A Domino Game

® Consider these dominos, can you find a permutation of them, so the text on the
upper part is exactly the same as the text on the lower part?
(You can use one domino more than once, but not put them upside down.)

VX Xy Xy *

VX VX XV

XYYXYXXY

® Example:
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Algorithms for Decision Support

NP-Completeness (3/3)

Optimization problems



Polynomial-Time Reduce

® Problem A with input w

® Returnyesifw &

e Return no if w &

1. Show that there is a function

that transforms every w to w’

in polynomial time

Polynomial-time function

3.

® Problem with input
® Returnyesif €&

e Returnnoif €&

Show that for any 3.

ves-instance w € A,
the corresponding instance

Is also a yes-instance of

o

Show that for any

yes-instance &
the corresponding instance

W is also a yes-instance of

Show that for any

no-instance &
the corresponding instance

w is also a no-instance of



Instance Transformation

® Desigh a method to transform any instance w of A into an instance  of

® The transformation should be done in polynomial time

: : 2. Show that for any
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that transforms every w to w’
in polynomial time

4

the corresponding instance
W is also a yes-instance of

W
o - 3. Show that for any 3. Show that for any
Polynomial-time function yes-instance w € A, no-instance &
the corresponding instance the corresponding instance

4 Is also a yes-instance of w is also a no-instance of



Show that the reduction works

e Thatis, wis a yes-instance of A if and only if is a yes-instance to

e So we can rely on the yes/no answerof € todecideifw &

: : 2. Show that for any
1. Show that there is a function yes-instance &

that transforms every w to w’
in polynomial time
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Show that the reduction works

e Thatis, wis a yes-instance of A if and only if is a yes-instance to

e So we can rely on the yes/no answerof € todecideifw &

® Argue that:

e |f wis ayes-instance of 4, there is a solution 5, to w
e Using 5, , we can construct a solution  to

® Argue by how we construct

m



Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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Vertex Cover

e Given a graph G = (V, E), a vertex cover is a subset U of vertices such that for
every edge (u,v), |[{u,vinNnU| > 1

® That is, every edge is covered by at least one of its endpoints

e Removing all vertices in U leaves no edge

® \When a vertex is removed, all the edges incident to it are also removed

2%
\/ N\
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Vertex Cover

e Minimum vertex cover problem: Given a graph G, what is the size of the
minimum vertex cover in G?

e Decision version: Given a graph G, is there a vertex cover of size at most kin G?

e An instance of VERTEX-COVER is ({G), k)

\

New parameter!

o \VERTEX-COVER is NP-complete
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3SAT Sp VERTEX-COVER



3SAT Sp VERTEX-COVER

e 3SAT = {(¢) | @ is a satisfiable 3cnf-formula}

e VERTEX-COVER = {(G, k) | graph G has a vertex cover of size at most k}

17



3SAT Sp VERTEX-COVER

e Construction:
e For each variable x;, there are
two vertices v; and v; forming

an edge in G
e Foreachclause (/,1,!.),
there is a triangle in G

e Foreachclause ([, /[,,1.),
there are three edges from
l,l, and [.to the
corresponding variable vertex

® [ =7 .number of clauses + number of vertices
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3SAT Sp VERTEX-COVER

e Construction:
e For each variable x;, thereare ¢ ={(x;VX;VX)AGX VL VX)AGX VI VE) AKX VYV )
two vertices v; and v; forming
an edge in G
- Vo = Vs V3 = V3

e Foreach clause ([ ,1[,,1)),

there is a triangle in G

e Foreachclause (I ,1[,,1.), 5 (5 5 5
there are three edges from ; e ;
l,l, and [.to the @ @ @@ @ @ @ @

corresponding variable vertex

® [ =7 .number of clauses + number of vertices
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3SAT Sp VERTEX-COVER

D=1 VX VX)AX VELVX) AKX VHLVI)AX VIV

Vi =" v, =V V3 ™= V3
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3SAT Sp VERTEX-COVER

D=1 VX VX)AX VELVX) AKX VHLVI)AX VIV

O OO



3SAT < VERTEX-COVER

® ¢ is satisfiable = there is a truth assignment
that makes ¢ TRUE

® Pick the variable vertices corresponding to
the true literals

T T T T
G ={( VX V) AT VHRVI) ARV XV AN VIV X)

® Since the truth assignment is valid,
every variable-variable edge is -
covered, and each clause has at least Vi

onhe is covered

® Pick the vertices in each clause that
incident to the

® There are at most two these vertices in
each classes. They cover the clause
edges

® There are at most £+2k picked vertices
and they form a vertex cover
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3SAT < VERTEX-COVER

e ( has a vertex cover C of cardinality 2k + £

= ¢ is satisfiable I ' ' I

=1 VXVIO)OAXVIHOVR)AXVHLVHL)AMX VS, VX
® Since each triangle needs two vertices to ¢ = I I 2) ( 1 2 3) ( 1 2 2) ( 1 2 3)

cover it, each clause has at least two
vertices picked ( > 2k)

® They can only cover at most two

® Since the variable-variable edges need to
be covered, at least one vertex in each

pair of v;and v;isin C( > ¢)

® These vertices cover the
that are not yet covered

® Pick the corresponding literals to be
true, the covered
implies that every clause is true
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® These vertices cover the
that are not yet covered

® Pick the corresponding literals to be
true, the covered
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3SAT Sp VERTEX-COVER

® For each , its end points refer to the same literal
® For each clause, there can be at most 2 covered by clause
vertices = at least 1 covered by a < there

must be a true literal in this clause

O () () (
o 0ol O~0ol 050 ©-0



Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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Maximum Independent Set



Maximum Independent Set

e« Maximum INDEP-SET problem: Given a graph ¢=.5), we want to find a
subset of v with maximum cardinality which forms an independent set
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Maximum Independent Set

e« Maximum INDEP-SET problem: Given a graph ¢=.5), we want to find a
subset of v with maximum cardinality which forms an independent set

=

Maximum independent set
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Maximum Independent Set is NP-hard




Maximum Independent Set is NP-hard

| The answer to B(y) is yes The answer to A(x) is yes
: Solver
An input of A: x _ ' y

f(X) for B The answer to B(y) is No The answer to A(x) is No

34



Maximum Independent Set is NP-hard

1S There is an independent set in G’ with size < k
(G, k)
Solver There is no independent set in G" with size < k

35



Maximum Independent Set is NP-hard

IS There is an IS in G' with size < k Thereisa k-VCin G
(G, k) (G, k")

Solver There is no IS in G’ with size < k There is NO k-VCin G

36



Maximum Independent Set is NP-hard




VC Sp INDEP-Set

Observation: In graph G, for any of its vertex cover C, any pair of the
vertices in V\ C are not adjacent.

33



VC Sp INDEP-Set

Observation: In graph G, for any of its vertex cover C, any pair of the
vertices in V\ C are not adjacent.

C V
Vertex cover of size k’ @
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VC Sp INDEP-Set

Observation: In graph G, for any of its vertex cover C, any pair of the
vertices in V\ C are not adjacent.

|
Vertex cover of size k’ §“
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VC Sp INDEP-Set

Observation: In graph G, for any of its vertex cover C, any pair of the
vertices in V'\ Care not adjacent.

Vertex cover of size k' Independent set of size |V|—k’
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VC Sp INDEP-Set

Vertex cover of size k' Independent set of size |V|—k’
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VC Sp INDEP-Set
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is a vertex cover of size kin G
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is a vertex cover of size kin G
= The other vertices
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is a vertex cover of size kin G
= The other vertices

there is no edge between them
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is a vertex cover of size kin G
= The other vertices form an independent set

of size | V| — k=Kk"in G'= G since there is no edge between them
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VC Sp INDEP-Set

G/——T)G'
k' = \V\

If there is a vertex cover of size kin G
= The other vertices form an independent set

of size | V| — k=Kk"in G'= G since there is no edge between them
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51



VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is an independent set of size £'in ('
= The other vertices
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is an independent set of size £'in ('
= The other vertices

every edge must incident with one of them
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VC Sp INDEP-Set

G G'=G
k K= |V|—k

If there is an independent set of size £'in ('
= The other vertices form a vertex cover

of size | V|— k’"=kin G = (G'since every edge must incident with one of them
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VC Sp INDEP-Set

G /———\G'

k'= V|-

If there is an independent set of size £'in ('
= The other vertices form a vertex cover

of size | V|— k’"=kin G = (G'since every edge must incident with one of them
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Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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Feedback Vertex Set (FVS)

e Given agraph G = (V, E), a feedback vertex set is a subset U of vertices such that
removing the vertices in U leaves a graph without cycles
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Feedback Vertex Set (FVS)

e Given agraph G = (V, E), a feedback vertex set is a subset U of vertices such that
removing the vertices in U leaves a graph without cycles

® \When a vertex is removed, all the edges incident to it are also removed
—
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Feedback Vertex Set (FVS)

e Given agraph G = (V, E), a feedback vertex set is a subset U of vertices such that
removing the vertices in U leaves a graph without cycles

® \When a vertex is removed, all the edges incident to it are also removed

S N
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Feedback Vertex Set (FVS)

e Given agraph G = (V, E), a feedback vertex set is a subset U of vertices such that
removing the vertices in U leaves a graph without cycles

® \When a vertex is removed, all the edges incident to it are also removed

~_|

o1



Feedback Vertex Set (FVS)

e Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum
feedback vertex set?

/T
<\

—
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Feedback Vertex Set (FVS)

e Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum
feedback vertex set?

N
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Feedback Vertex Set (FVS)

e Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum
feedback vertex set?

e Decision version of Minimum-FVS problem:

e Givenagraph G =(V, E), is there a feedback vertex set with size at most k?

& \
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Feedback Vertex Set (FVS)

e Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum
feedback vertex set?

e Decision version of Minimum-FVS problem:

e Givenagraph G =(V, E), is there a feedback vertex set with size at most k?

e Theorem: FVS is NP-complete
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Feedback Vertex Set (FVS)

o \ertexCover = {(G, k) | Thereis a . = {(G', k') | There is a feedback
vertex cover in G with size at most &} vertex set in G’ with size at most £’}
VertexCover ves
(G, k) f —» (G k'Y)—> Fus -

No

006



Feedback Vertex Set (FVS)

o \ertexCover = {(G, k) | Thereisaset e = {(G', k') | There is a set of at

of at most k vertices in G such that most k' vertices in (' such that
removing them leaves no edges} removing them leaves no cycles}

VertexCover Yes

(G, k) f — (G k')—> Fvus

v

No
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Feedback Vertex Set (FVS)

o \ertexCover = {(G, k) | Thereisaset e = {(G', k') | There is a set of at
of at most & vertices in G such that most k' vertices in G’ such that
removing them leaves no edges} removing them leaves no cycles}

VertexCover
/

f — (G, k')—> Fvs




Feedback Vertex Set (FVS)

o \ertexCover = {(G, k) | Thereisaset e = {(G', k') | There is a set of at
of at most & vertices in G such that most k' vertices in G’ such that
removing them leaves no edges} removing them leaves no cycles}

VertexCover

f — (G, k')—> Fvs




Feedback Vertex Set (FVS)

o \ertexCover = {(G, k) | Thereisaset e = {(G', k') | There is a set of at
of at most & vertices in G such that most k' vertices in G such that
removing them leaves no edges} removing them leaves no cycles}

7

a/b\ a G’—(V’E3
0 Y By
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Feedback Vertex Set (FVS)

After removing the size-k vertex cover from G

O . . .
e There is no edge between the remaining V vertices

The vertices have degree at most 1

@
The size-k vertex cover * The size-k vertex cover is a FVS of GG’

\

®
G =(V,E
/\ ® V=Vu
E'=FEU
/

71



Feedback Vertex Set (FVS)

The size-k FVS is a vertex cover of G * The size-k FVS of G’

Construct a set /"
Keep all i, in the FVS

If some is in the FVS, replace it by u; or U;

If both 1; are in u; the FVS, remove




Feedback Vertex Set (FVS)

The size-k FVS is a vertex cover of G * The size-k FVS of G’

Construct a set /"
Keep all i, in the FVS

If some is in the FVS, replace it by u; or U;

If both 1; are in u; the FVS, remove

Ny

/ T



Feedback Vertex Set (FVS)
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Feedback Vertex Set (FVS)

The size-k FVS is a vertex cover of G * The size-k FVS of G’

Construct a set /"
Keep all i, in the FVS

If some is in the FVS, replace it by u; or U;

If both 1; are in u; the FVS, remove

RS ZINSN\Y
D 'lx\/f/\:\/}kf
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Feedback Vertex Set (FVS)
* The size-k FVS of G’

Construct a set /"
Keep all i, in the FVS

If some is in the FVS, replace it by u; or U;

F"is a vertex cover of (&

If both 1; are in u; the FVS, remove

~ 7 <T_\\ \
D | { X\\DX“



Feedback Vertex Set (FVS)
* The size-k FVS of G’ /\
\./

Construct a set /"
Keep all u; in the FVS

If some is in the FVS, replace it by u; or U;

F"is a vertex cover of (&

If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’

)

’r’



Feedback Vertex Set (FVS)
* The size-k FVS of G’ °

Construct a set /" ®
Keep all u; in the FVS

If some is in the FVS, replace it by u; or U;

F"is a vertex cover of (&

If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’

)

/3



Feedback Vertex Set (FVS)
* The size-k FVS of G’ (

Construct a set [ @ -
Keep all u; in the FVS

If some is in the FVS, replace it by u; or U;

F"is a vertex cover of (&

If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’

)
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Feedback Vertex Set (FVS)
* The size-k FVS of G’ (

Construct a set /" ®
Keep all u; in the FVS

If some is in the FVS, replace it by u; or U;

F"is a vertex cover of (&

If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’

)
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Feedback Vertex Set (FVS)
* The size-k FVS of G’ (

After removing I" from GG, G’ has no cycle Construct a set /" ®
= After removing I’ from G, G has no edge Keep all i; in the FVS

F"is a vertex cover of (&

If some is in the FVS, replace it by u; or U;
If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’

N

I\

I
NG

//\s
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Feedback Vertex Set (FVS)
* The size-k FVS of G’ (

F"is a vertex cover of (&

After removing /' from GG, G"has no cycle Construct a set /" ®

= After removing F’ from G, G has no edge Keep all i; in the FVS

Otherwise, there is a cycle in G’ since no If some is in the FVS, replace it by u; or Uj
isin /) If both u; are in u; the FVS, remove

= ["is a FVS with size at most k’
\f NN
NG

//\s
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Feedback Vertex Set (FVS)
* The size-k FVS of G’ (

F"is a vertex cover of (&

After removing I’ from G’, G"has no cycle Construct a set /" ®
= After removing I’ from G, G has no edge Keep all i; in the FVS
Otherwise, there is a cycle in G'since no If some 17, is in the FVS, replace it by u; or u;
isin /) If both u; are in u; the FVS, remove
= [’ is a vertex cover with size at most kin G = [is a FVS with size at most k’
—

< \\ .
\ \\\/,\ \

= /

§
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Feedback Vertex Set (FVS)

e FVS = {(G, k) | There is a set of at most k vertices in G such that removing them
leaves no cycles }

® Theorem: FVS is NP-complete

<proof> To prove that FVS is in NP, we use a size-k feedback vertex set U as the
certificate. The verifier should check U it is a proper subset of the vertices in GG, and

if G is cycle-free after removing all edges incident to the vertices in U. The later can
be done by running a breadth-first-search on the resulting graph. The checking time
is in polynomial of the size of G.
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Feedback Vertex Set (FVS)

To prove the NP-hardness, we show that VERTEX-COVER Sp FVS. For any instance of

VERTEX-COVER, G = (V, E) and k, we construct an instance of FVS, G' = (V', E")
and k" as follows. For each vertex v; € V, there is a corresponding vertex u; € V'.

More over, for each edge (v, vj) € E, there is a corresponding vertex i; ; € V.
For each edge (v;, vj) € E, we construct three edges in £ (u,, uj), (u;, ui,j), and
(uja ui,j)'

We set k' = k.

The construction takes constant time to each element in V or £ and can be done in
polynomial-time.
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Feedback Vertex Set (FVS)

Now we prove that the reduction works. Suppose that there is a size-k vertex cover

C of G. First observe that there are two types of cycles in G": 1) cycles containing no

u; ; vertices, and 2) cycles containing at least one u; ; vertex.

Consider removing all vertices in C from V’/, there is no edge between any two
vertices in V', u; and U;. Therefore, there are no type-1 cycles in the remaining graph.

Furthermore, because every vertex u_{i,j} only adjacent to i and u]f, the degree of

U; ;is at most 1 after removing vertices in C. Thus, there are no type-2 cycles left.

Hence, C'is a size-k feedback vertex set of G/, and (G’, k') is a yes-instance of FVS.
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Feedback Vertex Set (FVS)

For the other direction, suppose that there is a size-k’ feedback vertex set F' of G'. We
make a feedback vertex set /'’ of G" with size at most k" as follows. For all vertices u; in F),

we add them into F’. If there is a vertex U; ; in F, we replace it by u; or U, which was not in

F,in F'. If both u; and u; are already in F, we simply remove u; ;. Any cycle C that only

contains vertices u;’s is broken by C U F"since CU F C C U F". Any cycle that contains

an u;; vertex is broken by u; or u;. Therefore, [ is a feasible feedback vertex set with size

at most k'

Now, we argue that the vertices in F’ form a vertex cover in G. Since there is no vertex U; ;

in I, removing all vertices in /"’ leaves no edge between any pair of u#; and U;. Otherwise,
there is a cycle (u;, u;, u; ;), and it contradicts to the fact that F"is a feedback vertex set.

Thus, F'is a vertex cover in G. That is, G is a yes-instance of the VERTEX-COVER probler-
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(w)

1. Show that there is a function

that transforms every w to w’
in polynomial time

Show that for any

yes-instance w’ € B,
the corresponding instance

w is also a yes-instance of /

Show that for any
no-instance w' & B,

the corresponding instance
w is also a no-instance of A
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the corresponding instance
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. . Show that for any
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in polynomial time w is also a no-instance of A

a feedback vertex set
F’ with size at most k£ and only
contains the vertices in
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Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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ILP

2x; < k
for all edge (u,v)inE, x, + x, > 1

99



NP-complete Problems Map

v

— | T~
/

- ~\



Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
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e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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Strong and Weak NP-complete

e KANPSACK problem: Give a set § of items, each with an integer value v; and
integer weight w.. Also give integers B and V. Is there a subset of § of weight no
more than B with total value at least V?
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Strong and Weak NP-complete

e KANPSACK problem: Give a set § of items, each with an integer value v; and
integer weight w.. Also give integers B and V. Is there a subset of § of weight no
more than B with total value at least V?

=0 & 60 ()

| T
value 100 80 68 42 25
weight 50 45 10 15 20

Weight capacity: 100
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Strong and Weak NP-complete

KANPSACK problem: Give a set S of items, each with an integer value v, and
integer weight w.. Also give integers B and V. Is there a subset of § of weight no
more than B with total value at least V?

KNAPSACK is NP-complete
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Strong and Weak NP-complete

e KANPSACK problem: Give a set § of items, each with an integer value v; and

integer weight w.. Also give integers B and V. Is there a subset of § of weight no
more than B with total value at least V?

o KNAPSACK is NP-complete

e Using dynamic programming, it can be solved in O(nB) time.
o W(j,w) :=max(2,.v;|S C {1,2,---,j}, 2Z;cw; < w}
o W(j+ 1w)=max{W(j,w), W(j,w—w;, )+ V]
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Strong and Weak NP-complete

KANPSACK problem: Give a set S of items, each with an integer value v, and
integer weight w.. Also give integers B and V. Is there a subset of § of weight no
more than B with total value at least V?

KNAPSACK is NP-complete

Using dynamic programming, it can be solved in O(nB) time.
o W(j,w) :=max(2,.v;|S C {1,2,---,j}, 2Z;cw; < w}
o W(j+ 1w)=max{W(j,w), W(j,w—w;, )+ V]

Have we just shown that P = NP?
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Strong and Weak NP-complete

e Weak NP-complete (NP-complete in the ordinary sense):



Strong and Weak NP-complete

e Weak NP-complete (NP-complete in the ordinary sense):

® Problem is NP-complete if numbers are given in binary, but polynomial time
solvable when numbers are given in unary encoding.
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e Weak NP-complete (NP-complete in the ordinary sense):

® Problem is NP-complete if numbers are given in binary, but polynomial time
solvable when numbers are given in unary encoding.

e Algorithms are known which solve them in time bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.
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Strong and Weak NP-complete

e Weak NP-complete (NP-complete in the ordinary sense):

® Problem is NP-complete if numbers are given in binary, but polynomial time
solvable when numbers are given in unary encoding.

e Algorithms are known which solve them in time bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

® The problem is solvable in pseudo-polynomial time

e Strong NP-complete (NP-complete in the strong sense):
® Problem is NP-complete if numbers are given in unary encoding

® Problem is NP-complete even when the numerical parameters are bounded by a
polynomial in the input size
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Strong and Weak NP-complete

e Weak NP-complete (NP-complete in the ordinary sense):

® Problem is NP-complete if numbers are given in binary, but polynomial time
solvable when numbers are given in unary encoding.

e Algorithms are known which solve them in time bounded by a polynomial in the
numeric value of the input instead of in the length of the input length.

® The problem is solvable in pseudo-polynomial time

e Strong NP-complete (NP-complete in the strong sense):
® Problem is NP-complete if numbers are given in unary encoding

® Problem is NP-complete even when the numerical parameters are bounded by a
polynomial in the input size

e Ex: SAT, 3SAT, VertexCover, FVS, IS, CLIQUE, ILP, BinPacking...
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Showing that a problem is strongly NP-hard

® You need to:
1. Reduce it from a strongly NP-complete problem, and

2. Ensure that the magnitudes of the numerical parameters generated during
the reduction are bounded by a polynomial of input size
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Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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The Class NP

® Definition: NP is the class of languages that are decidable in polynomial time on a
nondeterministic Turing machine.

® Definition: NP is the class of languages that are polynomial time verifiable.
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The Class co-NP

® Definition: co-NP is the class of languages that any no-instance are polynomial time
verifiable.
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The Class co-NP

® Definition: co-NP is the class of languages that any no-instance are polynomial
time verifiable.

e Definition: A language L is in co-NP if L € NP.

e [:complement language of L

¢ NOT-HAMILTONIAN = {(G) | G has no Hamiltonian cycle}

e UNSATISFIABLE = {(¢) | All truth assignments make ¢ false}
e P C NPNco-NP
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The Class co-NP

® Definition: co-NP is the class of languages that any no-instance are polynomial
time verifiable.

e Definition: A language L is in co-NP if L € NP.

e [:complement language of L

¢ NOT-HAMILTONIAN = {(G) | G has no Hamiltonian cycle}

e UNSATISFIABLE = {{¢) | All truth assignments make ¢ false}
e P C NPNco-NP
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A more natural example for NP and coNP

e INTEGER_FACTORISATION = {(n, k) | n has a prime factor less than k} is in NP
and co-NP:

e In NP: A certificate is two numbers ¢ and p < k where p is a prime™* such that
cp=n

® |n co-NP: A certificate is the prime factorization of n

® |SINTETER FACTORISATION in P? For cryptography sake we hope not!
* Prime-testing is in P [M Agrawal, N Kayal, N Saxena, 2004}

120



Outline

More NP-Hardness proofs

o 35AT Sp VERTEX-COVER
e VERTEX-COVER Sp INDEPENDENT SET
e VERTEX-COVER Sp FEEDBACK-VERTEX-SET

e VERTEX-COVER Sp Integer Linear Program

Pseudo-polynomial time algorithms
NP and Co-NP

Turing undecidable languages
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SERAANANENANANENEEEN Running time

Turing machine and Decidability

® The class P is the class of languages that are accepted or rejected in polynomial
time by a deterministic Turing machine

® The class NP is the class of languages that can be verified in polynomial time by a
deterministic Turing machine.
Input length n z

-——p ¢

f(n) = poly(n)

accept/reject *
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Turing-Decidable Language

® Turing machine may not halt and enter a loop @




Turing-Decidable Language

e Alanguage L is (Turing-)decidable if some Turing machine decides it

® The Turing machine accepts all strings in L and rejects all strings not in L
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Turing-Decidable Language

e Alanguage L is (Turing-)decidable if some Turing machine decides it
® The Turing machine accepts all strings in L and rejects all strings not in L

e Ex: /.= {prime number
{p } All natural numbers that > 1

L: all prime numbers

1456 e

Acceptany w € L Rejectany w & L
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Turing-Decidable Language

e Alanguage L is (Turing-)decidable if some Turing machine decides it

® The Turing machine accepts all strings in L and rejects all strings not in L

e All the problems in NP are decidable
All natural numbers that > 1

L: all prime numbers

1456 e

Acceptany w € L Rejectany w & L

Decidable
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Undecidable Language

e A language L is undecidable if
for all Turing machine M,

there exists w € L such that M does not accept w or there exists w & L such that

M does not reject w

b4

All strings

Some w & L make the
Turing machine into a loop

Some w € L make the
Turing machine into a loop

-
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Undecidable Languages

o Arm = {{(M,w) | Mis a Turing machine and M accepts input string w'}

® Halting problem:
HALTT\M = {{(M,w) | M is a Turing machine and M accepts or rejects input string

W)
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Undecidable Languages

o Arm = {{(M,w) | Mis a Turing machine and M accepts input string w'}
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}

<Pf> Assume on the contrary that ATpg is decidable
accept

= there is a Turing machine // that can decide AT — ATM
Decider §>reject
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}

<Pf> Assume on the contrary that ATpg is decidable
accept

= there is a Turing machine /7 that can decide AT —_ ATM

Decider reject

Design a Turing machine D:
On input (M), where M is a Turing machine

1.Run H on input (M, (M) )
2.1f H accepts, reject and if H rejects, accept

reject

accept
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}

<Pf> Assume on the contrary that ATpg is decidable
= there is a Turing machine /7 that can decide AT

ATV accept
Decider |~ > reject

—>

Design a Turing machine D:
On input (M), where M is a Turing machine

1.Run H on input (M, (M) )
2.1f H accepts, reject and if H rejects, accept

reject

accept

Run D on (D):

reject
accept
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}

<Pf> Assume on the contrary that ATpg is decidable
= there is a Turing machine /7 that can decide AT

ATV accept
Decider |~ > reject

—>

Design a Turing machine D:
On input (M), where M is a Turing machine

1.Run H on input (M, (M) )
2.1f H accepts, reject and if H rejects, accept

reject

accept

Run D on (D):

reject (D rejects (D))
accept (D accepts (D))
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ATn IS undecidable

o Atvm = {{(M,w) | Mis a Turing machine and M accepts input string w}

H
<Pf> Assume on the contrary that ATpg is decidable

| | . . A accept (M accepts w)
= there is a Turing machine // that can decide AT (M W) — T™M
Decider reject (M rejects w)

D

Design a Turing machine D:
On input (M), where M is a Turing machine
1.Run H on input (M, (M) (M)
2.1f H accepts, reject and if H rejects, accept

reject

<M <M>> > accept (M accepts (M))
, reject (M rejects (M))

accept

Run D on (D):

(D, (D)) accept (D accepts (D)) reject (D rejects (D))
: reject (D rejects (D)) accept (D accepts (D))
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Undecidable Languages

® Halting problem:
HALTT\M = {{(M,w) | M is a Turing machine and M accepts or rejects input string

W)
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HALTT\ IS undecidable

e HALTT\M = {{(M,w) | M is a Turing machine and M halts on input string w}

<Pf> Assume on the contrary that HALTTp iS

decidable = there is a Turing machine /7 that
decides HALTTM

accept

HALTT\ —

—> -~ reject

Decider

Design a Turing machine § that decides AT
On input (M, w), where // is a Turing machine
1.Run  on input (M, w)
2.1f X rejects, reject
3.If /¥ accepts, simulate /I on w until it halts

4.1f VI accepts w, accept. If [V rejects w, reject
— < (AT is undecidable)

Simulate

137
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Halting problem is undecidable

® Proof by reduction!
e |f A <PBand B is decidable, then A is decidable

® The reduction < doesn’t need to be polynomial time



Undecidable Languages

o Arm = {{(M,w) | Mis a Turing machine and M accepts input string w'}

® Halting problem:
HALTT\M = {{(M,w) | M is a Turing machine and M accepts or rejects input string

W)

e Hilbert’s 10th problem:
H = {{(p) | pis a polynomial with an integral root }

® Post correspondence problem (PCP):

Given a collection D of dominos, each containing two strings, one on each side. A
match is a list of these dominos (repetition permitted) such that the string on the
top is the same as the string on the bottom.
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It’s obvious

— by Abstruse Goose

1 THINK WE'RE NO, WE'RE
SUPPOSED TO SUPPOSEP
TURN LEFT TO TURN
HERE.,

ANY OTHER BRIGHT IDEAS?

HEY, WHY ARE YOU TURN-
ING? WE'RE SUPPOSED TO
GO STRAIGHT,

OK, MAYBE
YOU WERE
RIGHT,

NOW I'M POS- ARE
ITIVE WE MAKE YouU
A LEFT HERE. SURE?

NICE WORK,
EINSTEIN,

years later I

LOOKt THERE
IT IS! WE
MADE IT ?

YAY! QUICK, WRITE
DOWN THE DIRECTIONS
BEFORE WE FORGET !

From A
Turn left on Ricci Street

Turn right on Hamilton Ave

B is on your left
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This is how most mathematical
proofs are written.



