
A Domino Game
• Consider these dominos, can you find a permuta8on of them, so the text on the

upper part is exactly the same as the text on the lower part?
(You can use one domino more than once, but not put them upside down.)

• Example:

• Set 1:

• Set 2:

xy
xyyxy

yx
x

xy
y

xy
xyyxy

yx
x

xy
y

yx
x

ab
abab

b
a

aba
b

aa
a

0
01

101
010

010
101

0111
1

xyyxyxxy

1

Algorithms for Decision Support

NP-Completeness (3/3)
Op8miza8on problems

2

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduce to A B

3

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

Instance Transforma8on
• Design a method to transform any instance of into an instance of

• The transforma8on should be done in polynomial 8me

w A w′ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

4

Show that the reduc8on works
• That is, is a yes-instance of if and only if is a yes-instance to

• So we can rely on the yes/no answer of to decide if

w A w′ B

w′ ∈ B w ∈ A

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

5

• Problem with input

• Return yes if

• Return no if

A w

w ∈ A

w ∉ A

Polynomial-Time Reduce to A B

6

• Problem with input

• Return yes if

• Return no if

B w′

w′ ∈ B

w′ ∉ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

Instance Transforma8on
• Design a method to transform any instance of into an instance of

• The transforma8on should be done in polynomial 8me

w A w′ B

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

7

Show that the reduc8on works
• That is, is a yes-instance of if and only if is a yes-instance to

• So we can rely on the yes/no answer of to decide if

w A w′ B

w′ ∈ B w ∈ A

Bw′

Yes

No

Yes

No

w

A

f

Polynomial-8me func8on

2. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w′ ∈ B

w A

3. Show that for any
no-instance ,
the corresponding instance

 is also a no-instance of

w′ ∉ B

w A

3. Show that for any
yes-instance ,
the corresponding instance

 is also a yes-instance of

w ∈ A

w′ B

1. Show that there is a func8on
that transforms every to
in polynomial 8me

w w′

8

Show that the reduc8on works
• That is, is a yes-instance of if and only if is a yes-instance to

• So we can rely on the yes/no answer of to decide if

w A w′ B

w′ ∈ B w ∈ A

• Argue that:

• If is a yes-instance of , there is a solu8on to

• Using , we can construct a solu8on to

• Argue by how we construct

➡

w A Sw w

Sw Sw′
w′

w′

w′ ∈ B

9

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

10

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

11

Vertex Cover
• Given a graph , a vertex cover is a subset of ver8ces such that for

every edge ,

• That is, every edge is covered by at least one of its endpoints

• Removing all ver8ces in leaves no edge

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
(u, v) |{u, v} ∩ U | ≥ 1

U

12

Vertex Cover
• Given a graph , a vertex cover is a subset of ver8ces such that for

every edge ,

• That is, every edge is covered by at least one of its endpoints

• Removing all ver8ces in leaves no edge

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
(u, v) |{u, v} ∩ U | ≥ 1

U

13

Vertex Cover
• Given a graph , a vertex cover is a subset of ver8ces such that for

every edge ,

• That is, every edge is covered by at least one of its endpoints

• Removing all ver8ces in leaves no edge

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
(u, v) |{u, v} ∩ U | ≥ 1

U

14

Vertex Cover
• Minimum vertex cover problem: Given a graph , what is the size of the

minimum vertex cover in ?

• Decision version: Given a graph , is there a vertex cover of size at most in ?

• An instance of VERTEX-COVER is ,

• VERTEX-COVER is NP-complete

G
G

G k G

⟨⟨G⟩ k⟩

15

New parameter!

3SAT VERTEX-COVER≤p

16

3SAT VERTEX-COVER≤p
• 3SAT

• VERTEX-COVER

= {⟨ϕ⟩ |ϕ is a sa8sfiable 3cnf-formula}

= {⟨G, k⟩ |graph G has a vertex cover of size at most k}

17

3SAT VERTEX-COVER≤p
• Construc8on:

• For each variable , there are
two ver8ces and forming
an edge in

• For each clause ,
there is a triangle in

• For each clause ,
there are three edges from

 to the
corresponding variable vertex

•

xi
vi vi

G
(la, lb, lc)

G
(la, lb, lc)

la, lb, and lc

k = 2 ⋅ number of clauses + number of ver8ces

18

3SAT VERTEX-COVER≤p

19

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}
• Construc8on:

• For each variable , there are
two ver8ces and forming
an edge in

• For each clause ,
there is a triangle in

• For each clause ,
there are three edges from

 to the
corresponding variable vertex

•

xi
vi vi

G
(la, lb, lc)

G
(la, lb, lc)

la, lb, and lc

k = 2 ⋅ number of clauses + number of ver8ces

3SAT VERTEX-COVER≤p

20

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

3SAT VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

21

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

3SAT VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

22

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

• is sa8sfiable there is a truth assignment
that makes TRUE
• Pick the variable ver8ces corresponding to

the true literals
• Since the truth assignment is valid,

every variable-variable edge is
covered, and each clause has at least
one variable-clause edge is covered

• Pick the ver8ces in each clause that
incident to the not covered variable-
clause edges
• There are at most two these ver8ces in

each classes. They cover the clause
edges

• There are at most + picked ver8ces
and they form a vertex cover

ϕ ⇒
ϕ

ℓ 2k

T T T T

3SAT VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

23

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

• has a vertex cover of cardinality
 is sa8sfiable

• Since each triangle needs two ver8ces to
cover it, each clause has at least two
ver8ces picked ()
• They can only cover at most two

variable-clause edges
• Since the variable-variable edges need to

be covered, at least one vertex in each
pair of and is in ()

• These ver8ces cover the variable-
clause edges that are not yet covered

• Pick the corresponding literals to be
true, the covered variable-clause
edges implies that every clause is true

G C 2k + ℓ
⇒ ϕ

≥ 2k

vi vi C ≥ ℓ

T T T T

3SAT VERTEX-COVER≤p

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

24

ϕ = {(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)}

• has a vertex cover of cardinality
 is sa8sfiable

• Since each triangle needs two ver8ces to
cover it, each clause has at least two
ver8ces picked ()
• They can only cover at most two

variable-clause edges
• Since the variable-variable edges need to

be covered, at least one vertex in each
pair of and is in ()

• These ver8ces cover the variable-
clause edges that are not yet covered

• Pick the corresponding literals to be
true, the covered variable-clause
edges implies that every clause is true

G C 2k + ℓ
⇒ ϕ

≥ 2k

vi vi C ≥ ℓ

T T T T

3SAT VERTEX-COVER≤p
• For each vertex-clause edge, its end points refer to the same literal

• For each clause, there can be at most vertex-clause edge covered by clause
ver8ces at least vertex-clause edge covered by a variable vertex there
must be a true literal in this clause

2
⇒ 1 ⇔

25

v1 v1 v2 v2 v3 v3

x1

x1 x2

x1

x2 x3

x1

x2 x2

x1

x2 x3

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

26

27

Maximum Independent Set

• Maximum INDEP-SET problem: Given a graph , we want to find a
subset of with maximum cardinality which forms an independent set

G = (V, E)

V

28

Maximum Independent Set

• Maximum INDEP-SET problem: Given a graph , we want to find a
subset of with maximum cardinality which forms an independent set

G = (V, E)

V

29

a

c

f

e

Maximum Independent Set

• Maximum INDEP-SET problem: Given a graph , we want to find a
subset of with maximum cardinality which forms an independent set

G = (V, E)

V

30

a

c

f

e

An independent set

Maximum Independent Set

• Maximum INDEP-SET problem: Given a graph , we want to find a
subset of with maximum cardinality which forms an independent set

G = (V, E)

V

31

a

c

f

e

NOT an independent set

Maximum Independent Set

• Maximum INDEP-SET problem: Given a graph , we want to find a
subset of with maximum cardinality which forms an independent set

G = (V, E)

V

32

a

c

f

e

Maximum independent set

Maximum Independent Set

33

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Maximum Independent Set is NP-hard

34

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum Independent Set is NP-hard

35

IS
Solver

There is an independent set in with sizeG′ ≤ k

There is no independent set in with sizeG′ ≤ k
(G′ , k′)

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum Independent Set is NP-hard

36

IS
Solver

There is an IS in with sizeG′ ≤ k

There is no IS in with sizeG′ ≤ k
(G′ , k′)f(S)(G, k)

There is a -VC in k G

There is NO -VC in k G

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum Independent Set is NP-hard

37

There is a subset

which is an vertex cover with size at
most

V∖W

k

There is a subset
which is an independent set with size at
least

W

k

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum Independent Set is NP-hard

Observation: In graph , for any of its vertex cover , any pair of the
vertices in are not adjacent.

G C
V∖C

38

V

VC INDEP-Set≤p

Observation: In graph , for any of its vertex cover , any pair of the
vertices in are not adjacent.

G C
V∖C

39

VC

VC INDEP-Set≤p

Vertex cover of size k′

Observation: In graph , for any of its vertex cover , any pair of the
vertices in are not adjacent.

G C
V∖C

40

VC

VC INDEP-Set≤p

Vertex cover of size k′

There is a subset

which is an vertex cover with size at
most

V∖W

k

There is a subset
which is an independent set with size at
least

W

k

Observation: In graph , for any of its vertex cover , any pair of the
vertices in are not adjacent.

G C
V∖C

41

Vertex cover of size k′

VC

Independent set of size |V |−k′

VC INDEP-Set≤p

42

VC INDEP-Set≤p

Vertex cover of size k′

VC

Independent set of size |V |−k′

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

43

VC INDEP-Set≤p
Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

44

 G
k

G′ = G
k′ = |V |− k

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

45

If there is a vertex cover of size in
 The other ver8ces form an independent set

of size = in

k G
⇒

|V |− k′ k G = G′

VC INDEP-Set≤p

 G
k

G′ = G
k′ = |V |− k

Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

46

If there is a vertex cover of size in
 The other ver8ces form an independent set

of size = in since there is no edge between them

k G
⇒

|V |− k′ k G = G′

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

47

If there is a vertex cover of size in
 The other ver8ces form an independent set

of size = in since there is no edge between them

k G
⇒

|V |− k′ k G = G′

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

48

If there is a vertex cover of size in
 The other ver8ces form an independent set

of size = in since there is no edge between them

k G
⇒

|V |− k k′ G′ = G

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

49

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

If there is a vertex cover of size in
 The other ver8ces form an independent set

of size = in since there is no edge between them

k G
⇒

|V |− k k′ G′ = G

50

 G
k

G′ = G
k′ = |V |− k

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

51

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

If there is an independent set of size in
 The other ver8ces form a vertex cover

of size = in since every edge must incident with one of them

k′ G′

⇒
|V |− k′ k G = G′

52

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

If there is an independent set of size in
 The other ver8ces form a vertex cover

of size = in since every edge must incident with one of them

k′ G′

⇒
|V |− k′ k G = G′

53

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

If there is an independent set of size in
 The other ver8ces form a vertex cover

of size = in since every edge must incident with one of them

k′ G′

⇒
|V |− k′ k G = G′

54

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

If there is an independent set of size in
 The other ver8ces form a vertex cover

of size = in since every edge must incident with one of them

k′ G′

⇒
|V |− k′ k G = G′

55

If there is an independent set of size in
 The other ver8ces form a vertex cover

of size = in since every edge must incident with one of them

k′ G′

⇒
|V |− k′ k G = G′

VC INDEP-Set≤p
Maximum INDEP-SET (decision version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at least that forms an
independent set
• no otherwise

G = (V, E)
k

k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

 G
k

G′ = G
k′ = |V |− k

56

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

57

Feedback Vertex Set (FVS)
• Given a graph , a feedback vertex set is a subset of ver8ces such that

removing the ver8ces in leaves a graph without cycles

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U

58

Feedback Vertex Set (FVS)
• Given a graph , a feedback vertex set is a subset of ver8ces such that

removing the ver8ces in leaves a graph without cycles

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U

59

Feedback Vertex Set (FVS)
• Given a graph , a feedback vertex set is a subset of ver8ces such that

removing the ver8ces in leaves a graph without cycles

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U

60

Feedback Vertex Set (FVS)
• Given a graph , a feedback vertex set is a subset of ver8ces such that

removing the ver8ces in leaves a graph without cycles

• When a vertex is removed, all the edges incident to it are also removed

G = (V, E) U
U

61

Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph , what is the size of its minimum

feedback vertex set?
G = (V, E)

62

Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph , what is the size of its minimum

feedback vertex set?

• Decision version of Minimum-FVS problem:

• Given a graph , is there a feedback vertex set with size at most ?

G = (V, E)

G = (V, E) k

63

Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph , what is the size of its minimum

feedback vertex set?

• Decision version of Minimum-FVS problem:

• Given a graph , is there a feedback vertex set with size at most ?

G = (V, E)

G = (V, E) k

64

Feedback Vertex Set (FVS)
• Minimum-FVS: Given a graph , what is the size of its minimum

feedback vertex set?

• Decision version of Minimum-FVS problem:

• Given a graph , is there a feedback vertex set with size at most ?

• Theorem: FVS is NP-complete

G = (V, E)

G = (V, E) k

65

Feedback Vertex Set (FVS)
• VertexCover , There is a

vertex cover in with size at most
= {⟨G k⟩ |

G k}
• FVS , There is a feedback

vertex set in with size at most
= {⟨G′ k′ ⟩ |

G′ k′ }

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f

66

Feedback Vertex Set (FVS)
• VertexCover , There is a set

of at most ver8ces in such that
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS , There is a set of at
most ver8ces in such that
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f

67

Feedback Vertex Set (FVS)
• VertexCover , There is a set

of at most ver8ces in such that
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS , There is a set of at
most ver8ces in such that
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f

68

Feedback Vertex Set (FVS)
• VertexCover , There is a set

of at most ver8ces in such that
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS , There is a set of at
most ver8ces in such that
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′

}

FVS⟨G′ , k′ ⟩
Yes

No

Yes

No

⟨G, k⟩
VertexCover

f

69

Feedback Vertex Set (FVS)
• VertexCover , There is a set

of at most ver8ces in such that
removing them leaves no edges

= {⟨G k⟩ |
k G

}

• FVS , There is a set of at
most ver8ces in such that
removing them leaves no cycles

= {⟨G′ k′ ⟩ |
k′ G′

}

 ,

G′ = (V′ E′)
V′ = V ∪ VE
E′ = E ∪ EV,E

va,b

a

b

a

b

70

Feedback Vertex Set (FVS)

 ,

G′ = (V′ E′)
V′ = V ∪ VE
E′ = E ∪ EV,E

Ajer removing the size- vertex cover from :k G′

There is no edge between the remaining ver8cesV

The ver8ces have degree at most EV,E 1

The size- vertex coverk The size- vertex cover is a FVS of k G′

71

Feedback Vertex Set (FVS)
The size- FVS is a vertex cover of k G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

F′

ui
ui,j ui uj

ui uj ui,j

72

Feedback Vertex Set (FVS)
The size- FVS is a vertex cover of k G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

F′

ui
ui,j ui uj

ui uj ui,j

73

Feedback Vertex Set (FVS)
The size- FVS is a vertex cover of k G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

F′

ui
ui,j ui uj

ui uj ui,j

74

Feedback Vertex Set (FVS)
The size- FVS is a vertex cover of k G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

F′

ui
ui,j ui uj

ui uj ui,j

75

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

76

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

F′

ui
ui,j ui uj

ui uj ui,j

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

77

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

78

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

79

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

80

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

Ajer removing from , has no cycle
 Ajer removing from , has no edge

(Otherwise, there is a cycle in since no

is in)
 is a vertex cover with size at most in

F′ G′ G′

⇒ F′ G G
G′ ui,j

F′

⇒ F′ k G

81

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

Ajer removing from , has no cycle
 Ajer removing from , has no edge

Otherwise, there is a cycle in since no

is in)
 is a vertex cover with size at most in

F′ G′ G′

⇒ F′ G G
G′ ui,j

F′

⇒ F′ k G

82

Feedback Vertex Set (FVS)
 is a vertex cover of F′ G The size- FVS of k G′

Construct a set :
Keep all in the FVS
If some is in the FVS, replace it by or

If both are in the FVS, remove

 is a FVS with size at most

F′

ui
ui,j ui uj

ui uj ui,j

⇒ F′ k′

Ajer removing from , has no cycle
 Ajer removing from , has no edge

Otherwise, there is a cycle in since no

is in)
 is a vertex cover with size at most in

F′ G′ G′

⇒ F′ G G
G′ ui,j

F′

⇒ F′ k G

83

Feedback Vertex Set (FVS)
• FVS , There is a set of at most ver8ces in such that removing them

leaves no cycles

• Theorem: FVS is NP-complete

<proof> To prove that FVS is in NP, we use a size- feedback vertex set as the
cer8ficate. The verifier should check it is a proper subset of the ver8ces in , and
if is cycle-free ajer removing all edges incident to the ver8ces in . The later can
be done by running a breadth-first-search on the resul8ng graph. The checking 8me
is in polynomial of the size of .

= {⟨G k⟩ | k G
}

k U
U G

G U

G

84

Feedback Vertex Set (FVS)
To prove the NP-hardness, we show that VERTEX-COVER FVS. For any instance of

VERTEX-COVER, and , we construct an instance of FVS,
and as follows. For each vertex , there is a corresponding vertex .
More over, for each edge , there is a corresponding vertex .

For each edge , we construct three edges in : , , and

.

We set .

The construc8on takes constant 8me to each element in or and can be done in
polynomial-8me.

≤p

G = (V, E) k G′ = (V′ , E′)
k′ vi ∈ V ui ∈ V′

(vi, vj) ∈ E ui,j ∈ V′

(vi, vj) ∈ E E′ (ui, uj) (ui, ui,j)
(uj, ui,j)

k′ = k
V E

85

Feedback Vertex Set (FVS)
Now we prove that the reduc8on works. Suppose that there is a size- vertex cover

 of . First observe that there are two types of cycles in : 1) cycles containing no
 ver8ces, and 2) cycles containing at least one vertex.

Consider removing all ver8ces in from , there is no edge between any two
ver8ces in , and . Therefore, there are no type-1 cycles in the remaining graph.

Furthermore, because every vertex u_{i,j} only adjacent to and , the degree of

 is at most 1 ajer removing ver8ces in . Thus, there are no type-2 cycles lej.

Hence, is a size- feedback vertex set of , and is a yes-instance of FVS.

k
C G G′

ui,j ui,j

C V′

V′ ui uj

u′ i u′ j

ui,j C
C k G′ ⟨G′ , k′ ⟩

86

Feedback Vertex Set (FVS)
For the other direc8on, suppose that there is a size- feedback vertex set of . We
make a feedback vertex set of with size at most as follows. For all ver8ces in ,
we add them into . If there is a vertex in , we replace it by or , which was not in

, in . If both and are already in , we simply remove . Any cycle that only

contains ver8ces ’s is broken by since . Any cycle that contains
an vertex is broken by or . Therefore, is a feasible feedback vertex set with size

at most .

Now, we argue that the ver8ces in form a vertex cover in . Since there is no vertex

in , removing all ver8ces in leaves no edge between any pair of and . Otherwise,

there is a cycle , and it contradicts to the fact that is a feedback vertex set.

Thus, is a vertex cover in . That is, is a yes-instance of the VERTEX-COVER problem.

k′ F G′

F′ G′ k′ ui F
F′ ui,j F ui uj

F F′ ui uj F ui,j C
ui C ∪ F′ C ∪ F ⊆ C ∪ F′

uij ui uj F′

k′

F′ G ui,j

F′ F′ ui uj

(ui, uj, ui,j) F′

F′ G G
87

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

88

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

, ⟨G′ k⟩, ⟨G k⟩

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

89

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- feedback vertex set

⟨G′ k⟩
G′ k

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

90

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- feedback vertex set

⟨G′ k⟩
G′ k

There is a feedback vertex set
 with size at most and only
contains the ver8ces in

F′ k
G

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

91

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- feedback vertex set

⟨G′ k⟩
G′ k

There is a feedback vertex set
 with size at most and only
contains the ver8ces in

F′ k
G

 is a vertex cover in
with size at most (since …)

F′ G
k

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

92

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- feedback vertex set

⟨G′ k⟩
G′ k

There is a feedback vertex set
 with size at most and only
contains the ver8ces in

F′ k
G

 is a vertex cover in
with size at most (since …)

F′ G
k

Therefore, , is a yes-instance⟨G k⟩

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

93

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

94

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- vertex cover

⟨G k⟩
G k C

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

95

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

If , is a yes-instance
 has a size- vertex cover

⟨G k⟩
G k C

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

96

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

 is a feedback vertex set in (since…)
Therefore, , is a yes-instance

C G′

⟨G′ k⟩
If , is a yes-instance
 has a size- vertex cover

⟨G k⟩
G k C

<Proof Idea> Polynomial-8me reduc8on from 3SAT
• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• 3SAT is a sa8sfiable 3-CNF
Boolean formula

= {⟨ϕ⟩ | ϕ
}

97

• Theorem: CLIQUE = is NP-Hard{⟨G, k⟩ ∣ There is a clique in G with size at least k}

• CLIQUE has a clique of
size at least

= {⟨G, m⟩ | G
m}

 is a feedback vertex set in (since…)
Therefore, , is a yes-instance

C G′

⟨G′ k⟩
If , is a yes-instance
 has a size- vertex cover

⟨G k⟩
G k C

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

98

ILP
Integer linear programming

• Input:

• , with and

• Output:

• yes if there is an assignment of s such
that the objective value is at most and
constraints are satisfied

• no otherwise

Σicixi ≤ k A ⃗x ≥ ⃗b xi ∈ {0,1}

xi
k

Minimum Vertex Cover problem (decision
version)

• Input: a graph and a integer

• Output:
• yes if there is a subset of vertices with

cardinality at most that all edges are
covered by this subset of vertices
• no otherwise

G = (V, E) k

k

for all edge in ,
Σixi ≤ k

(u, v) E xu + xv ≥ 1

99

NP-complete Problems Map

CNF-SAT

3SAT

SUBSET-SUM CLIQUE

INDEP-SETPARTITION

BIN-PACKING WEIGHTED-VC

100

MACHINE-MIN FVS

KNAPSACK

VERTEX-COVER

SAT

ILP

Load Balancing

2WAY-Par88on
Domina8ng Set

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

101

Strong and Weak NP-complete

102

• KANPSACK problem: Give a set of items, each with an integer value and
integer weight . Also give integers and . Is there a subset of of weight no
more than with total value at least ?

• KNAPSACK is NP-complete

• Using dynamic programming, it can be solved in 8me.

•

•

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W(j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W(j + 1,w) = max{W(j, w), W(j, w − wj+1) + vj+1}

• KANPSACK problem: Give a set of items, each with an integer value and
integer weight . Also give integers and . Is there a subset of of weight no
more than with total value at least ?

• KNAPSACK is NP-complete

• Using dynamic programming, it can be solved in 8me.

•

•

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W(j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W(j + 1,w) = max{W(j, w), W(j, w − wj+1) + vj+1}

Strong and Weak NP-complete

103

value

weight

100 80 68 42 25

50 45 10 15 20

Weight capacity: 100

Strong and Weak NP-complete
• KANPSACK problem: Give a set of items, each with an integer value and

integer weight . Also give integers and . Is there a subset of of weight no
more than with total value at least ?

• KNAPSACK is NP-complete

• Using dynamic programming, it can be solved in 8me.

•

•

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W(j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W(j + 1,w) = max{W(j, w), W(j, w − wj+1) + vj+1}

104

Strong and Weak NP-complete
• KANPSACK problem: Give a set of items, each with an integer value and

integer weight . Also give integers and . Is there a subset of of weight no
more than with total value at least ?

• KNAPSACK is NP-complete

• Using dynamic programming, it can be solved in 8me.

•

•

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W(j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W(j + 1,w) = max{W(j, w), W(j, w − wj+1) + vj+1}

105

Strong and Weak NP-complete
• KANPSACK problem: Give a set of items, each with an integer value and

integer weight . Also give integers and . Is there a subset of of weight no
more than with total value at least ?

• KNAPSACK is NP-complete

• Using dynamic programming, it can be solved in 8me.

•

•

• Have we just shown that P = NP?

S vi
wi B V S

B V

O(nB)
W(j, w) := max{Σi∈Svi |S ⊆ {1,2,⋯, j}, Σi∈Swi ≤ w}
W(j + 1,w) = max{W(j, w), W(j, w − wj+1) + vj+1}

106

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: BinPacking

107

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: BinPacking

108

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: BinPacking

109

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: BinPacking

110

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: SAT, 3SAT, VertexCover, FVS, IS, CLIQUE, ILP, BinPacking…

111

Strong and Weak NP-complete
• Weak NP-complete (NP-complete in the ordinary sense):

• Problem is NP-complete if numbers are given in binary, but polynomial 8me
solvable when numbers are given in unary encoding.

• Algorithms are known which solve them in 8me bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

• The problem is solvable in pseudo-polynomial 8me

• Strong NP-complete (NP-complete in the strong sense):
• Problem is NP-complete if numbers are given in unary encoding
• Problem is NP-complete even when the numerical parameters are bounded by a

polynomial in the input size
• Ex: SAT, 3SAT, VertexCover, FVS, IS, CLIQUE, ILP, BinPacking…

112

Showing that a problem is strongly NP-hard

• You need to:

1. Reduce it from a strongly NP-complete problem, and

2. Ensure that the magnitudes of the numerical parameters generated during
the reduc8on are bounded by a polynomial of input size

113

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

114

The Class NP
• Defini8on: NP is the class of languages that are decidable in polynomial 8me on a

nondeterminis8c Turing machine.

• Defini8on: NP is the class of languages that are polynomial 8me verifiable.

115

The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial 8me

verifiable.

• Defini8on: A language is in co-NP if NP.

• : complement language of

• NOT-HAMILTONIAN

• UNSATISFIABLE

•

L L ∈

L L

= {⟨G⟩ |G has no Hamiltonian cycle}

= {⟨ϕ⟩ |All truth assignments make ϕ false}

P ⊆ NP ∩ co-NP

116

The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial

8me verifiable.

• Defini8on: A language is in co-NP if NP.

• : complement language of

• NOT-HAMILTONIAN

• UNSATISFIABLE

•

L L ∈

L L

= {⟨G⟩ |G has no Hamiltonian cycle}

= {⟨ϕ⟩ |All truth assignments make ϕ false}

P ⊆ NP ∩ co-NP

117

NP

The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial

8me verifiable.

• Defini8on: A language is in co-NP if NP.

• : complement language of

• NOT-HAMILTONIAN

• UNSATISFIABLE

•

L L ∈

L L

= {⟨G⟩ |G has no Hamiltonian cycle}

= {⟨ϕ⟩ |All truth assignments make ϕ false}

P ⊆ NP ∩ co-NP

118

NP

Co-NP

The Class co-NP
• Defini8on: co-NP is the class of languages that any no-instance are polynomial

8me verifiable.

• Defini8on: A language is in co-NP if NP.

• : complement language of

• NOT-HAMILTONIAN

• UNSATISFIABLE

•

L L ∈

L L

= {⟨G⟩ |G has no Hamiltonian cycle}

= {⟨ϕ⟩ |All truth assignments make ϕ false}

P ⊆ NP ∩ co-NP

119

NP

Co-NP

P

A more natural example for NP and coNP

• INTEGER_FACTORISATION is in NP
and co-NP:

• In NP: A cer8ficate is two numbers and where is a prime* such that

• In co-NP: A cer8ficate is the prime factoriza8on of

• Is INTETER_FACTORISATION in P? For cryptography sake we hope not!

* Prime-tes8ng is in P [M Agrawal, N Kayal, N Saxena, 2004]

= {⟨n, k⟩ |n has a prime factor less than k}

c p < k p
cp = n

n

120

Outline
• More NP-Hardness proofs

• 3SAT VERTEX-COVER

• VERTEX-COVER INDEPENDENT SET

• VERTEX-COVER FEEDBACK-VERTEX-SET

• VERTEX-COVER Integer Linear Program

• Pseudo-polynomial 8me algorithms

• NP and Co-NP

• Turing undecidable languages

≤p

≤p

≤p

≤p

121

Turing machine and Decidability
• The class P is the class of languages that are accepted or rejected in polynomial

8me by a determinis8c Turing machine

• The class NP is the class of languages that can be verified in polynomial 8me by a
determinis8c Turing machine.

122

accept

reject

Running Jme
 f(n) = poly(n)

accept/reject

0 11 1 1 10 # 00 1…

Input length n

…

Turing-Decidable Language

123

accept

rejectaccept/reject

• Turing machine may not halt and enter a loop

Turing-Decidable Language
• A language is (Turing-)decidable if some Turing machine decides it

• The Turing machine accepts all strings in and rejects all strings not in

L

L L

124

Turing-Decidable Language
• A language is (Turing-)decidable if some Turing machine decides it

• The Turing machine accepts all strings in and rejects all strings not in

• Ex: = prime number

L

L L

L { }

125

All natural numbers that > 1

: all prime numbersL

1129

1457

1456

Accept any w ∈ L Reject any w ∉ L

Turing-Decidable Language
• A language is (Turing-)decidable if some Turing machine decides it

• The Turing machine accepts all strings in and rejects all strings not in

• All the problems in NP are decidable

L

L L

126

All natural numbers that > 1

: all prime numbersL

1129

1457

1456

Decidable

NPP

Accept any w ∈ L Reject any w ∉ L

Undecidable Language
• A language is undecidable if

for all Turing machine ,
there exists such that does not accept or there exists such that

 does not reject

L
M

w ∈ L M w w ∉ L
M w

127

All stringsL

Some make the
Turing machine into a loop

w ∈ L Some make the
Turing machine into a loop

w ∉ L

Undecidable Languages
• is a Turing machine and accepts input string

• Hal8ng problem:
 is a Turing machine and accepts or rejects input string

• Hilbert’s 10 problem:
 is a polynomial with an integral root

• Post correspondence problem (PCP):
Given a collec8on of dominos, each containing two strings, one on each side. A
match is a list of these dominos (repe88on permixed) such that the string on the
top is the same as the string on the boxom.

ATM = {⟨M, w⟩ ∣ M M w}

HALTTM = {⟨M, w⟩ ∣ M M
w}

th

H = {⟨p⟩ ∣ p }

D

128

Undecidable Languages
• is a Turing machine and accepts input string

• Hal8ng problem:
 is a Turing machine and accepts or rejects input string

• Hilbert’s 10 problem:
 is a polynomial with an integral root

• Post correspondence problem (PCP):
Given a collec8on of dominos, each containing two strings, one on each side. A
match is a list of these dominos (repe88on permixed) such that the string on the
top is the same as the string on the boxom.

ATM = {⟨M, w⟩ ∣ M M w}

HALTTM = {⟨M, w⟩ ∣ M M
w}

th

H = {⟨p⟩ ∣ p }

D

129

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

130

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

131

Decider

ATM accept (accepts)M w

reject (rejects)M w
(M, w)

H<Pf> Assume on the contrary that is decidable
 there is a Turing machine that can decide

Design a Turing machine :
On input , where is a Turing machine

1. Run on input
2. If accepts, reject and if rejects, accept

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

132

<Pf> Assume on the contrary that is decidable
 there is a Turing machine that can decide

Design a Turing machine :
On input , where is a Turing machine

1. Run on input
2. If accepts, reject and if rejects, accept

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H

H
accept (accepts)M ⟨M⟩

reject (rejects)M ⟨M⟩
⟨M, ⟨M⟩⟩⟨M⟩

reject

accept

Decider

ATM accept (accepts)M w

reject (rejects)M w
⟨M, w⟩

H

D

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

133

<Pf> Assume on the contrary that is decidable
 there is a Turing machine that can decide

Design a Turing machine :
On input , where is a Turing machine

1. Run on input
2. If accepts, reject and if rejects, accept

Run on :

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H

D ⟨D⟩

H
accept (accepts)M ⟨M⟩

reject (rejects)M ⟨M⟩
⟨M, ⟨M⟩⟩⟨M⟩

reject

accept

Decider

ATM accept (accepts)M w

reject (rejects)M w
⟨M, w⟩

H

H
accept (accepts)D ⟨D⟩

reject (rejects)D ⟨D⟩
⟨D, ⟨D⟩⟩⟨D⟩ reject (rejects)D ⟨D⟩

accept (accepts)D ⟨D⟩

D

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

134

<Pf> Assume on the contrary that is decidable
 there is a Turing machine that can decide

Design a Turing machine :
On input , where is a Turing machine

1. Run on input
2. If accepts, reject and if rejects, accept

Run on :

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H

D ⟨D⟩

H
accept (accepts)M ⟨M⟩

reject (rejects)M ⟨M⟩
⟨M, ⟨M⟩⟩⟨M⟩

reject

accept

Decider

ATM accept (accepts)M w

reject (rejects)M w
⟨M, w⟩

H

H
accept (accepts)D ⟨D⟩

reject (rejects)D ⟨D⟩
⟨D, ⟨D⟩⟩⟨D⟩ reject (rejects)D ⟨D⟩

accept (accepts)D ⟨D⟩

D

 is undecidableATM
• is a Turing machine and accepts input string ATM = {⟨M, w⟩ ∣ M M w}

135

H
accept (accepts)M ⟨M⟩

reject (rejects)M ⟨M⟩
⟨M, ⟨M⟩⟩⟨M⟩

reject

accept

Decider

ATM accept (accepts)M w

reject (rejects)M w
⟨M, w⟩

H

D

H
accept (accepts)D ⟨D⟩

reject (rejects)D ⟨D⟩
⟨D, ⟨D⟩⟩⟨D⟩ reject (rejects)D ⟨D⟩

accept (accepts)D ⟨D⟩

<Pf> Assume on the contrary that is decidable
 there is a Turing machine that can decide

Design a Turing machine :
On input , where is a Turing machine

1. Run on input
2. If accepts, reject and if rejects, accept

Run on :

ATM
⇒ H ATM

D
⟨M⟩ M

H ⟨M, ⟨M⟩⟩
H H

D ⟨D⟩

Undecidable Languages
• is a Turing machine and accepts input string

• Hal8ng problem:
 is a Turing machine and accepts or rejects input string

• Hilbert’s 10 problem:
 is a polynomial with an integral root

• Post correspondence problem (PCP):
Given a collec8on of dominos, each containing two strings, one on each side. A
match is a list of these dominos (repe88on permixed) such that the string on the
top is the same as the string on the boxom.

ATM = {⟨M, w⟩ ∣ M M w}

HALTTM = {⟨M, w⟩ ∣ M M
w}

th

H = {⟨p⟩ ∣ p }

D

136

 is undecidableHALTTM
• is a Turing machine and halts on input string HALTTM = {⟨M, w⟩ ∣ M M w}

137

<Pf> Assume on the contrary that is
decidable there is a Turing machine that
decides

Design a Turing machine that decides :
On input , where is a Turing machine

1. Run on input
2. If rejects, reject
3. If accepts, simulate on un8l it halts
4. If accepts , accept. If rejects , reject

 (is undecidable)

HALTTM
⇒ R

HALTTM

S ATM
⟨M, w⟩ M

R ⟨M, w⟩
R
R M w
M w M w

→ ← ATM

R
accept (halts on)M w

reject (does not halt on)M w
⟨M, w⟩

Simulate on M w

reject

Decider
HALTTM

accept (halts on)M w

reject (does not halt
on)

M
w

⟨M, w⟩

R

S

M⟨w⟩
accept (accepts)M w

reject (rejects)M w

accept

reject

Hal8ng problem is undecidable
• Proof by reduc8on!

• If and is decidable, then is decidable

• The reduc8on doesn’t need to be polynomial 8me

A ≤ B B A

≤

Undecidable Languages
• is a Turing machine and accepts input string

• Hal8ng problem:
 is a Turing machine and accepts or rejects input string

• Hilbert’s 10 problem:
 is a polynomial with an integral root

• Post correspondence problem (PCP):
Given a collec8on of dominos, each containing two strings, one on each side. A
match is a list of these dominos (repe88on permixed) such that the string on the
top is the same as the string on the boxom.

ATM = {⟨M, w⟩ ∣ M M w}

HALTTM = {⟨M, w⟩ ∣ M M
w}

th

H = {⟨p⟩ ∣ p }

D

139

It’s obvious
— by Abstruse Goose

140

