most two these ver8ces in 

each classes. They cover the clause 
edges 

• There are at most +  picked ver8ces 
and they form a vertex cover

ϕ ⇒
ϕ

ℓ 2k

T T T T



3SAT  VERTEX-COVER≤p
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ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

•  has a vertex cover  of cardinality  
  is sa8sfiable 

• Since each triangle needs two ver8ces to 
cover it, each clause has at least two 
ver8ces picked ( )  
• They can only cover at most two 

variable-clause edges 
• Since the variable-variable edges need to 

be covered, at least one vertex in each 
pair of  and  is in  ( ) 

• These ver8ces cover the variable-
clause edges that are not yet covered 

• Pick the corresponding literals to be 
true, the covered variable-clause 
edges implies that every clause is true

G C 2k + ℓ
⇒ ϕ

≥ 2k

vi vi C ≥ ℓ

T T T T
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3SAT  VERTEX-COVER≤p
• For each vertex-clause edge, its end points refer to the same literal 

• For each clause, there can be at most  vertex-clause edge covered by clause 
ver8ces  at least  vertex-clause edge covered by a variable vertex  there 
must be a true literal in this clause

2
⇒ 1 ⇔

25

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3



Outline
• More NP-Hardness proofs 

• 3SAT  VERTEX-COVER 

• VERTEX-COVER  INDEPENDENT SET 

• VERTEX-COVER  FEEDBACK-VERTEX-SET 

• VERTEX-COVER  Integer Linear Program 

• Pseudo-polynomial 8me algorithms 

• NP and Co-NP 

• Turing undecidable languages

≤p

≤p

≤p

≤p
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Maximum Independent Set



• Maximum INDEP-SET problem: Given a graph , we want to find a 
subset of  with maximum cardinality which forms an independent set

G = (V, E)

V
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V
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V
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An independent set
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• Maximum INDEP-SET problem: Given a graph , we want to find a 
subset of  with maximum cardinality which forms an independent set

G = (V, E)

V
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• Maximum INDEP-SET problem: Given a graph , we want to find a 
subset of  with maximum cardinality which forms an independent set

G = (V, E)

V
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Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  

• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise

G = (V, E) k

k

Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Maximum Independent Set is NP-hard
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IS 
Solver 

There is an independent set in  with sizeG′ ≤ k

There is no independent set in  with sizeG′ ≤ k
(G′ , k′ )

Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
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independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 
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• Output:  
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covered by this subset of vertices 
• no otherwise

G = (V, E) k

k

Maximum Independent Set is NP-hard
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IS 
Solver 

There is an IS in  with sizeG′ ≤ k

There is no IS in  with sizeG′ ≤ k
(G′ , k′ )f(S)(G, k)

There is a -VC in k G

There is NO -VC in k G

Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 
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• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
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G = (V, E) k

k

Maximum Independent Set is NP-hard
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There is a subset  

which is an vertex cover with size at 
most 

V∖W

k

There is a subset  
which is an independent set with size at 
least 

W

k

Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  

• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise
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k

Maximum Independent Set is NP-hard



Observation: In graph , for any of its vertex cover , any pair of the 
vertices in  are not adjacent.

G C
V∖C

38
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Vertex cover of size  k′ 
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There is a subset  

which is an vertex cover with size at 
most 

V∖W

k

There is a subset  
which is an independent set with size at 
least 

W

k

Observation: In graph , for any of its vertex cover , any pair of the 
vertices in are not adjacent.

G C
V∖C
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Vertex cover of size  k′ 

VC

Independent set of size  |V |−k′ 

VC  INDEP-Set≤p
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VC  INDEP-Set≤p

Vertex cover of size  k′ 

VC

Independent set of size  |V |−k′ 

Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  

• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise

G = (V, E) k
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VC  INDEP-Set≤p
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k

   
   

G′ = G
k′ = |V |− k
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If there is a vertex cover of size  in  
 The other ver8ces form an independent set 

of size   =  in   

k G
⇒

|V |− k′ k G = G′ 

VC  INDEP-Set≤p
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If there is a vertex cover of size  in  
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• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  

• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise

G = (V, E) k

k
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k′ = |V |− k

If there is an independent set of size  in  
 The other ver8ces form a vertex cover 

of size   =  in    since every edge must incident with one of them

k′ G′ 

⇒
|V |− k′ k G = G′ 
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VC  INDEP-Set≤p
Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
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VC  INDEP-Set≤p
Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
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If there is an independent set of size  in  
 The other ver8ces form a vertex cover 

of size   =  in    since every edge must incident with one of them

k′ G′ 

⇒
|V |− k′ k G = G′ 

VC  INDEP-Set≤p
Maximum INDEP-SET (decision version) 

• Input: a graph  and a integer 
 

• Output:  
• yes if there is a subset of vertices with 

cardinality at least  that forms an 
independent set 
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  
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• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise
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k

 G
k
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Outline
• More NP-Hardness proofs 

• 3SAT  VERTEX-COVER 

• VERTEX-COVER  INDEPENDENT SET 

• VERTEX-COVER  FEEDBACK-VERTEX-SET 

• VERTEX-COVER  Integer Linear Program 

• Pseudo-polynomial 8me algorithms 

• NP and Co-NP 

• Turing undecidable languages

≤p

≤p

≤p

≤p
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Feedback Vertex Set (FVS)
• Given a graph    , a feedback vertex set is a subset  of ver8ces such that 

removing the ver8ces in  leaves a graph without cycles 

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U
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Feedback Vertex Set (FVS)
• Given a graph    , a feedback vertex set is a subset  of ver8ces such that 

removing the ver8ces in  leaves a graph without cycles 

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U
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Feedback Vertex Set (FVS)
• Given a graph    , a feedback vertex set is a subset  of ver8ces such that 

removing the ver8ces in  leaves a graph without cycles 

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U
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Feedback Vertex Set (FVS)
• Given a graph    , a feedback vertex set is a subset  of ver8ces such that 

removing the ver8ces in  leaves a graph without cycles 

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U
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Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph    , what is the size of its minimum 

feedback vertex set?
G = (V, E)
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Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph    , what is the size of its minimum 

feedback vertex set? 

• Decision version of Minimum-FVS problem: 

• Given a graph    , is there a feedback vertex set with size at most ?

G = (V, E)

G = (V, E) k
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Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph    , what is the size of its minimum 

feedback vertex set? 

• Decision version of Minimum-FVS problem: 

• Given a graph    , is there a feedback vertex set with size at most ?

G = (V, E)

G = (V, E) k
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Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph    , what is the size of its minimum 

feedback vertex set? 

• Decision version of Minimum-FVS problem: 

• Given a graph    , is there a feedback vertex set with size at most ? 

• Theorem: FVS is NP-complete

G = (V, E)

G = (V, E) k
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Feedback Vertex Set (FVS)
• VertexCover ,   There is a 

vertex cover in  with size at most 
= {⟨G k⟩ |

G k}
• FVS ,   There is a feedback 

vertex set in  with size at most 
= {⟨G′ k′ ⟩ |

G′ k′ }

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f
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Feedback Vertex Set (FVS)
• VertexCover ,   There is a set 

of at most  ver8ces in  such that 
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS ,   There is a set of at 
most  ver8ces in  such that 
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′ 

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f
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Feedback Vertex Set (FVS)
• VertexCover ,   There is a set 

of at most  ver8ces in  such that 
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS ,   There is a set of at 
most  ver8ces in  such that 
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′ 

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f
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Feedback Vertex Set (FVS)
• VertexCover ,   There is a set 

of at most  ver8ces in  such that 
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS ,   There is a set of at 
most  ver8ces in  such that 
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′ 

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f
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Feedback Vertex Set (FVS)
• VertexCover ,   There is a set 

of at most  ver8ces in  such that 
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS ,   There is a set of at 
most  ver8ces in  such that 
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′ 

}

  ,  
     
    

G′ = (V′ E′ )
V′ = V ∪ VE
E′ = E ∪ EV,E

va,b

a

b

a

b
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Feedback Vertex Set (FVS)

  ,  
     
    

G′ = (V′ E′ )
V′ = V ∪ VE
E′ = E ∪ EV,E

Ajer removing the size-  vertex cover from :k G′ 

There is no edge between  the remaining  ver8cesV

The  ver8ces have degree at most EV,E 1

The size-  vertex coverk The size-  vertex cover is a FVS of k G′ 
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Feedback Vertex Set (FVS)
The size-  FVS is a vertex cover of k G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove 

F′ 

ui
ui,j ui uj

ui uj ui,j
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Feedback Vertex Set (FVS)
The size-  FVS is a vertex cover of k G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove 

F′ 

ui
ui,j ui uj

ui uj ui,j
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Feedback Vertex Set (FVS)
The size-  FVS is a vertex cover of k G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove 

F′ 

ui
ui,j ui uj

ui uj ui,j
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Feedback Vertex Set (FVS)
The size-  FVS is a vertex cover of k G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove 

F′ 

ui
ui,j ui uj

ui uj ui,j
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

76

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove 

F′ 

ui
ui,j ui uj

ui uj ui,j



Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 

80



Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 

Ajer removing  from ,  has no cycle 
 Ajer removing  from ,  has no edge 

(Otherwise, there is a cycle in  since no   

is in ) 
  is a vertex cover with size at most  in 

F′ G′ G′ 

⇒ F′ G G
G′ ui,j

F′ 

⇒ F′ k G
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 

Ajer removing  from ,  has no cycle 
 Ajer removing  from ,  has no edge 

Otherwise, there is a cycle in  since no   

is in ) 
  is a vertex cover with size at most  in 

F′ G′ G′ 

⇒ F′ G G
G′ ui,j

F′ 

⇒ F′ k G
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Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size-  FVS of k G′ 

Construct a set : 
Keep all  in the FVS 
If some  is in the FVS, replace it by  or  

If both  are in  the FVS, remove  

  is a FVS with size at most 

F′ 

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′ 

Ajer removing  from ,  has no cycle 
 Ajer removing  from ,  has no edge 

Otherwise, there is a cycle in  since no   

is in ) 
  is a vertex cover with size at most  in 

F′ G′ G′ 

⇒ F′ G G
G′ ui,j

F′ 

⇒ F′ k G
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Feedback Vertex Set (FVS)
• FVS ,   There is a set of at most  ver8ces in  such that removing them 

leaves no cycles  

• Theorem: FVS is NP-complete 

<proof> To prove that FVS is in NP, we use a size-  feedback vertex set  as the 
cer8ficate. The verifier should check  it is a proper subset of the ver8ces in , and 
if  is cycle-free ajer removing all edges incident to the ver8ces in . The later can 
be done by running a breadth-first-search on the resul8ng graph. The checking 8me 
is in polynomial of the size of .

= {⟨G k⟩ | k G
}

k U
U G

G U

G
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Feedback Vertex Set (FVS)
To prove the NP-hardness, we show that VERTEX-COVER  FVS. For any instance of 

VERTEX-COVER,  and , we construct an instance of FVS,  
and  as follows. For each vertex , there is a corresponding vertex . 
More over, for each edge , there is a corresponding vertex .  

For each edge , we construct three edges in : , , and 

. 

We set . 

The construc8on takes constant 8me to each element in  or  and can be done in 
polynomial-8me.

≤p

G = (V, E) k G′ = (V′ , E′ )
k′ vi ∈ V ui ∈ V′ 

(vi, vj) ∈ E ui,j ∈ V′ 

(vi, vj) ∈ E E′ (ui, uj) (ui, ui,j)
(uj, ui,j)

k′ = k
V E
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Feedback Vertex Set (FVS)
Now we prove that the reduc8on works. Suppose that there is a size-  vertex cover 

 of . First observe that there are two types of cycles in : 1) cycles containing no 
 ver8ces, and 2) cycles containing at least one  vertex.  

Consider removing all ver8ces in  from , there is no edge between any two 
ver8ces in ,  and . Therefore, there are no type-1 cycles in the remaining graph.  

Furthermore, because every vertex u_{i,j} only adjacent to  and , the degree of 

 is at most 1 ajer removing ver8ces in . Thus, there are no type-2 cycles lej. 

Hence,  is a size-  feedback vertex set of , and  is a yes-instance of FVS.

k
C G G′ 

ui,j ui,j

C V′ 

V′ ui uj

u′ i u′ j

ui,j C
C k G′ ⟨G′ , k′ ⟩
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Feedback Vertex Set (FVS)
For the other direc8on, suppose that there is a size-  feedback vertex set  of . We 
make a feedback vertex set  of  with size at most  as follows. For all ver8ces  in , 
we add them into . If there is a vertex  in , we replace it by  or , which was not in 

, in . If both  and  are already in , we simply remove . Any cycle  that only 

contains ver8ces ’s is broken by  since . Any cycle that contains 
an  vertex is broken by  or . Therefore,  is a feasible feedback vertex set with size 

at most . 

Now, we argue that the ver8ces in  form a vertex cover in . Since there is no vertex  

in , removing all ver8ces in  leaves no edge between any pair of  and . Otherwise, 

there is a cycle , and it contradicts to the fact that  is a feedback vertex set. 

Thus,  is a vertex cover in . That is,  is a yes-instance of the VERTEX-COVER problem.

k′ F G′ 

F′ G′ k′ ui F
F′ ui,j F ui uj

F F′ ui uj F ui,j C
ui C ∪ F′ C ∪ F ⊆ C ∪ F′ 

uij ui uj F′ 

k′ 

F′ G ui,j

F′ F′ ui uj

(ui, uj, ui,j) F′ 

F′ G G
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<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT    is a sa8sfiable 3-CNF 
Boolean formula

= {⟨ϕ⟩ | ϕ
}
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

, ⟨G′ k⟩, ⟨G k⟩
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

If ,  is a yes-instance 
 has a size-  feedback vertex set

⟨G′ k⟩
G′ k
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

If ,  is a yes-instance 
 has a size-  feedback vertex set

⟨G′ k⟩
G′ k

There is a feedback vertex set 
 with size at most  and only 
contains the ver8ces in 

F′ k
G
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE    has a clique of 
size at least 

= {⟨G, m⟩ | G
m}

If ,  is a yes-instance 
 has a size-  feedback vertex set
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There is a feedback vertex set 
 with size at most  and only 
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F′ k
G

 is a vertex cover in  
with size at most  (since …)

F′ G
k
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• Theorem: CLIQUE =  is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE    has a clique of 
size at least 
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If ,  is a yes-instance 
 has a size-  feedback vertex set
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There is a feedback vertex set 
 with size at most  and only 
contains the ver8ces in 

F′ k
G

 is a vertex cover in  
with size at most  (since …)

F′ G
k

Therefore, ,  is a yes-instance⟨G k⟩
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Therefore, ,  is a yes-instance

C G′ 

⟨G′ k⟩
If ,  is a yes-instance 
 has a size-  vertex cover 

⟨G k⟩
G k C
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ILP
Integer linear programming 

• Input:  

• , with  and  

• Output:  

• yes if there is an assignment of s such 
that the objective value is at most  and 
constraints are satisfied 

• no otherwise

Σicixi ≤ k A ⃗x ≥ ⃗b xi ∈ {0,1}

xi
k

Minimum Vertex Cover problem (decision 
version) 

• Input: a graph  and a integer  

• Output:  
• yes if there is a subset of vertices with 

cardinality at most  that all edges are 
covered by this subset of vertices 
• no otherwise

G = (V, E) k

k

 
for all edge  in , 
Σixi ≤ k

(u, v) E xu + xv ≥ 1

99



NP-complete Problems Map

CNF-SAT

3SAT

SUBSET-SUM CLIQUE

INDEP-SETPARTITION

BIN-PACKING WEIGHTED-VC

100

MACHINE-MIN FVS

KNAPSACK

VERTEX-COVER

SAT

ILP

Load Balancing

2WAY-Par88on
Domina8ng Set
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Strong and Weak NP-complete

102

• KANPSACK problem: Give a set  of items, each with an integer value  and 
integer weight . Also give integers  and . Is there a subset of  of weight no 
more than  with total value at least ? 

• KNAPSACK is NP-complete 

• Using dynamic programming, it can be solved in  8me.  

•  

•  

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W( j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W( j + 1,w) = max{W( j, w), W( j, w − wj+1) + vj+1}
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Strong and Weak NP-complete
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value

weight

100 80 68 42 25

50 45 10 15 20

Weight capacity: 100
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Strong and Weak NP-complete
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Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):  

• Problem is NP-complete if numbers are given in binary, but polynomial 8me 
solvable when numbers are given in unary encoding.  

• Algorithms are known which solve them in 8me bounded by a polynomial in the 
numeric value of the input instead of in the length of the input length. 

• The problem is solvable in pseudo-polynomial 8me  

• Strong NP-complete (NP-complete in the strong sense): 
• Problem is NP-complete if numbers are given in unary encoding  
• Problem is NP-complete even when the numerical parameters are bounded by a 

polynomial in the input size 
• Ex: BinPacking 
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Showing that a problem is strongly NP-hard

• You need to: 

1. Reduce it from a strongly NP-complete problem, and 

2. Ensure that the magnitudes of the numerical parameters generated during 
the reduc8on are bounded by a polynomial of input size
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• More NP-Hardness proofs 

• 3SAT  VERTEX-COVER 

• VERTEX-COVER  INDEPENDENT SET 
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The Class NP
• Defini8on: NP is the class of languages that are decidable in polynomial 8me on a 

nondeterminis8c Turing machine. 

• Defini8on: NP is the class of languages that are polynomial 8me verifiable.
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The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial 8me 

verifiable. 

• Defini8on: A language  is in co-NP if NP.  

• : complement language of  

• NOT-HAMILTONIAN  

• UNSATISFIABLE  

•

L L ∈

L L

= {⟨G⟩ |G has no Hamiltonian cycle}

= {⟨ϕ⟩ |All truth assignments make ϕ false}

P ⊆ NP ∩ co-NP
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The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial 

8me verifiable. 
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Co-NP
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A more natural example for NP and coNP

• INTEGER_FACTORISATION  is in NP 
and co-NP: 

• In NP: A cer8ficate is two numbers  and  where  is a prime* such that 
 

• In co-NP: A cer8ficate is the prime factoriza8on of  

• Is INTETER_FACTORISATION in P? For cryptography sake we hope not! 

* Prime-tes8ng is in P [M Agrawal, N Kayal, N Saxena, 2004]

= {⟨n, k⟩ |n has a prime factor less than k}

c p < k p
cp = n

n
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• More NP-Hardness proofs 

• 3SAT  VERTEX-COVER 

• VERTEX-COVER  INDEPENDENT SET 
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• VERTEX-COVER  Integer Linear Program 
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Turing machine and Decidability
• The class P is the class of languages that are accepted or rejected in polynomial 

8me by a determinis8c Turing machine 

• The class NP is the class of languages that can be verified in polynomial 8me by a 
determinis8c Turing machine.

122

accept

reject

Running Jme
  f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n

…



Turing-Decidable Language

123

accept

rejectaccept/reject

• Turing machine may not halt and enter a loop



Turing-Decidable Language
• A language  is (Turing-)decidable if some Turing machine decides it  

• The Turing machine accepts all strings in  and rejects all strings not in 

L

L L
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Turing-Decidable Language
• A language  is (Turing-)decidable if some Turing machine decides it  

• The Turing machine accepts all strings in  and rejects all strings not in  

• Ex:  = prime number

L

L L

L { }

125

All natural numbers that > 1

: all prime numbersL

1129

1457

1456

Accept any   w ∈ L Reject any   w ∉ L



Turing-Decidable Language
• A language  is (Turing-)decidable if some Turing machine decides it  

• The Turing machine accepts all strings in  and rejects all strings not in  

• All the problems in NP are decidable

L

L L
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All natural numbers that > 1

: all prime numbersL

1129

1457

1456

Decidable

NPP

Accept any   w ∈ L Reject any   w ∉ L



Undecidable Language
• A language  is undecidable if  

for all Turing machine ,  
there exists  such that  does not accept  or there exists  such that 

 does not reject 

L
M

w ∈ L M w w ∉ L
M w

127

All stringsL

Some    make the 
Turing machine into a loop

w ∈ L Some    make the 
Turing machine into a loop

w ∉ L



Undecidable Languages
•  is a Turing machine and  accepts input string  

• Hal8ng problem: 
 is a Turing machine and  accepts or rejects input string 

 

• Hilbert’s 10  problem:  
 is a polynomial with an integral root  

• Post correspondence problem (PCP): 
Given a collec8on  of dominos, each containing two strings, one on each side. A 
match is a list of these dominos (repe88on permixed) such that the string on the 
top is the same as the string on the boxom.

ATM = {⟨M, w⟩ ∣ M M w}

HALTTM = {⟨M, w⟩ ∣ M M
w}

th

H = {⟨p⟩ ∣ p }

D
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 is undecidableATM
•  is a Turing machine and  accepts input string ATM = {⟨M, w⟩ ∣ M M w}
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Decider

ATM accept (  accepts )M w

reject (  rejects )M w
(M, w)

H<Pf> Assume on the contrary that  is decidable 
 there is a Turing machine  that can decide  

Design a Turing machine : 
On input , where  is a Turing machine 

1. Run  on input  
2. If  accepts, reject and if  rejects, accept  

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H
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 is undecidableHALTTM
•  is a Turing machine and  halts on input string HALTTM = {⟨M, w⟩ ∣ M M w}
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<Pf> Assume on the contrary that  is 
decidable  there is a Turing machine  that 
decides  

Design a Turing machine  that decides : 
On input , where  is a Turing machine 

1. Run  on input  
2. If  rejects, reject 
3. If  accepts, simulate  on  un8l it halts 
4. If  accepts , accept. If  rejects , reject 

           (  is undecidable)

HALTTM
⇒ R

HALTTM

S ATM
⟨M, w⟩ M

R ⟨M, w⟩
R
R M w
M w M w

→ ← ATM

R
accept (  halts on )M w

reject (  does not halt on )M w
⟨M, w⟩

Simulate  on M w

reject

 
Decider
HALTTM

accept (  halts on )M w

reject (  does not halt 
on )

M
w

⟨M, w⟩

R

S

M⟨w⟩
accept (  accepts )M w

reject (  rejects )M w

accept

reject



Hal8ng problem is undecidable
• Proof by reduc8on! 

• If    and  is decidable, then  is decidable 

• The reduc8on  doesn’t need to be polynomial 8me

A ≤ B B A

≤
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It’s obvious 
— by Abstruse Goose
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