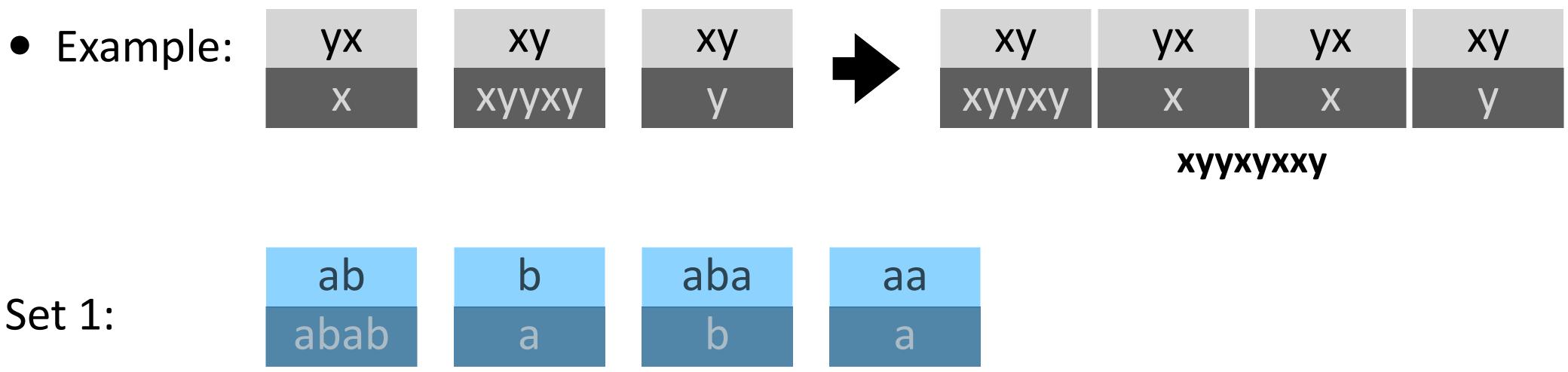
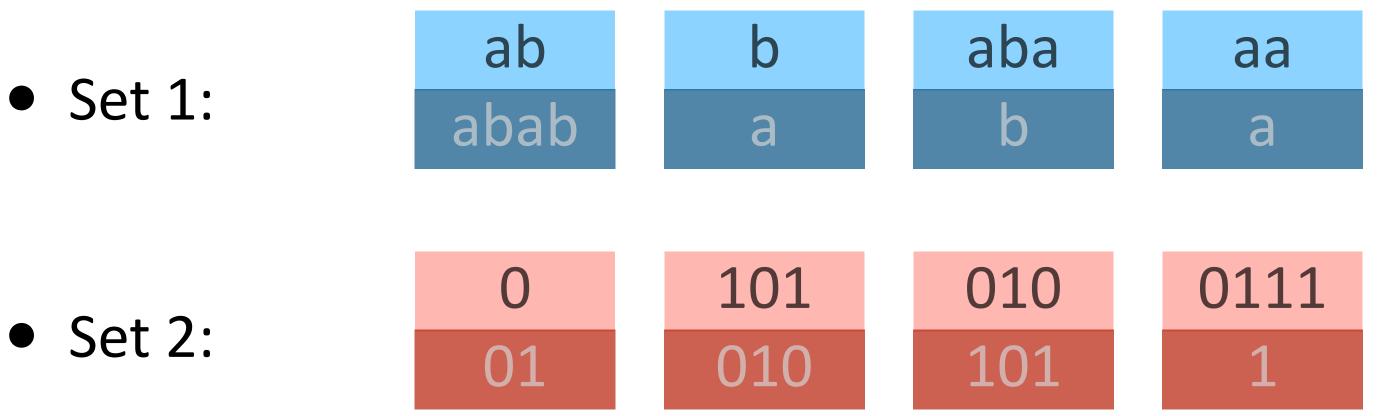
A Domino Game

upper part is exactly the same as the text on the lower part?





• Consider these dominos, can you find a permutation of them, so the text on the

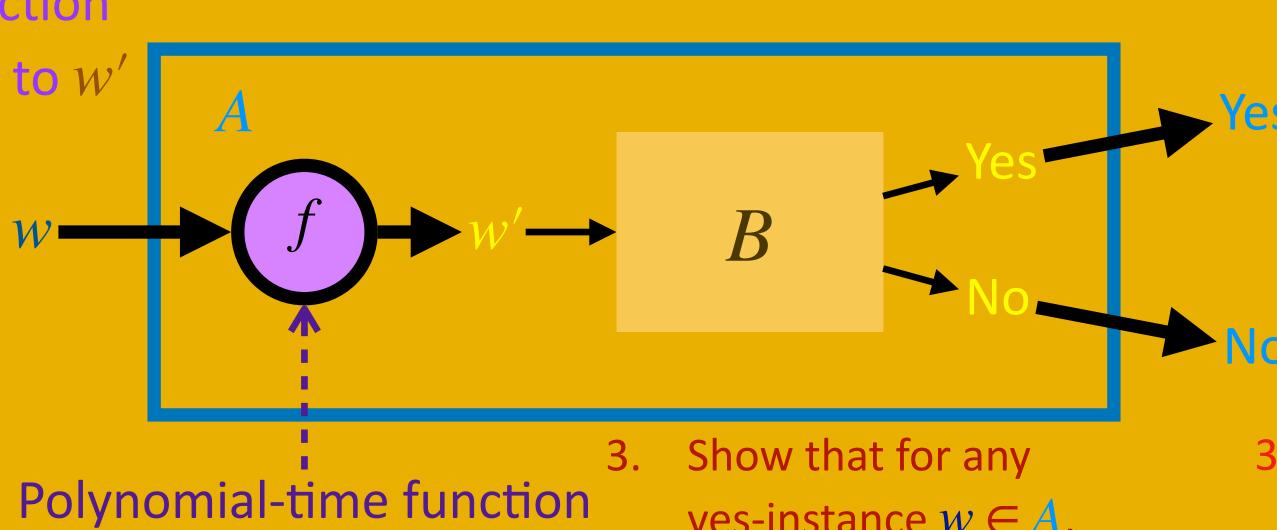
(You can use one domino more than once, but not put them upside down.)

Algorithms for Decision Support

NP-Completeness (3/3) **Optimization problems**

Polynomial-Time Reduce A to B

- Problem A with input W
 - Return yes if $w \in A$
 - Return no if $w \notin A$
- 1. Show that there is a function that transforms every w to w'in polynomial time



• Problem *B* with input

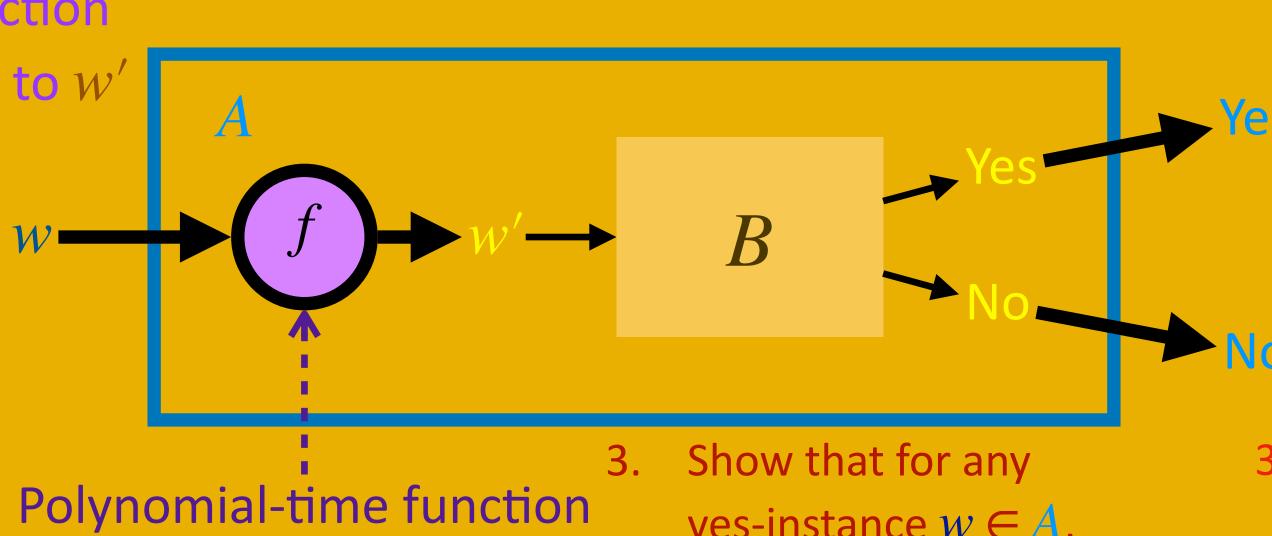
- Return yes if $w' \in B$
- Return no if $w' \notin$
 - 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- yes-instance $w \in A$, the corresponding instance
 - 3 w' is also a yes-instance of B
- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

Instance Transformation

- Design a method to transform any instance w of A into an instance w of B
 - The transformation should be done in polynomial time

1. Show that there is a function that transforms every w to win polynomial time



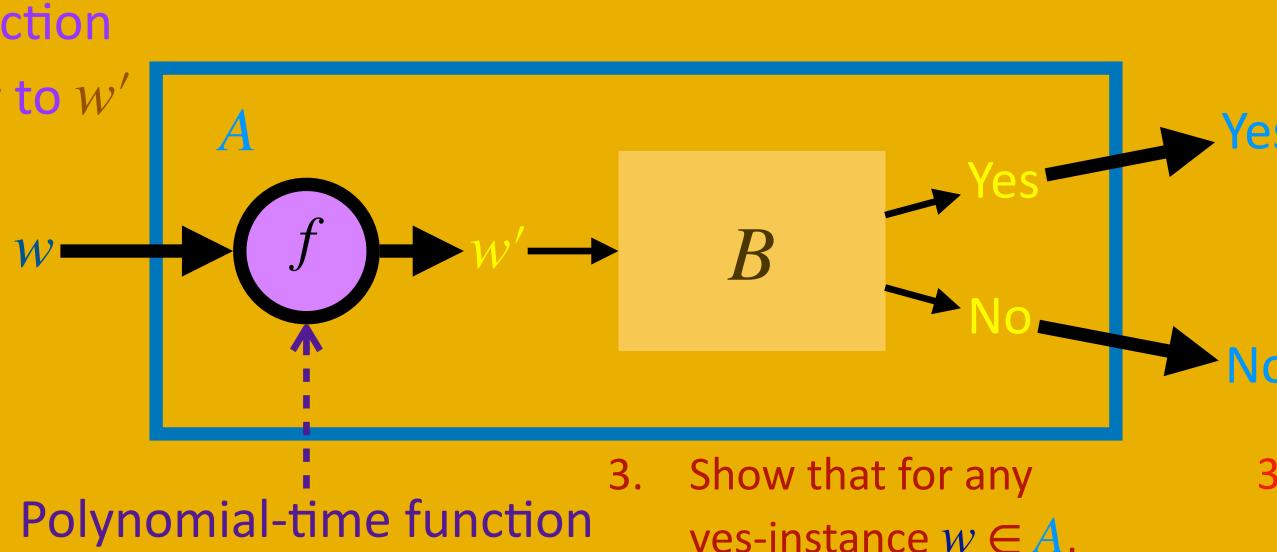
2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- yes-instance $w \in A$, the corresponding instance
 - 4 w' is also a yes-instance of B
- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

Show that the reduction works

- That is, w is a yes-instance of A if and only if w is a yes-instance to B
 - So we can rely on the yes/no answer of $w' \in B$ to decide if $w \in A$

1. Show that there is a function that transforms every w to w'in polynomial time

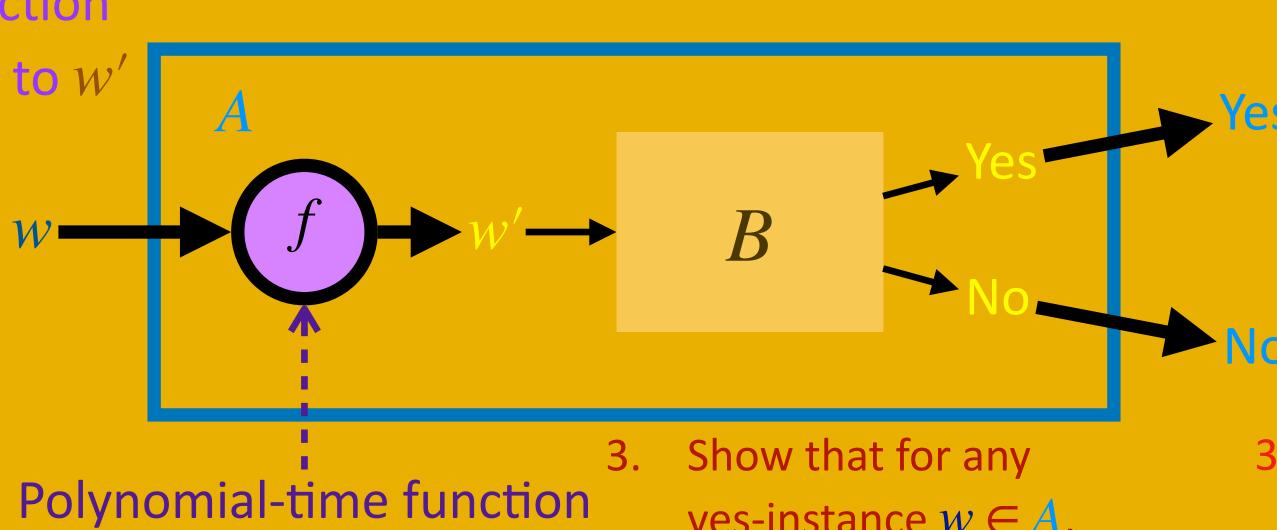


2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- yes-instance $w \in A$, the corresponding instance
 - 5 w' is also a yes-instance of B
- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

Polynomial-Time Reduce A to B

- Problem A with input W
 - Return yes if $w \in A$
 - Return no if $w \notin A$
- 1. Show that there is a function that transforms every w to w'in polynomial time



• Problem *B* with input

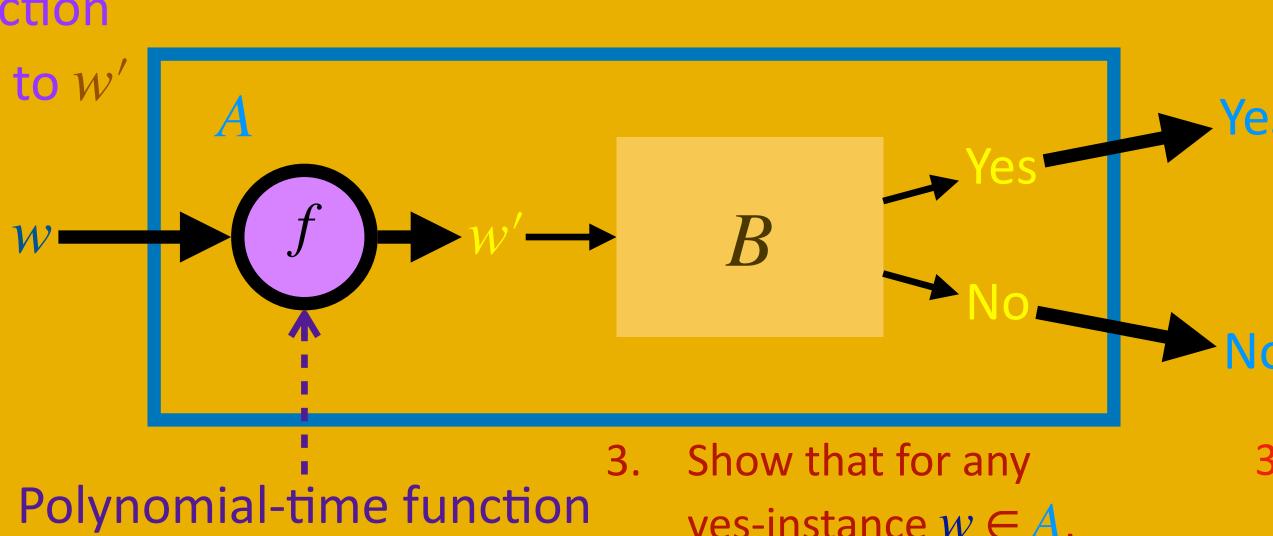
- Return yes if $w' \in B$
- Return no if $w' \notin$
 - 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A
- yes-instance $w \in A$, the corresponding instance
 - 6 w' is also a yes-instance of B

Instance Transformation

- Design a method to transform any instance w of A into an instance w of B
 - The transformation should be done in polynomial time

1. Show that there is a function that transforms every w to win polynomial time



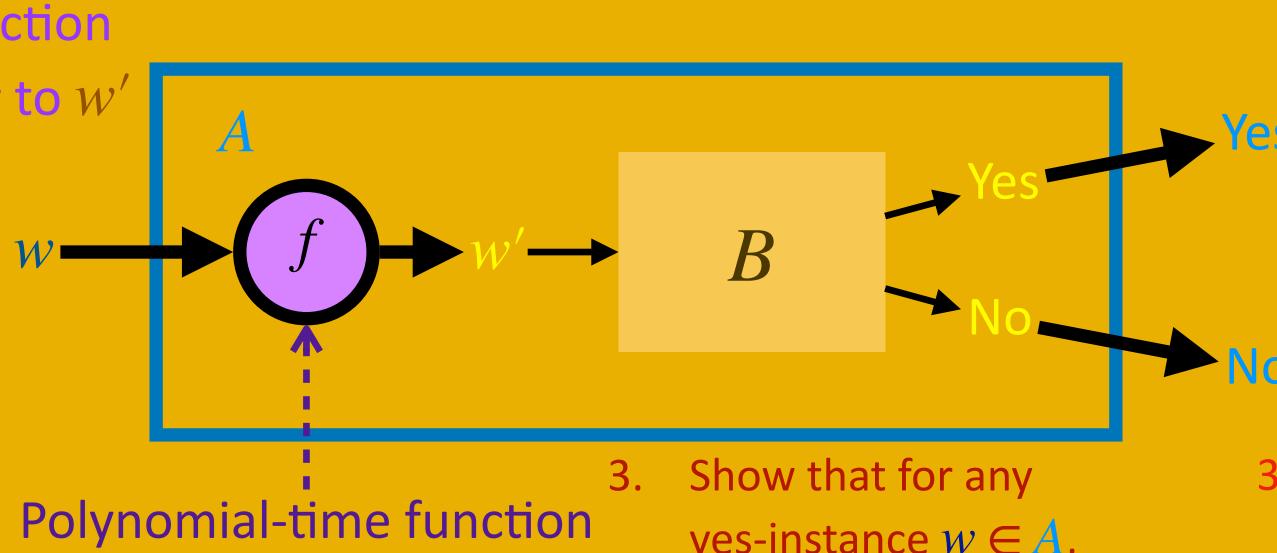
2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- yes-instance $w \in A$, the corresponding instance
 - 7 w' is also a yes-instance of B
- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

Show that the reduction works

- That is, w is a yes-instance of A if and only if w is a yes-instance to B
 - So we can rely on the yes/no answer of $w' \in B$ to decide if $w \in A$

1. Show that there is a function that transforms every w to w'in polynomial time



2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A

- yes-instance $w \in A$, the corresponding instance
 - w' is also a yes-instance of B_{ϕ} 8
- Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

Show that the reduction works

- That is, w is a yes-instance of A if and only if w' is a yes-instance to B
 - So we can rely on the yes/no answer of $w' \in B$ to decide if $w \in A$
- Argue that:
 - If w is a yes-instance of A, there is a solution S_w to w
 - Using S_w , we can construct a solution $S_{w'}$ to w
 - Argue by how we construct w'

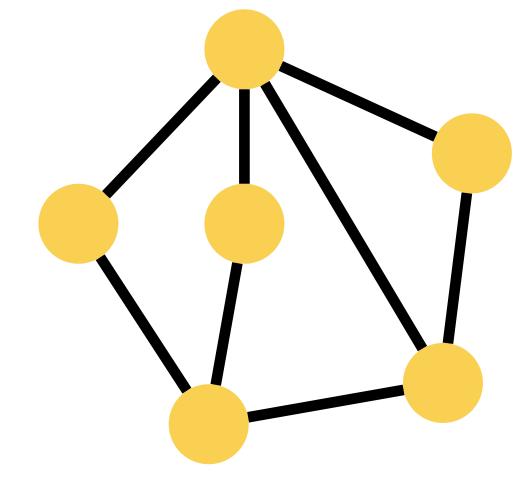
Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

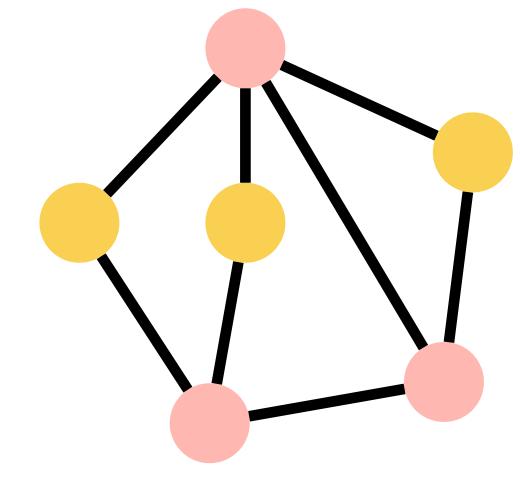
Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

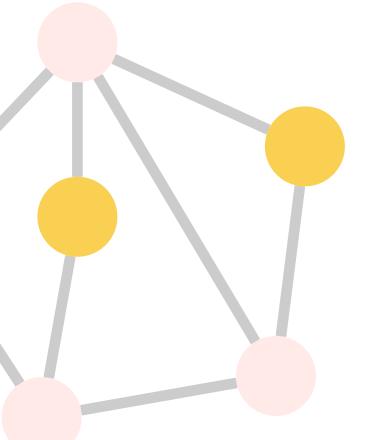
- Given a graph G = (V, E), a vertex cover is a subset U of vertices such that for every edge (u, v), $|\{u, v\} \cap U| \ge 1$
 - That is, every edge is *covered* by at least one of its endpoints
 - $\bullet\,$ Removing all vertices in U leaves no edge
 - When a vertex is removed, all the edges incident to it are also removed



- Given a graph G = (V, E), a vertex cover is a subset U of vertices such that for every edge (u, v), $|\{u, v\} \cap U| \ge 1$
 - That is, every edge is *covered* by at least one of its endpoints
 - $\bullet\,$ Removing all vertices in U leaves no edge
 - When a vertex is removed, all the edges incident to it are also removed



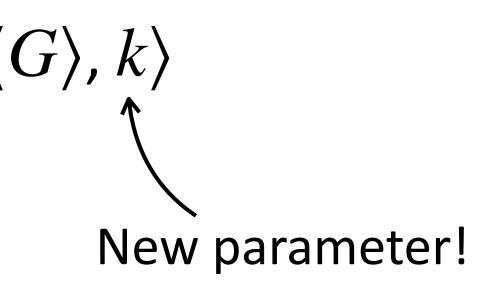
- Given a graph G = (V, E), a *vertex cover* is a subset U of vertices such that for every edge (u, v), $|\{u, v\} \cap U| \ge 1$
 - That is, every edge is *covered* by at least one of its endpoints
 - $\bullet\,$ Removing all vertices in U leaves no edge
 - When a vertex is removed, all the edges incident to it are also removed

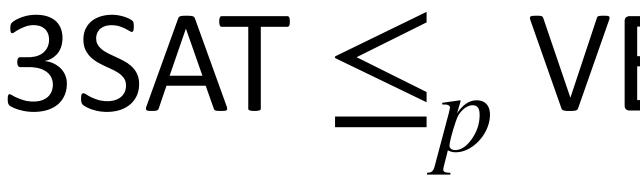


• Minimum vertex cover problem: Given a graph *G*, what is the size of the minimum vertex cover in *G*?

- Decision version: Given a graph G, is there a vertex cover of size at most k in G?
 - An instance of VERTEX-COVER is $\langle \langle G \rangle, k \rangle$

VERTEX-COVER is NP-complete



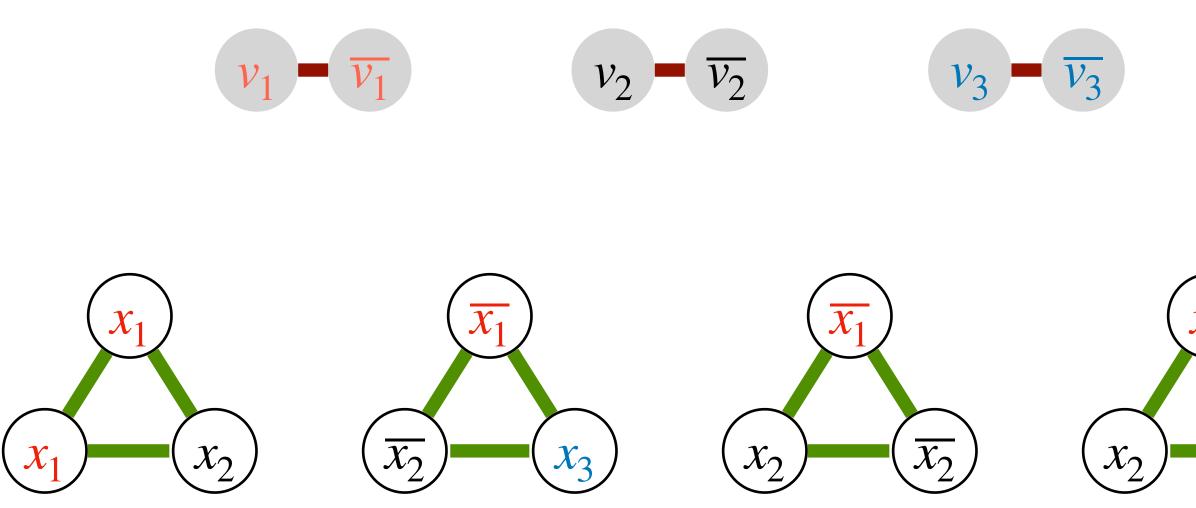


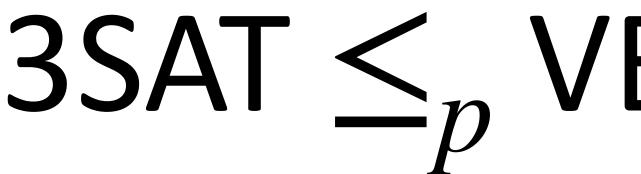
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$
- VERTEX-COVER = { $\langle G, k \rangle$ | graph G has a vertex cover of size at most k }

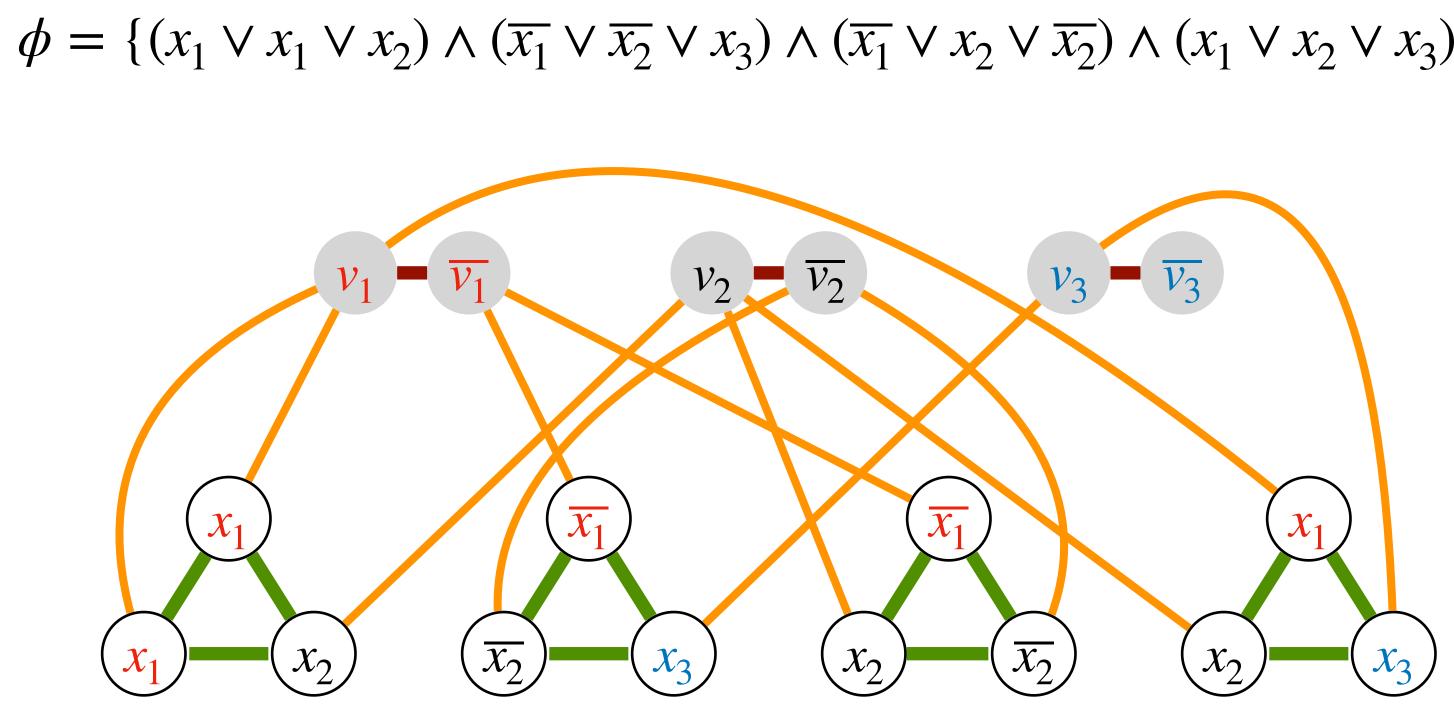
- Construction:
 - For each variable x_i, there are two vertices v_i and v_i forming an edge in G
 - For each clause (l_a, l_b, l_c) , there is a triangle in G
 - For each clause (l_a, l_b, l_c), there are three edges from l_a, l_b, and l_c to the corresponding variable vertex
 - $k = 2 \cdot \text{number of clauses} + \text{number of vertices}$

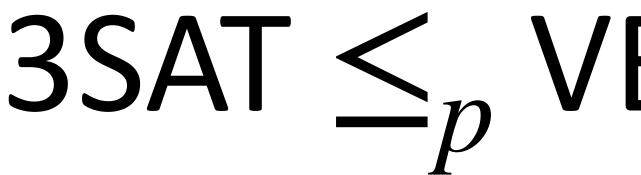
- Construction:
 - For each variable x_i , there are q two vertices v_i and $\overline{v_i}$ forming an edge in G
 - For each clause (l_a, l_b, l_c) , there is a triangle in G
 - For each clause (l_a, l_b, l_c), there are three edges from l_a, l_b, and l_c to the corresponding variable vertex
 - $k = 2 \cdot \text{number of clauses} + \text{number of vertices}$

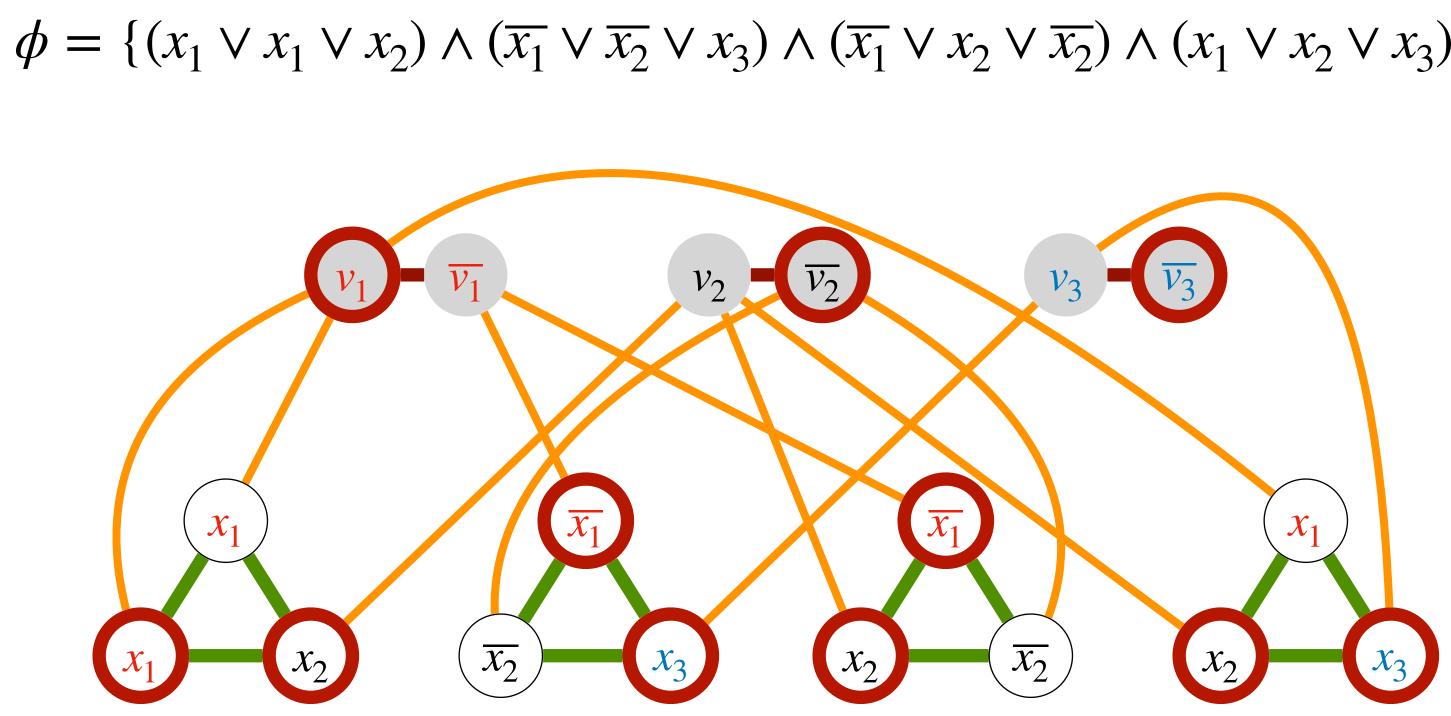
• For each variable x_i , there are $\phi = \{(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x_2}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_3 \lor x_3) \land (x_1 \lor x_3 \lor$



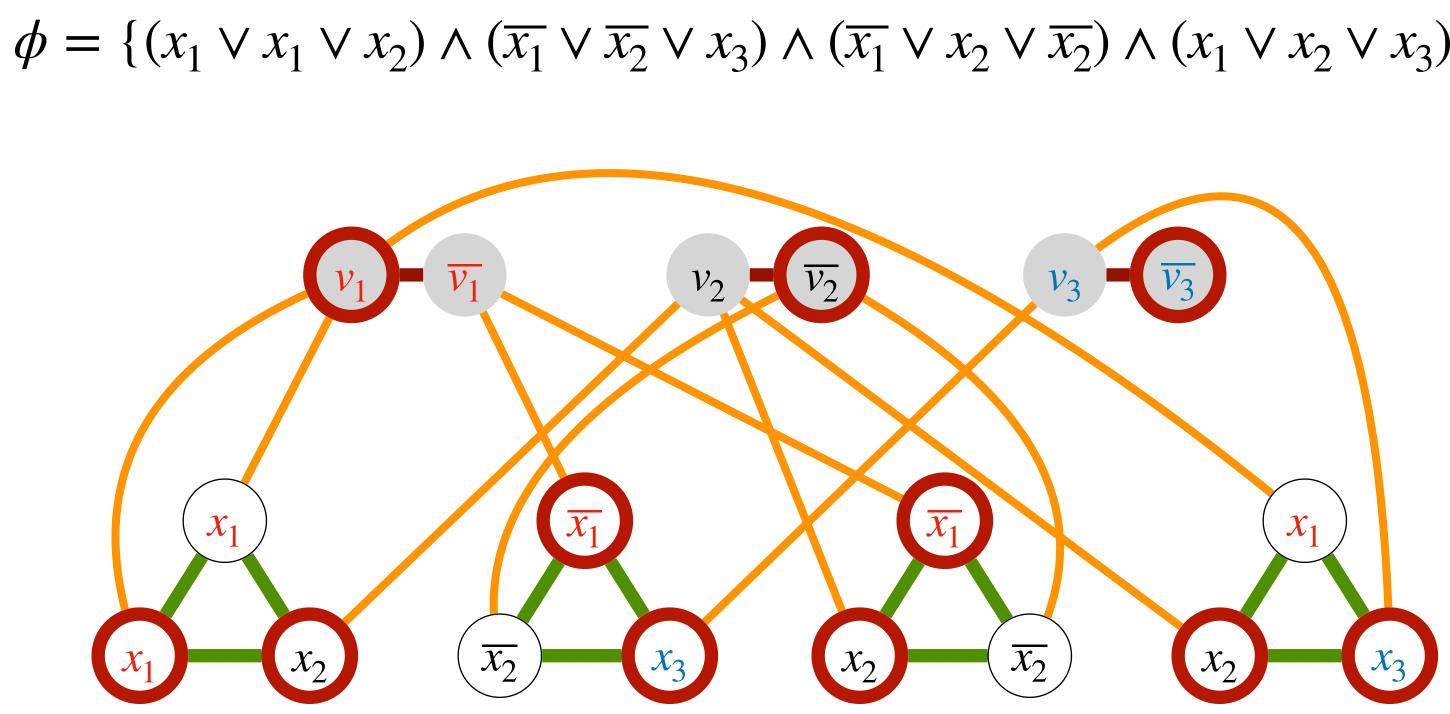




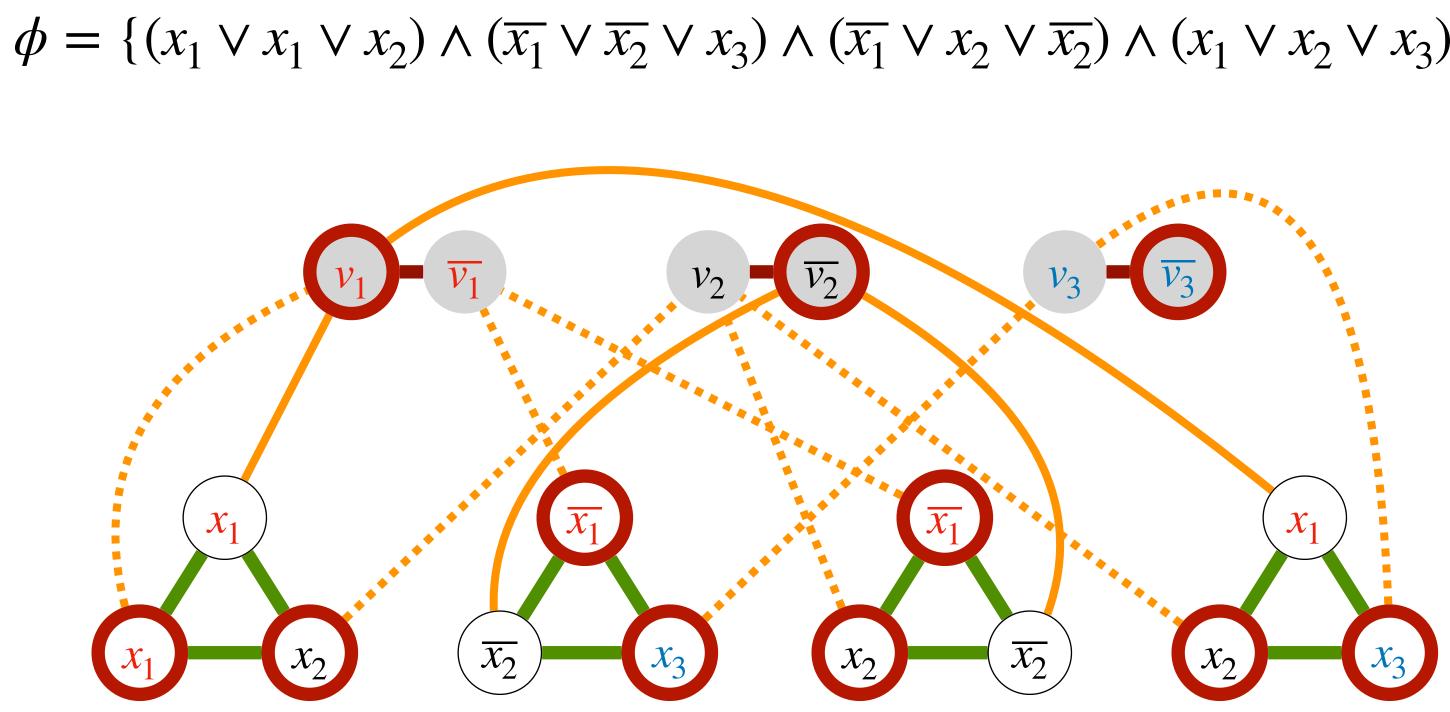




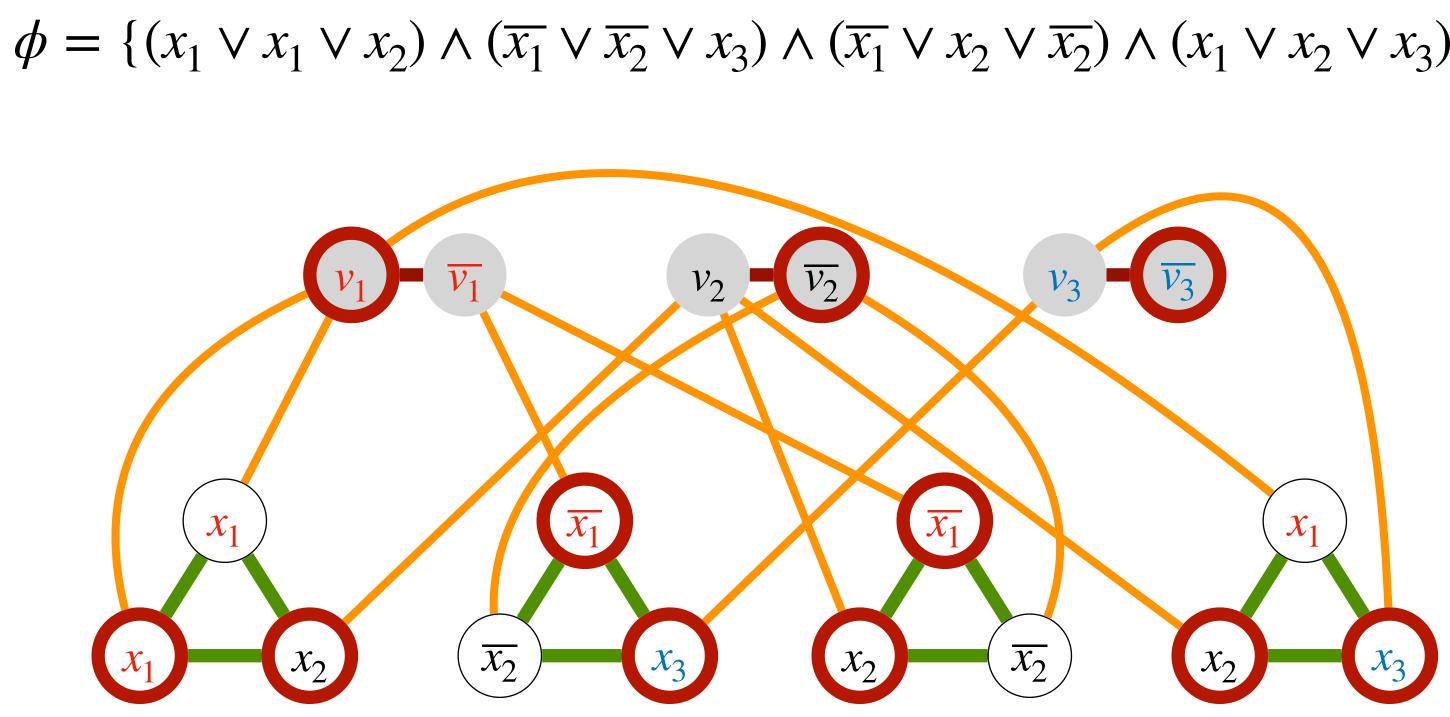
- ϕ is satisfiable \Rightarrow there is a truth assignment that makes ϕ TRUE
 - Pick the variable vertices corresponding to the true literals
 - Since the truth assignment is valid, every variable-variable edge is covered, and each clause has at least one variable-clause edge is covered
 - Pick the vertices in each clause that incident to the not covered variableclause edges
 - There are at most two these vertices in each classes. They cover the clause edges
 - There are at most $\ell + 2k$ picked vertices and they form a vertex cover

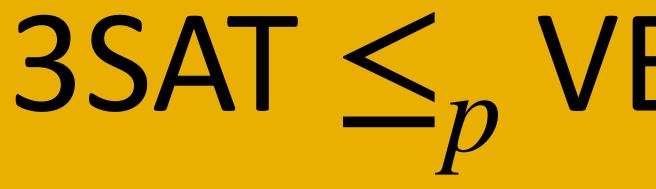


- G has a vertex cover C of cardinality $2k + \ell$ $\Rightarrow \phi$ is satisfiable
 - Since each triangle needs two vertices to cover it, each clause has at least two vertices picked ($\geq 2k$)
 - They can only cover at most two variable-clause edges
 - Since the variable-variable edges need to be covered, at least one vertex in each pair of v_i and $\overline{v_i}$ is in $C (\geq \ell)$
 - These vertices cover the variableclause edges that are not yet covered
 - Pick the corresponding literals to be true, the covered variable-clause edges implies that every clause is true

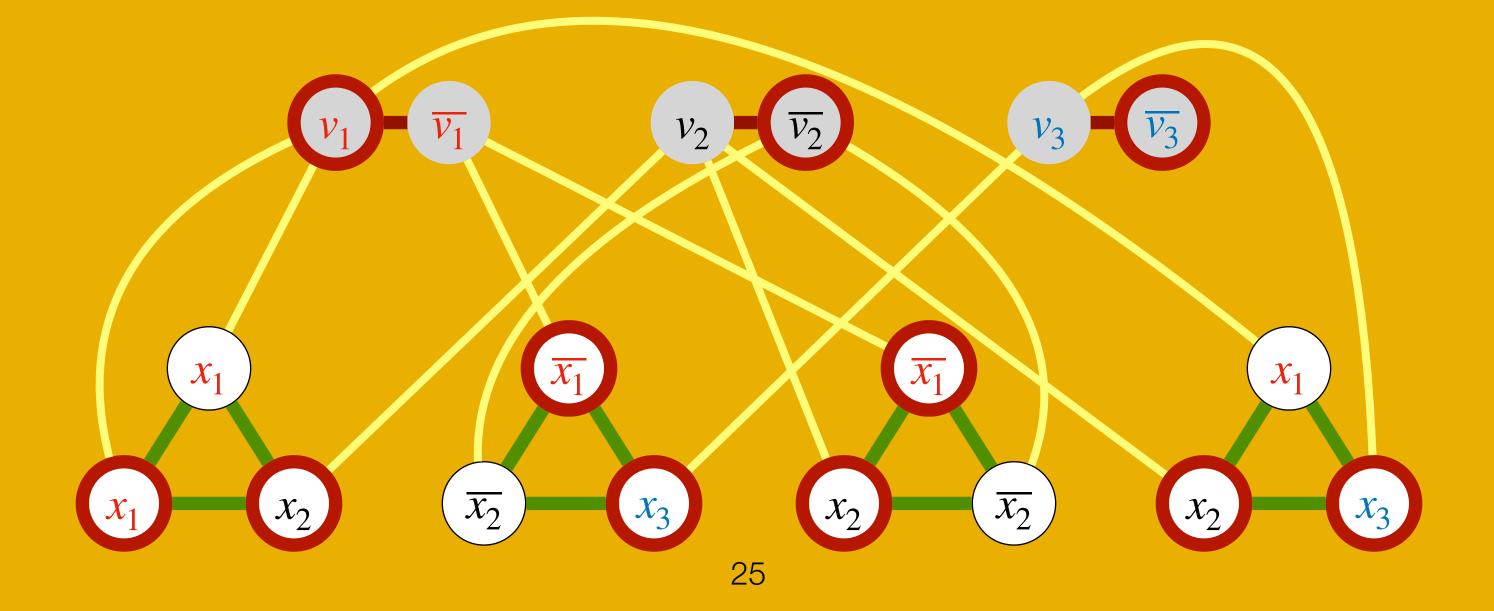


- G has a vertex cover C of cardinality $2k + \ell$ $\Rightarrow \phi$ is satisfiable
 - Since each triangle needs two vertices to cover it, each clause has at least two vertices picked ($\geq 2k$)
 - They can only cover at most two variable-clause edges
 - Since the variable-variable edges need to be covered, at least one vertex in each pair of v_i and $\overline{v_i}$ is in $C (\geq \ell)$
 - These vertices cover the variableclause edges that are not yet covered
 - Pick the corresponding literals to be true, the covered variable-clause edges implies that every clause is true





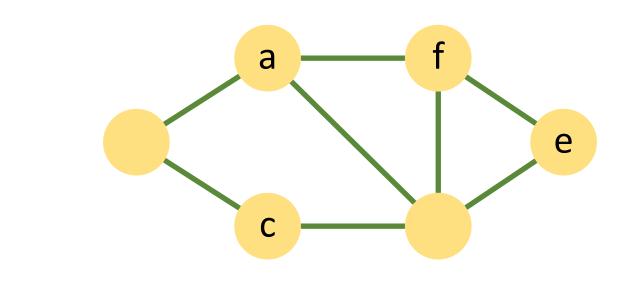
- For each vertex-clause edge, its end points refer to the same literal
 - For each clause, there can be at most 2 vertex-clause edge covered by clause vertices \Rightarrow at least 1 vertex-clause edge covered by a variable vertex \Leftrightarrow there must be a true literal in this clause



Outline

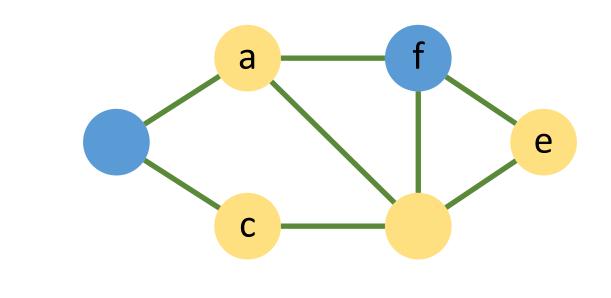
- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

• Maximum INDEP-SET problem: Given a graph G = (V, E), we want to find a subset of v with maximum cardinality which forms an independent set



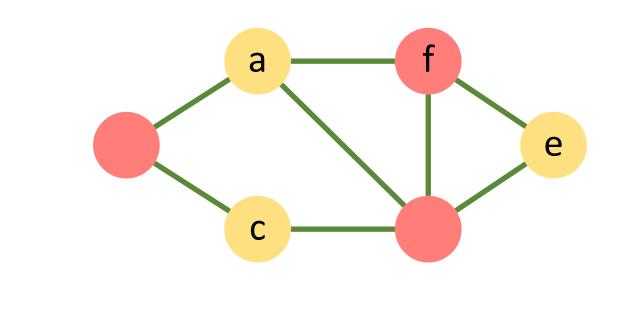
• Maximum INDEP-SET problem: Given a graph G = (V, E), we want to find a subset of v with maximum cardinality which forms an independent set

• Maximum INDEP-SET problem: Given a graph G = (V, E), we want to find a subset of v with maximum cardinality which forms an independent set



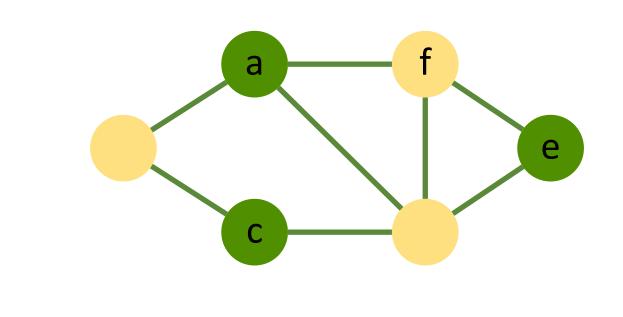
An independent set

• Maximum INDEP-SET problem: Given a graph G = (V, E), we want to find a subset of v with maximum cardinality which forms an independent set



NOT an independent set

• Maximum INDEP-SET problem: Given a graph G = (V, E), we want to find a subset of v with maximum cardinality which forms an independent set



Maximum independent set

Minimum Vertex Cover problem (decision version)

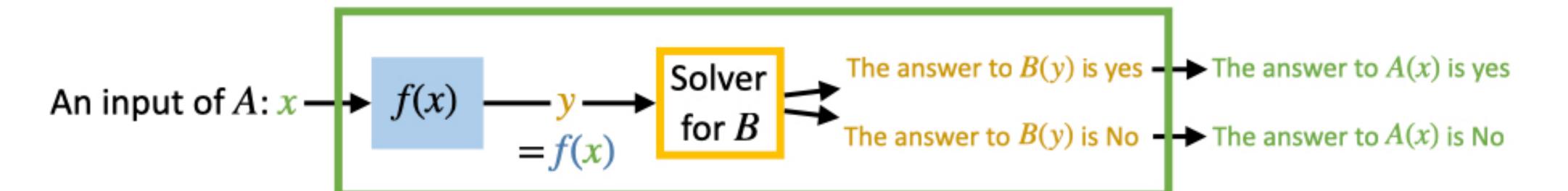
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise

Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

Minimum Vertex Cover problem (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise

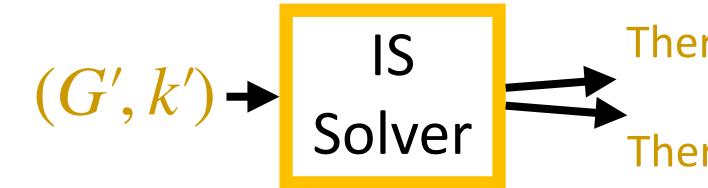


Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

Minimum Vertex Cover problem (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise



Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

There is an independent set in G' with size $\leq k$

There is no independent set in G' with size $\leq k$

Minimum Vertex Cover problem (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise



- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

Maximum Independent Set is NP-hard

Minimum Vertex Cover problem (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise

There is a subset $V \setminus W$

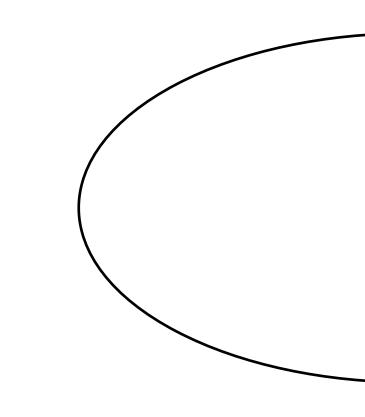
which is an vertex cover with size at most \boldsymbol{k}

Maximum INDEP-SET (decision version)

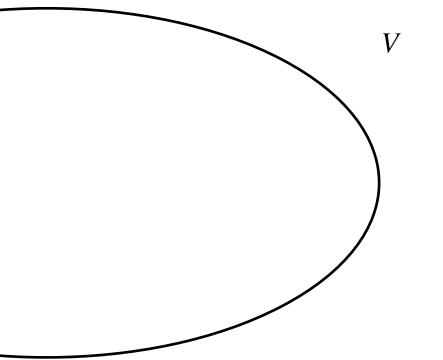
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

There is a subset W

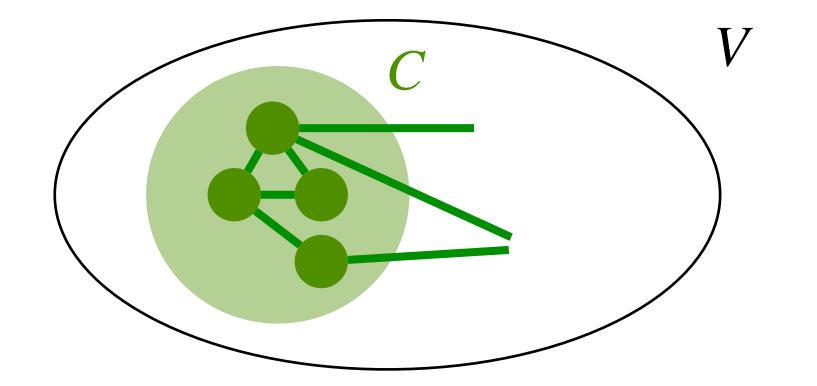
which is an independent set with size at least k



VC \leq_p INDEP-Set

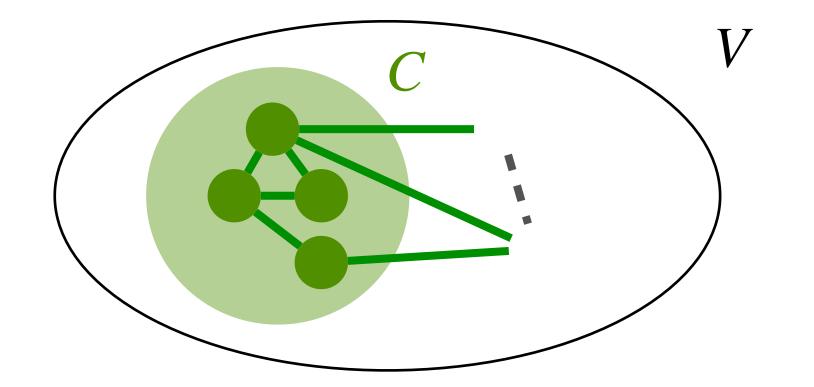


Vertex cover of size k



VC \leq_{p} INDEP-Set

Vertex cover of size k'



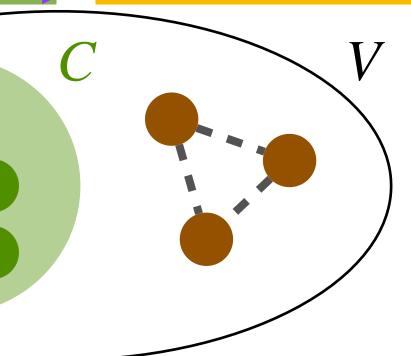
VC \leq_{p} INDEP-Set

There is a subset $V \setminus W$

which is an vertex cover with size at most k

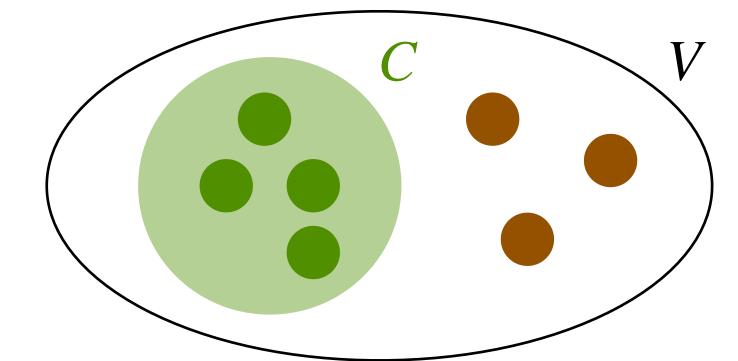
VC \leq_{p} INDEP-Set

There is a subset Wwhich is an independent set with size at least k



Independent set of size

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



Vertex cover of size k'

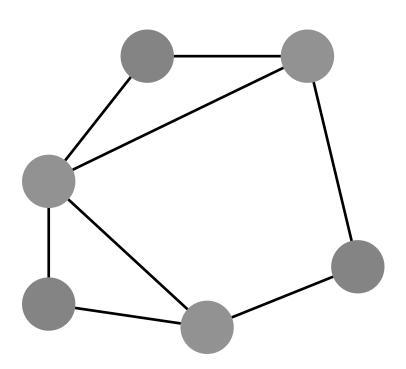
$VC \leq_{p} INDEP-Set$

Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - *no* otherwise

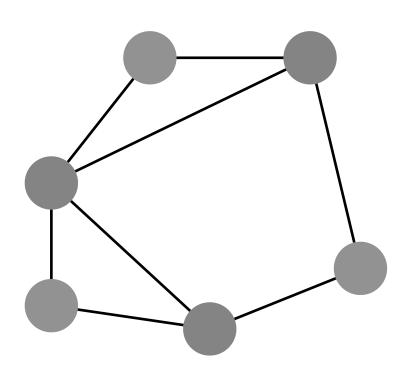
Independent set of size

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise

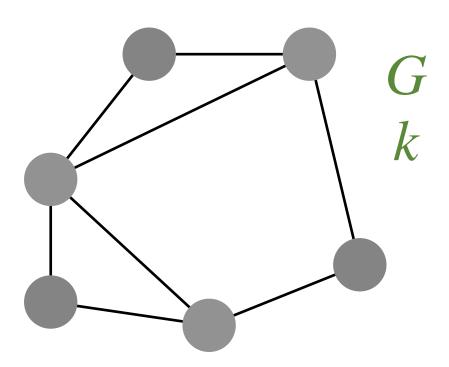


$VC \leq_{p} INDEP-Set$

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

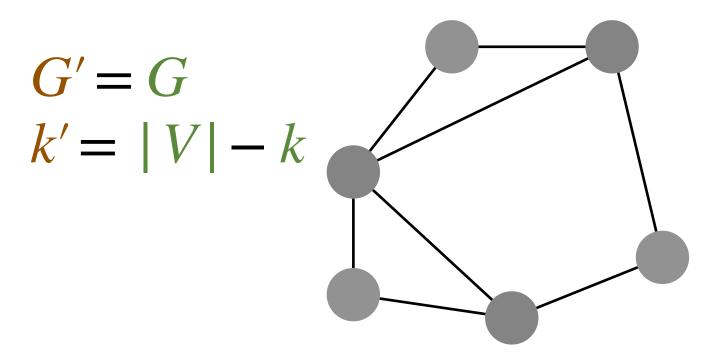


- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise

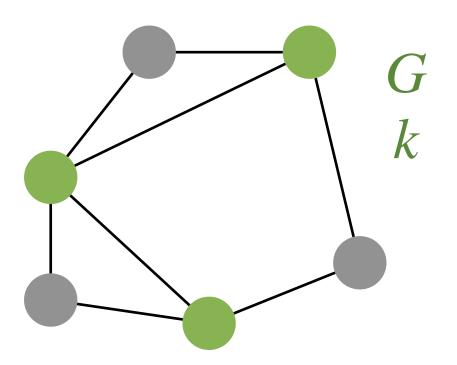


$VC \leq_{p} INDEP-Set$

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

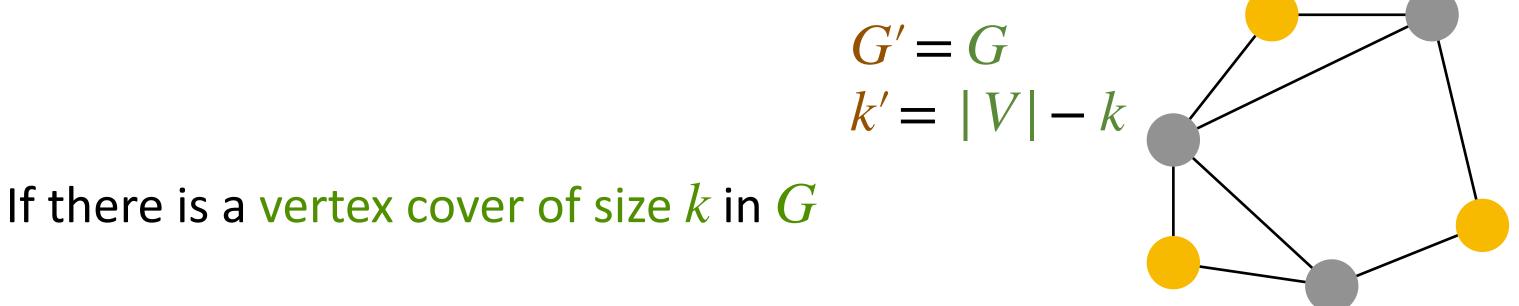


- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise

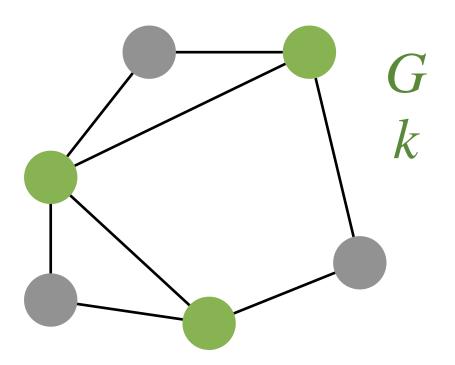


VC \leq_p INDEP-Set

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise



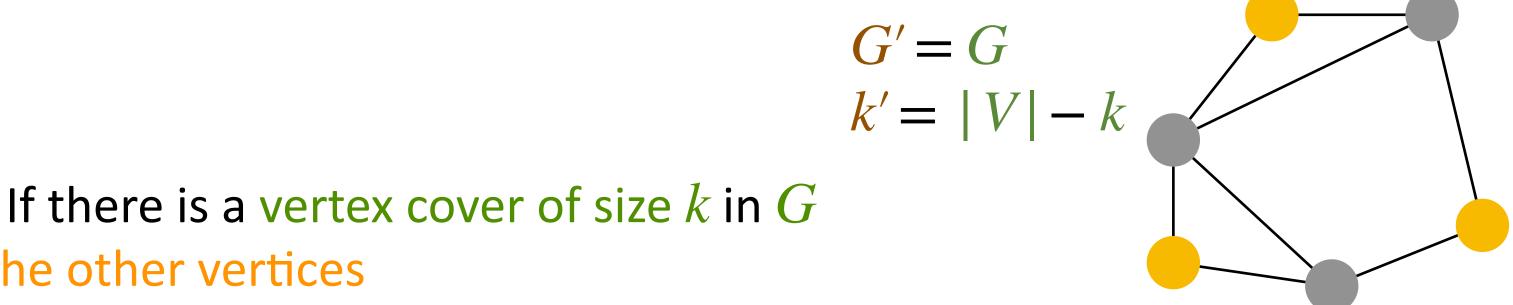
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



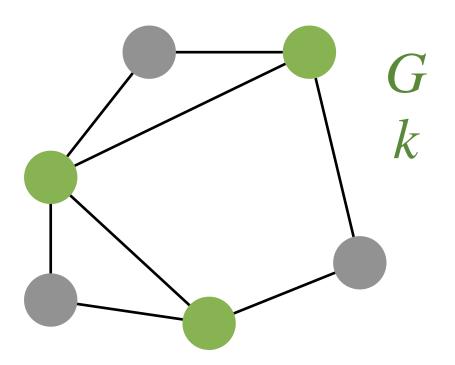
 \Rightarrow The other vertices

VC \leq_{p} INDEP-Set

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise



- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



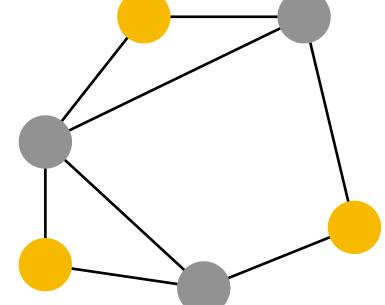
If there is a vertex cover of size k in G \Rightarrow The other vertices

VC \leq_p INDEP-Set

Maximum INDEP-SET (decision version)

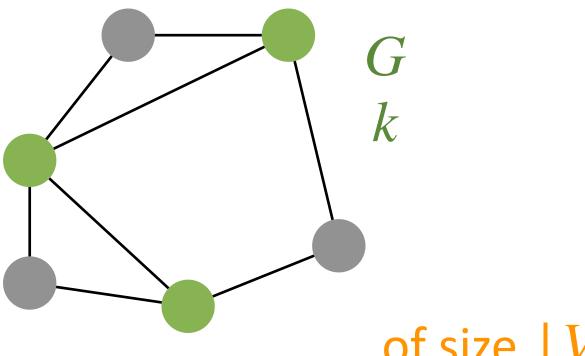
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

$$G' = G$$
$$k' = |V| - k$$



there is no edge between them

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



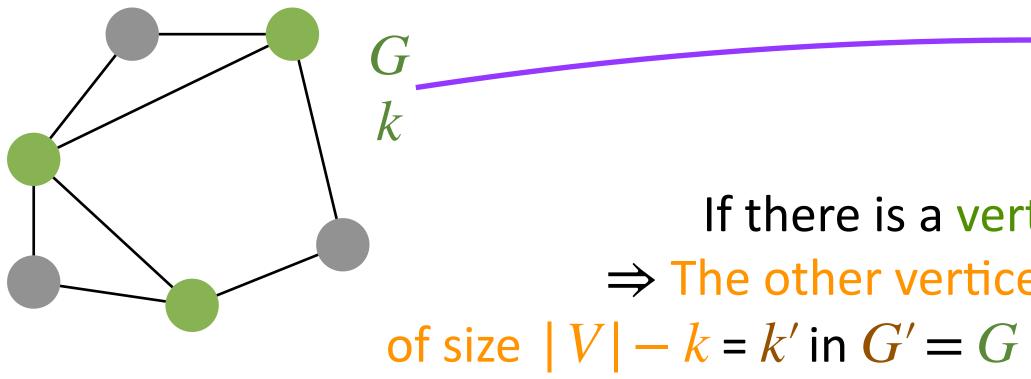
VC \leq_{p} INDEP-Set

Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

G' = Gk' = |V| - kIf there is a vertex cover of size *k* in *G* \Rightarrow The other vertices form an independent set of size |V| - k = k' in G' = G since there is no edge between them

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



VC \leq_{p} INDEP-Set

Maximum INDEP-SET (decision version)

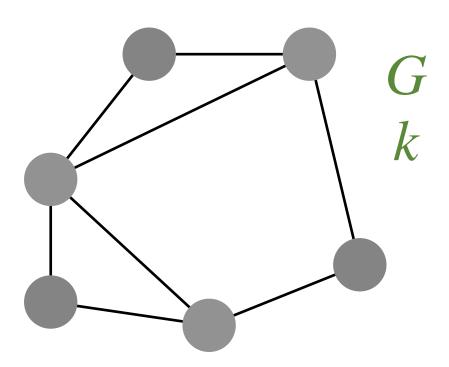
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set

 $\Rightarrow G' = G$ k' = |V| - k

• no otherwise

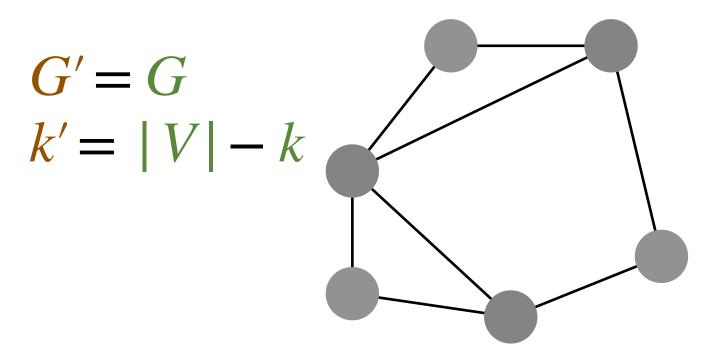
If there is a vertex cover of size *k* in *G* \Rightarrow The other vertices form an independent set of size |V| - k = k' in G' = G since there is no edge between them

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise

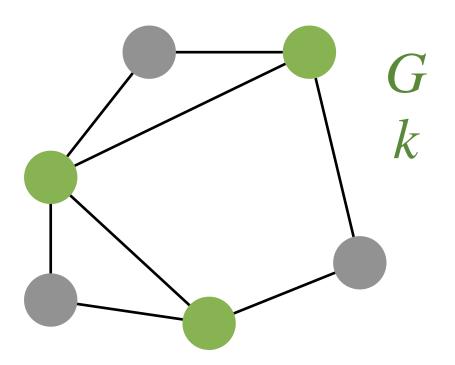


$VC \leq_{p} INDEP-Set$

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise



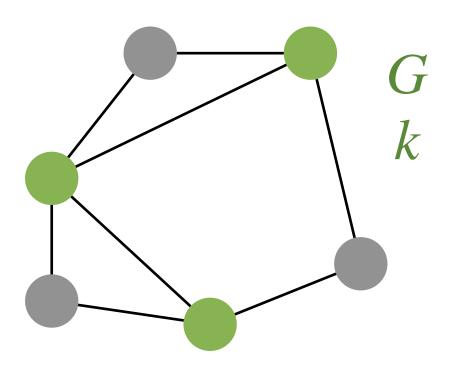
- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



VC \leq_{p} INDEP-Set

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise

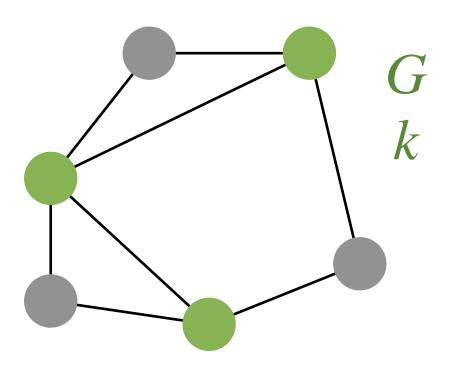


 \Rightarrow The other vertices

VC \leq_{p} INDEP-Set

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise

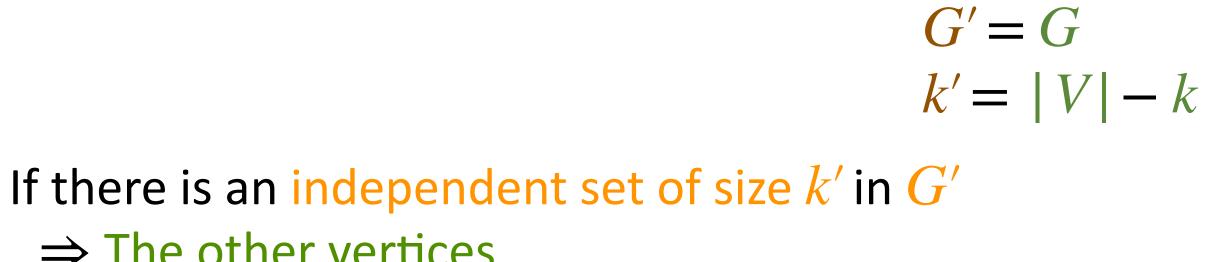


 \Rightarrow The other vertices

VC \leq_{p} INDEP-Set

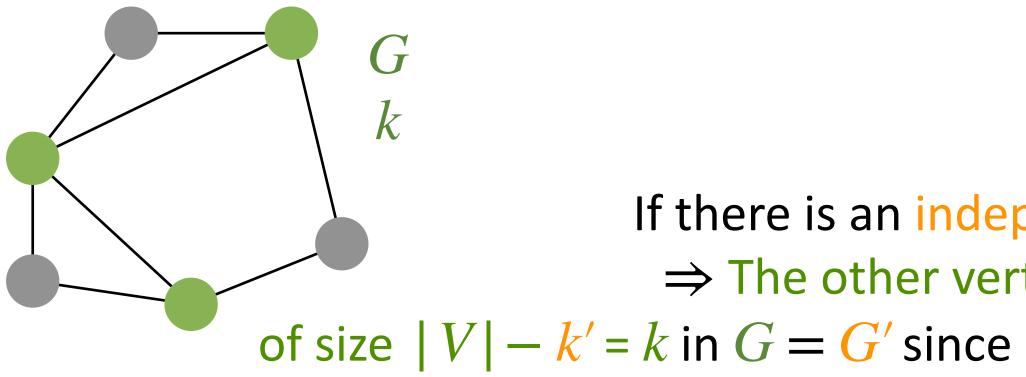
Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise



every edge must incident with one of them

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



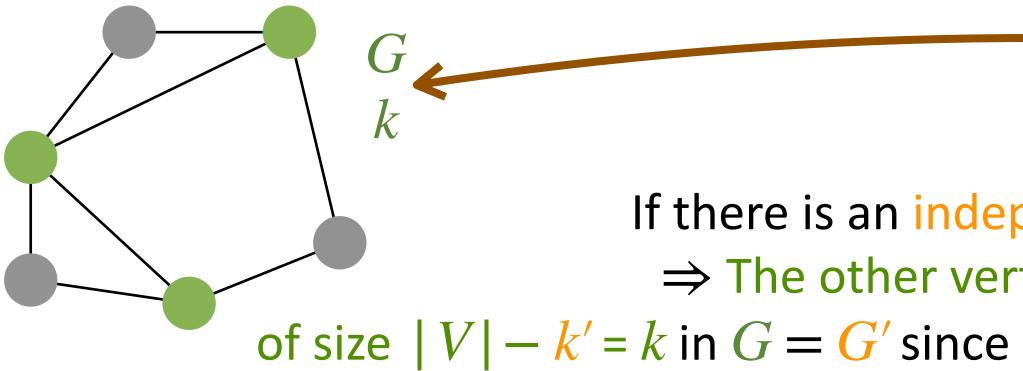
VC \leq_{p} INDEP-Set

Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set
 - no otherwise

G' = Gk' = |V| - kIf there is an independent set of size k' in G' \Rightarrow The other vertices form a vertex cover of size |V| - k' = k in G = G' since every edge must incident with one of them

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - *no* otherwise



VC \leq_{p} INDEP-Set

Maximum INDEP-SET (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at least k that forms an independent set

G' = Gk' = |V| - k

• no otherwise

If there is an independent set of size k' in G' \Rightarrow The other vertices form a vertex cover of size |V| - k' = k in G = G' since every edge must incident with one of them

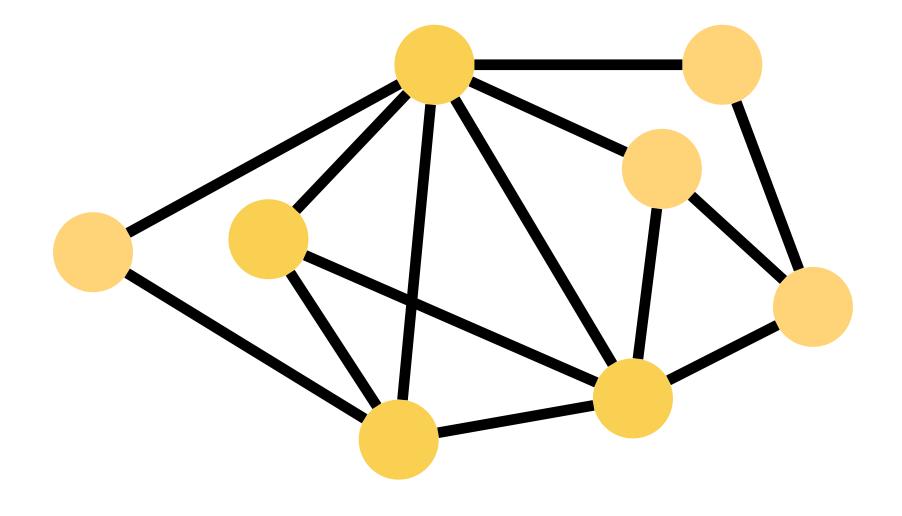
- Turing undecidable languages
- NP and Co-NP
- Pseudo-polynomial time algorithms
- VERTEX-COVER \leq_p Integer Linear Program
- VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
- VERTEX-COVER \leq_p INDEPENDENT SET
- $3SAT \leq_p VERTEX-COVER$
- More NP-Hardness proofs

Outline

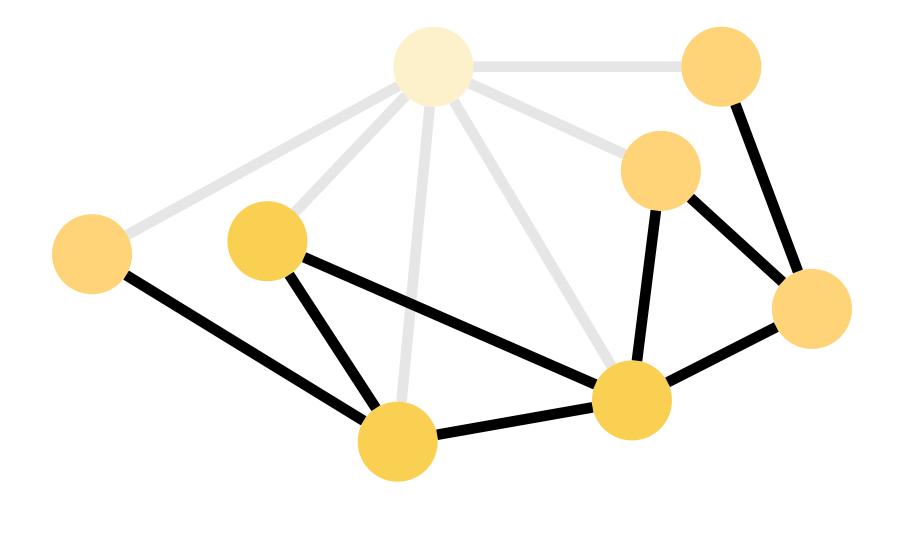
removing the vertices in U leaves a graph without cycles

• Given a graph G = (V, E), a feedback vertex set is a subset U of vertices such that

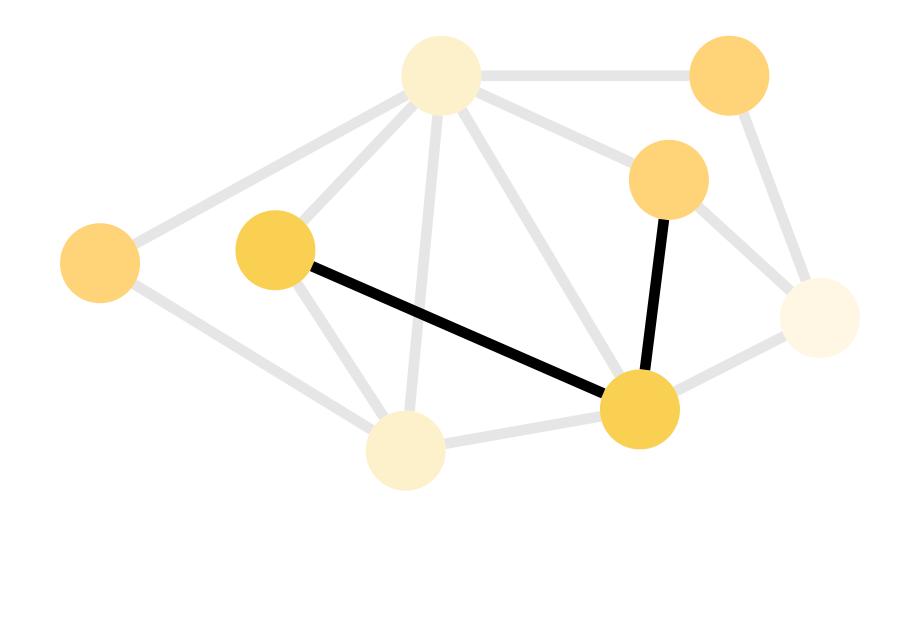
- Given a graph G = (V, E), a *feedback vertex set* is a subset U of vertices such that removing the vertices in U leaves a graph without cycles
 - When a vertex is removed, all the edges incident to it are also removed



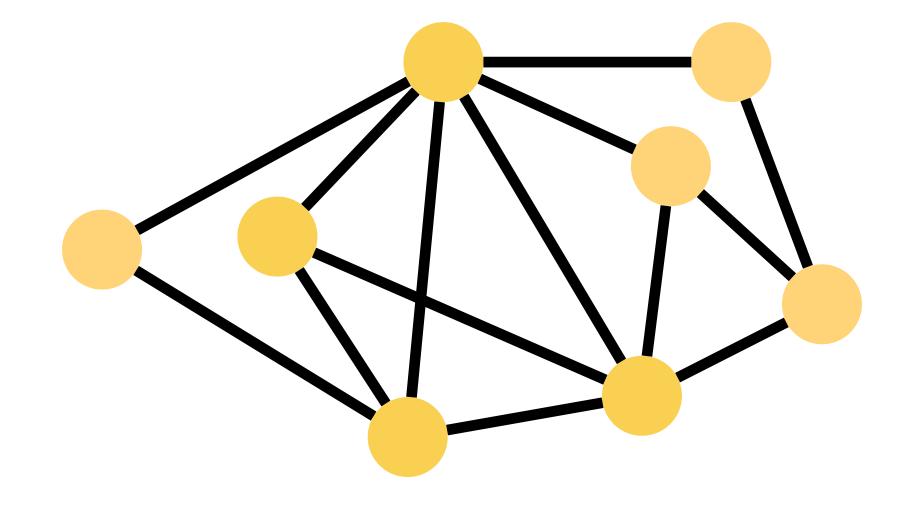
- Given a graph G = (V, E), a *feedback vertex set* is a subset U of vertices such that removing the vertices in U leaves a graph without cycles
 - When a vertex is removed, all the edges incident to it are also removed



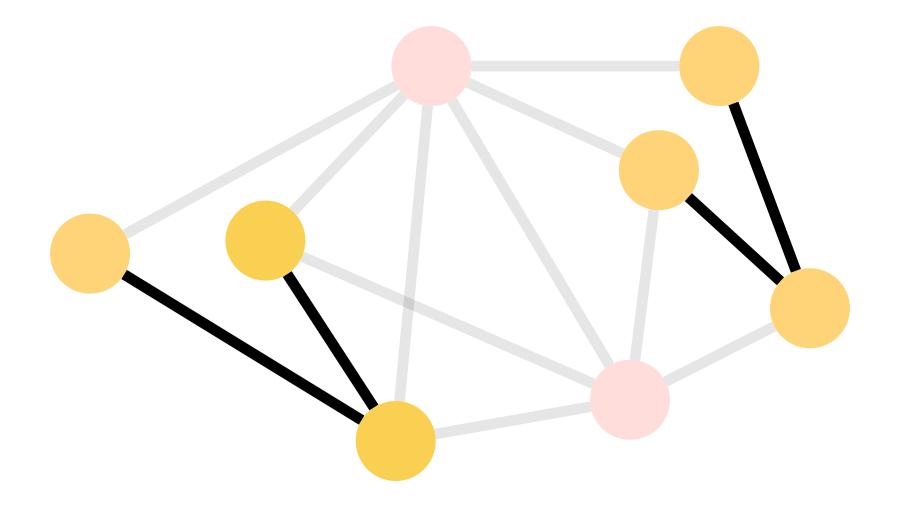
- Given a graph G = (V, E), a *feedback vertex set* is a subset U of vertices such that removing the vertices in U leaves a graph without cycles
 - When a vertex is removed, all the edges incident to it are also removed



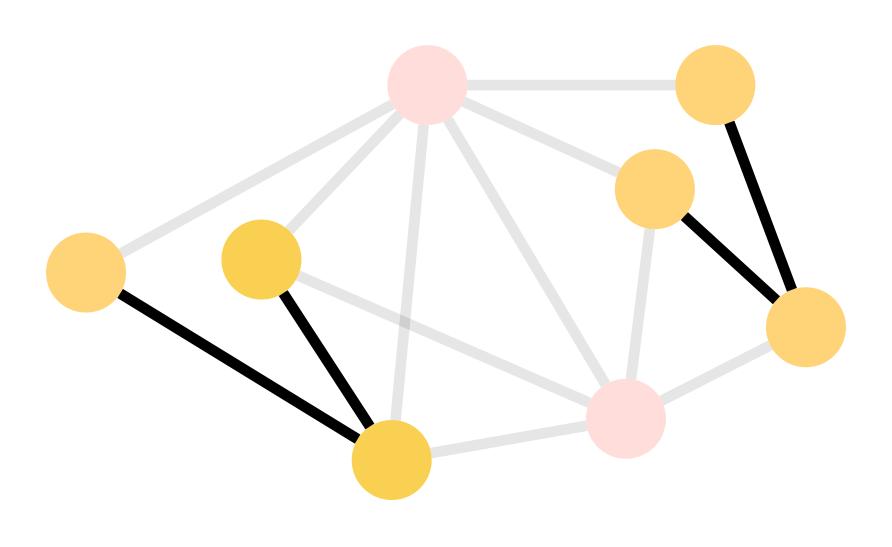
• Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum feedback vertex set?



• Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum feedback vertex set?



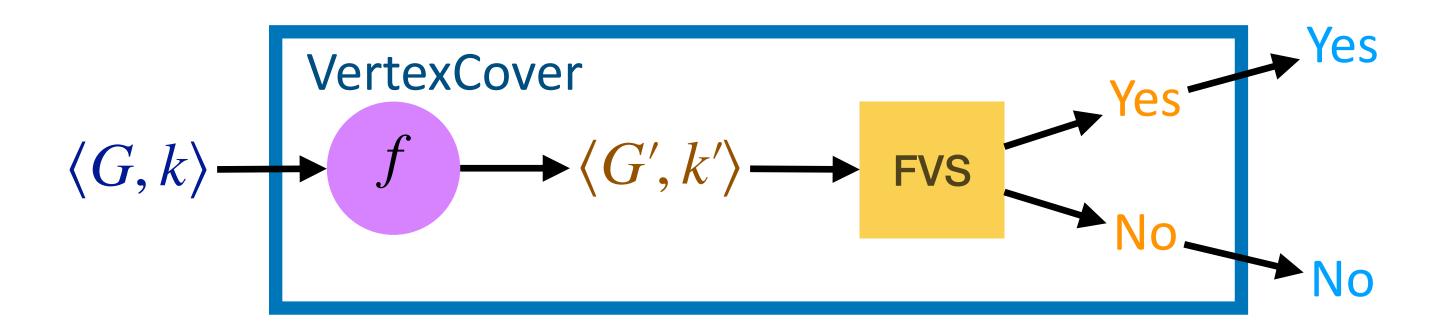
- Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum feedback vertex set?
- Decision version of Minimum-FVS problem:
 - Given a graph G = (V, E), is there a feedback vertex set with size at most k?



- Minimum-FVS: Given a graph G = (V, E), what is the size of its minimum feedback vertex set?
- Decision version of Minimum-FVS problem:
 - Given a graph G = (V, E), is there a feedback vertex set with size at most k?

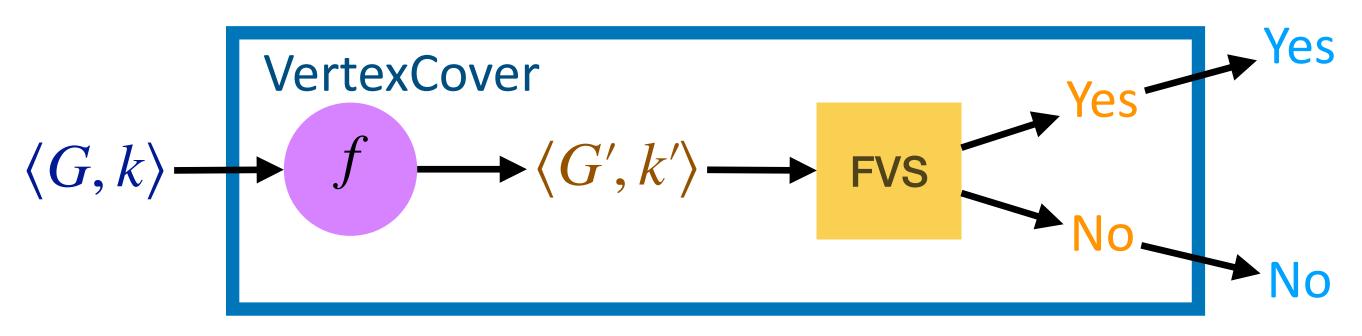
• Theorem: FVS is NP-complete

vertex cover in G with size at most k



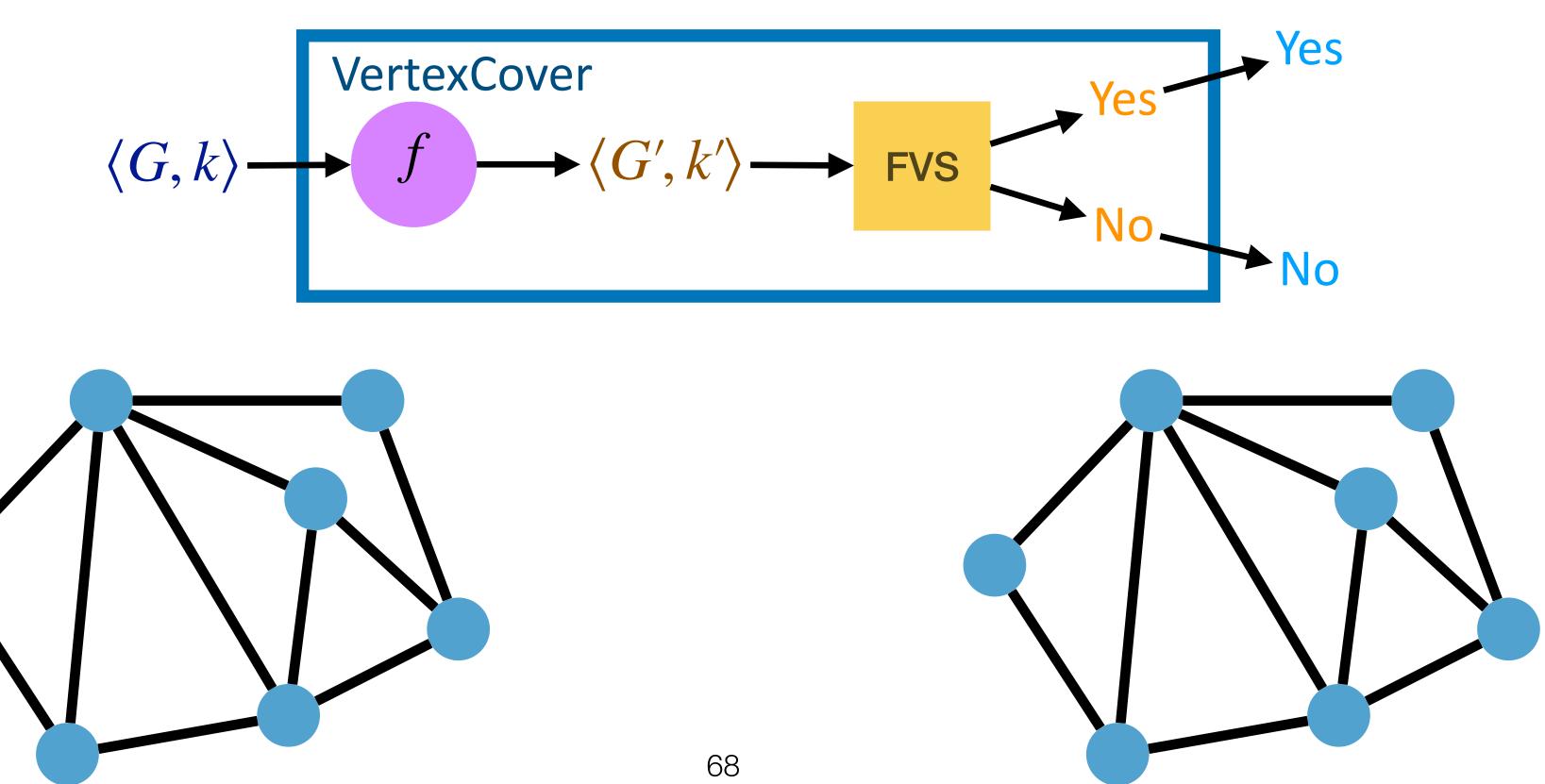
• VertexCover = { $\langle G, k \rangle$ | There is a • FVS = { $\langle G', k' \rangle$ | There is a feedback vertex set in G' with size at most k'

of at most k vertices in G such that removing them leaves no edges }



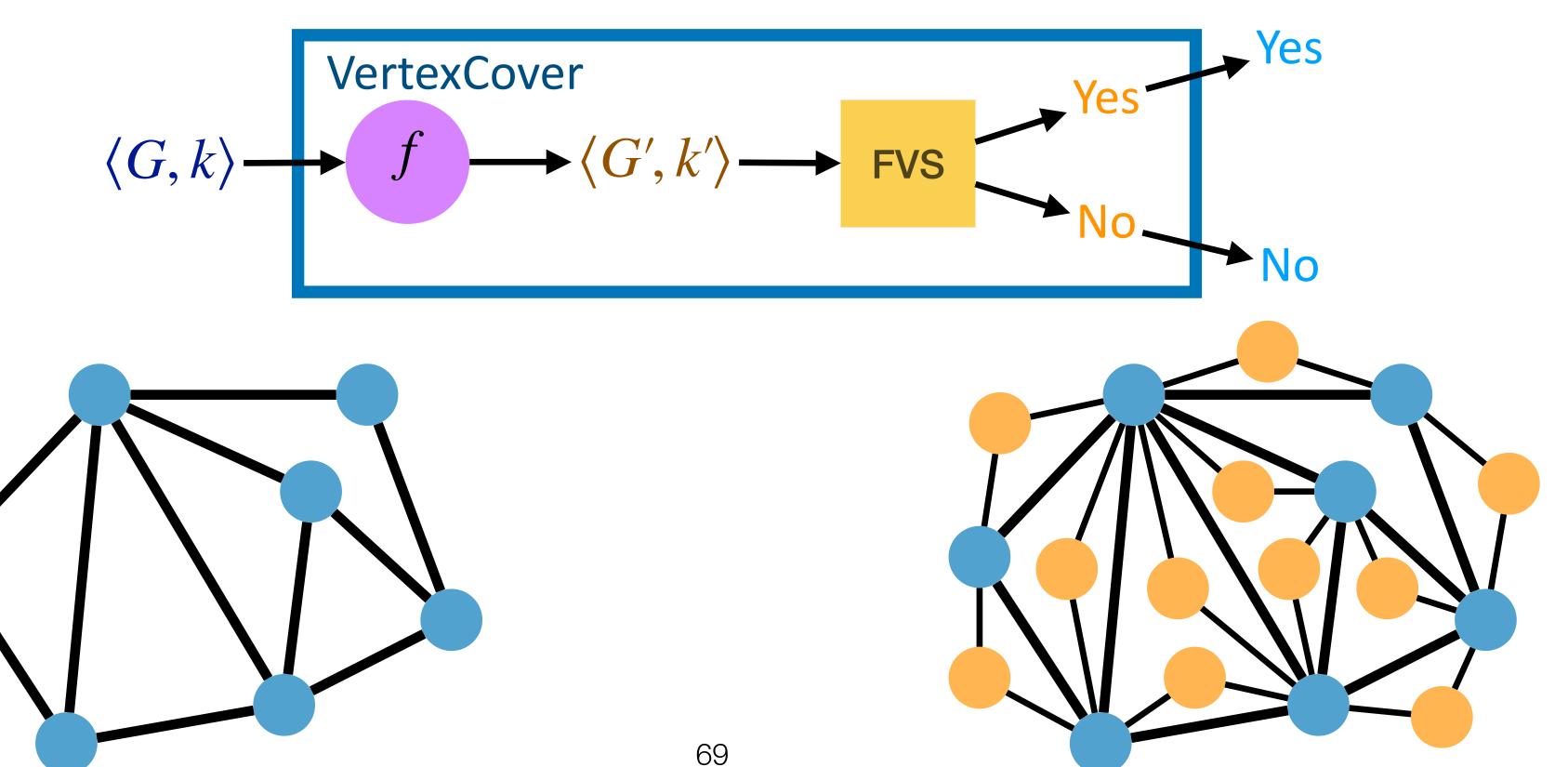
• VertexCover = { $\langle G, k \rangle$ | There is a set • FVS = { $\langle G', k' \rangle$ | There is a set of at most k' vertices in G' such that removing them leaves no cycles }

of at most k vertices in G such that removing them leaves no edges }



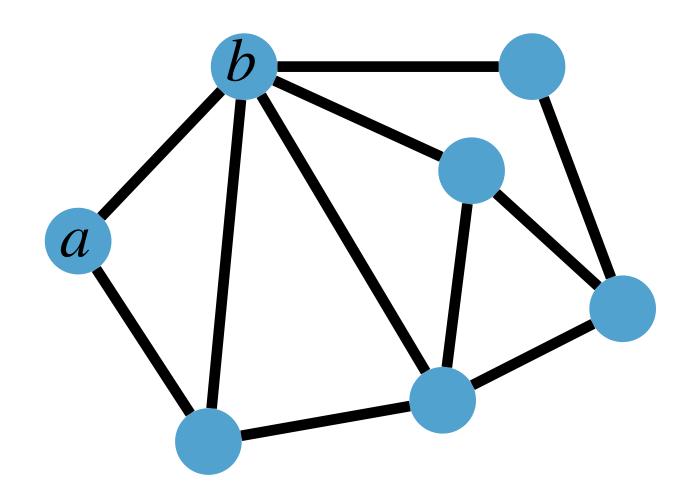
• VertexCover = { $\langle G, k \rangle$ | There is a set • FVS = { $\langle G', k' \rangle$ | There is a set of at most k' vertices in G' such that removing them leaves no cycles }

of at most k vertices in G such that removing them leaves no edges }

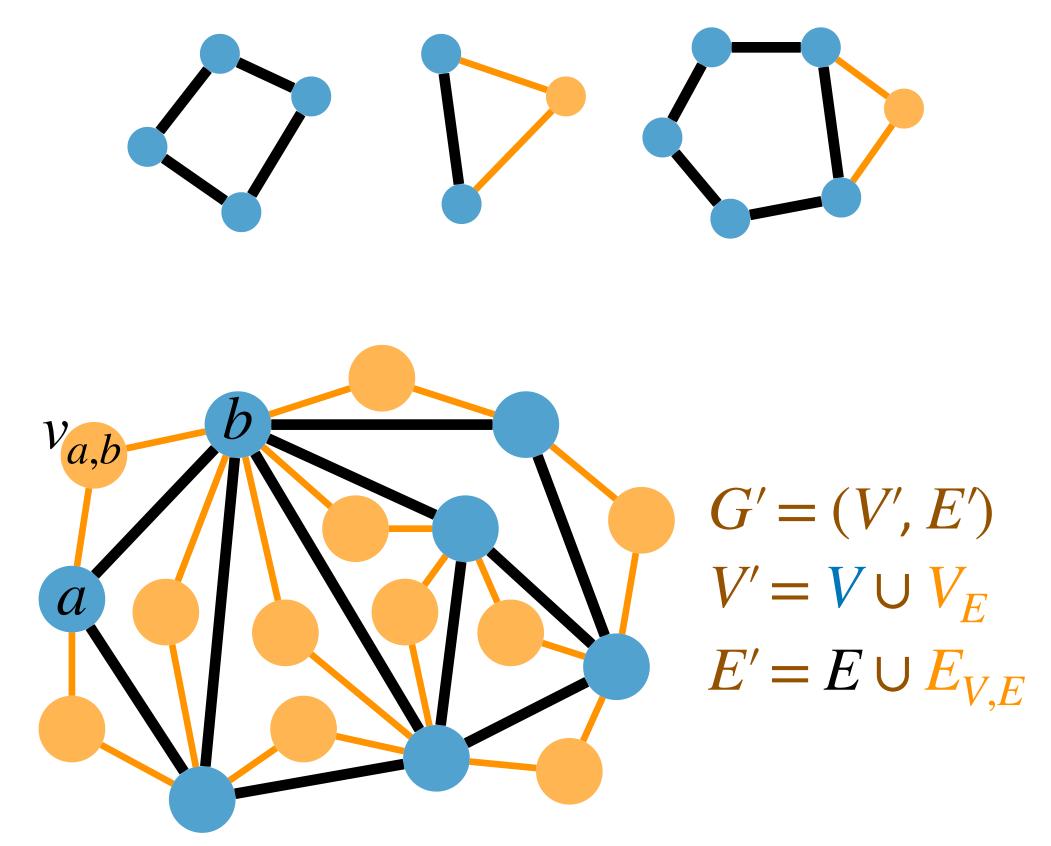


• VertexCover = { $\langle G, k \rangle$ | There is a set • FVS = { $\langle G', k' \rangle$ | There is a set of at most k' vertices in G' such that removing them leaves no cycles }

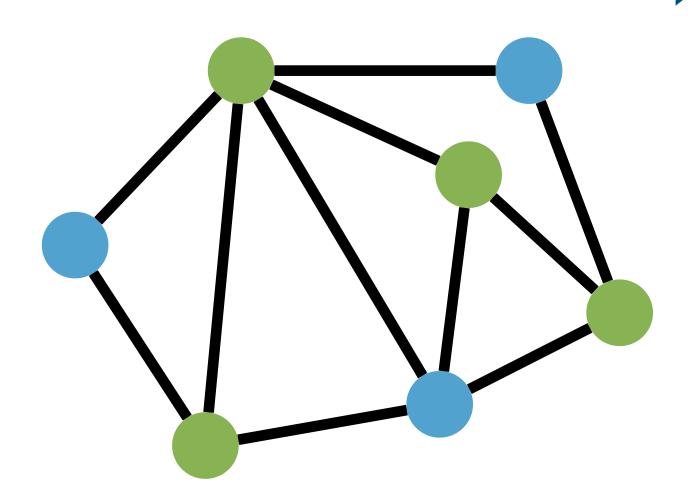
of at most k vertices in G such that removing them leaves no edges }



• VertexCover = { $\langle G, k \rangle$ | There is a set • FVS = { $\langle G', k' \rangle$ | There is a set of at most k' vertices in G' such that removing them leaves no cycles }



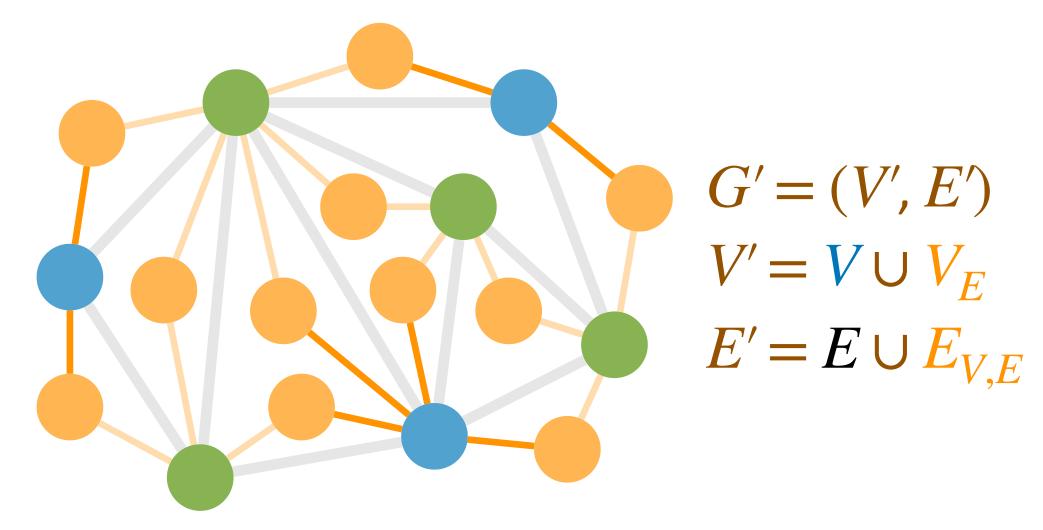
The size-*k* vertex cover



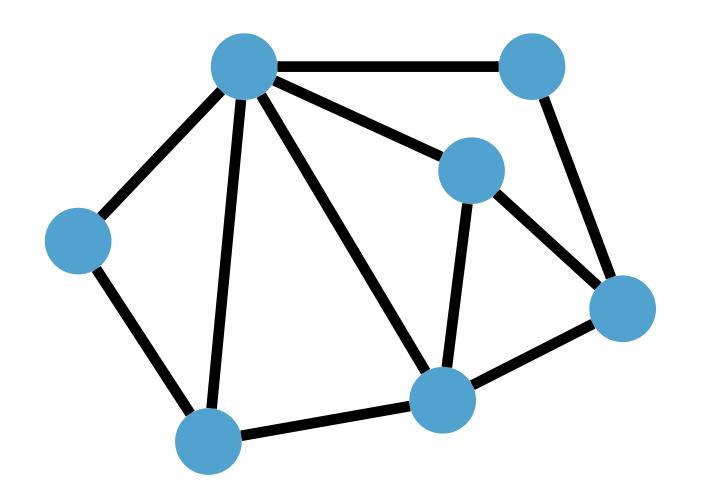
After removing the size-k vertex cover from G':

The $E_{V,E}$ vertices have degree at most 1

The size-k vertex cover is a FVS of G'

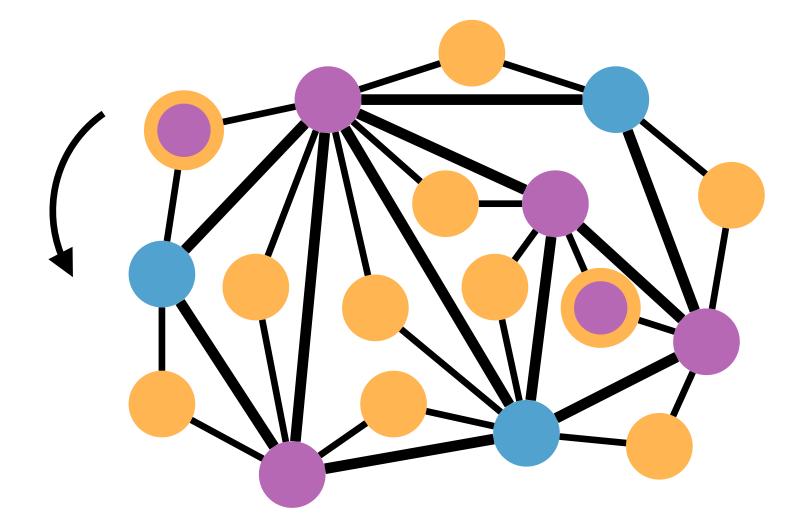


The size-k FVS is a vertex cover of G

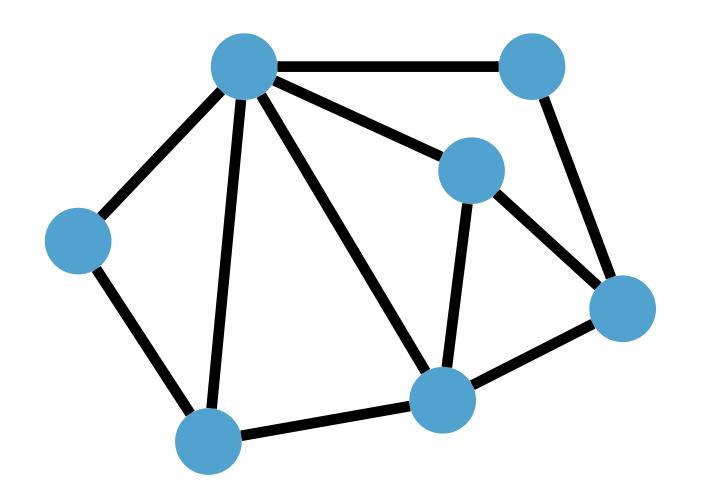


The size-k FVS of G'

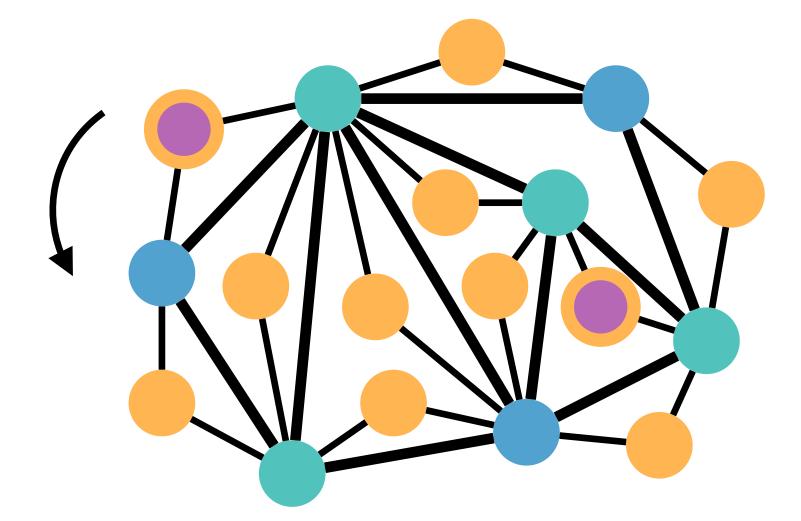
Construct a set F': Keep all u_i in the FVS If some $u_{i,j}$ is in the FVS, replace it by u_i or u_j If both u_i are in u_j the FVS, remove $u_{i,j}$



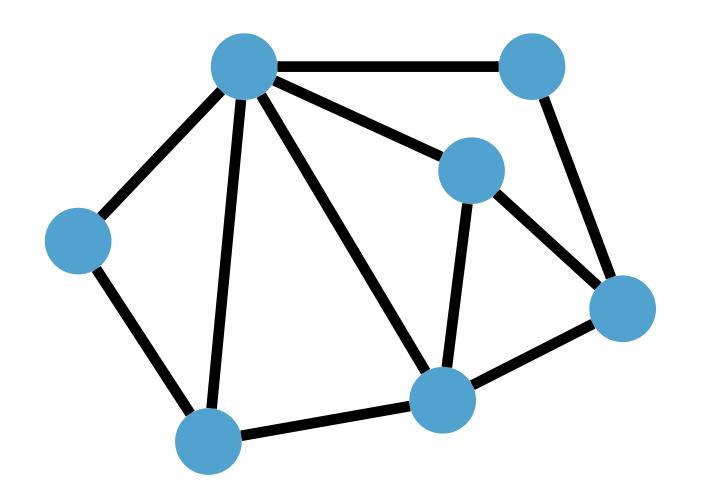
The size-k FVS is a vertex cover of G



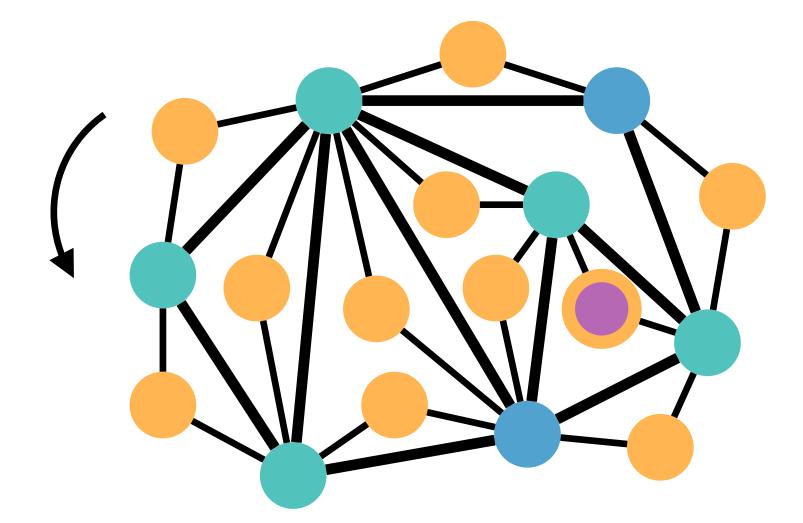
The size-k FVS of G'



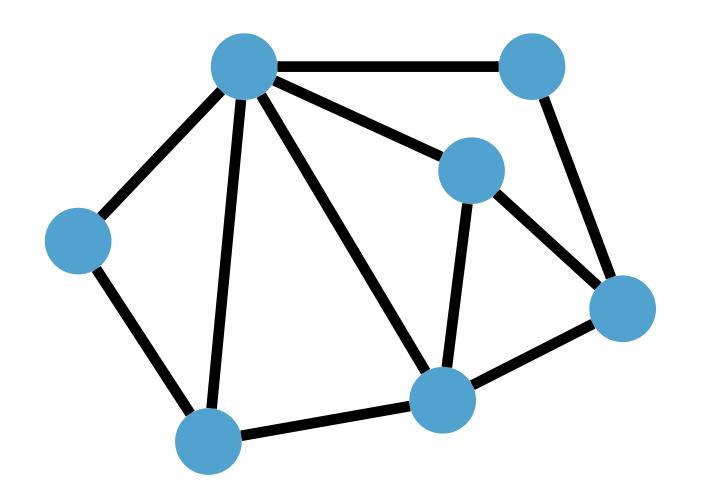
The size-k FVS is a vertex cover of G



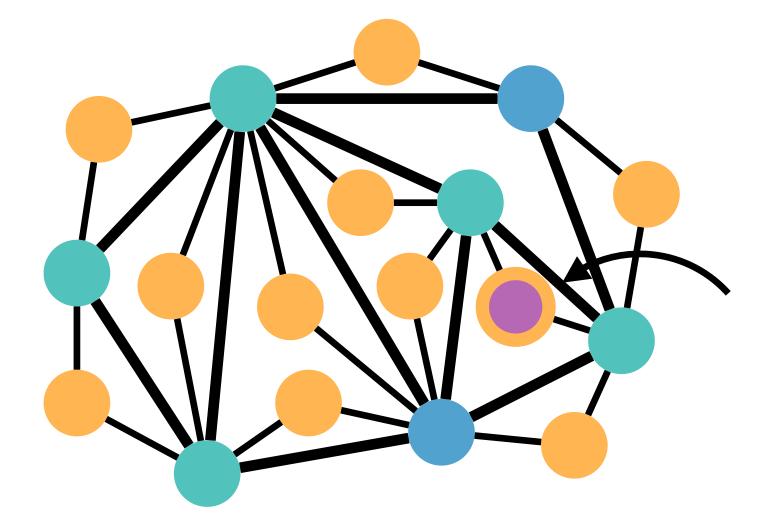
The size-k FVS of G'



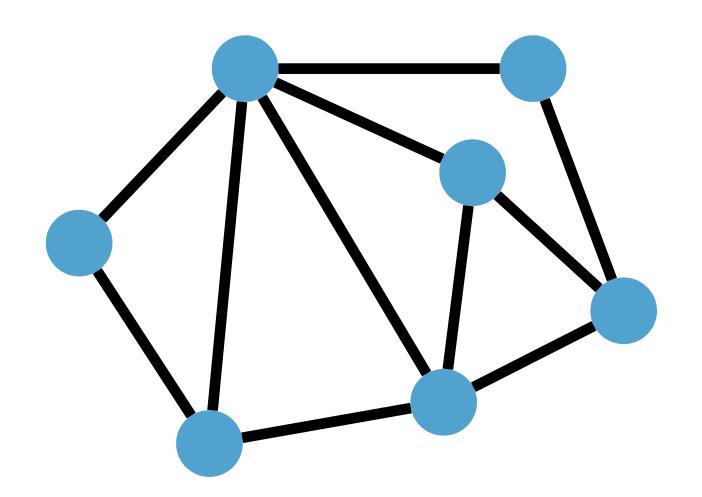
The size-k FVS is a vertex cover of G

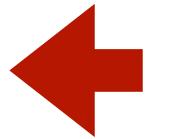


The size-k FVS of G'

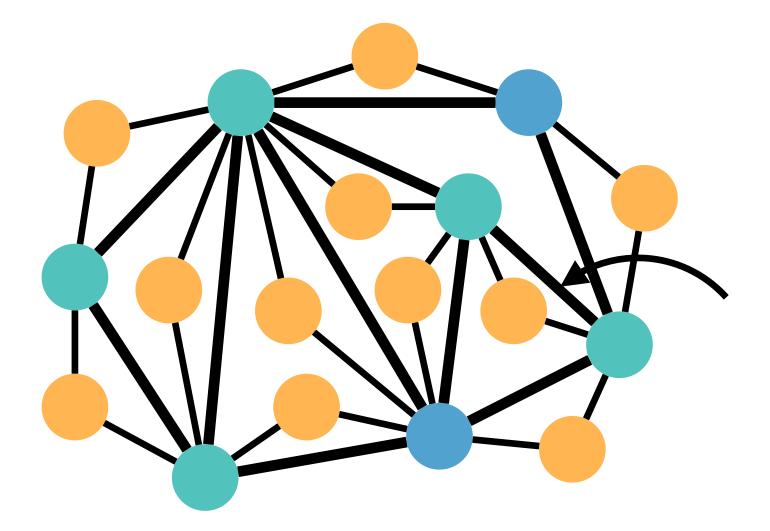


F' is a vertex cover of G

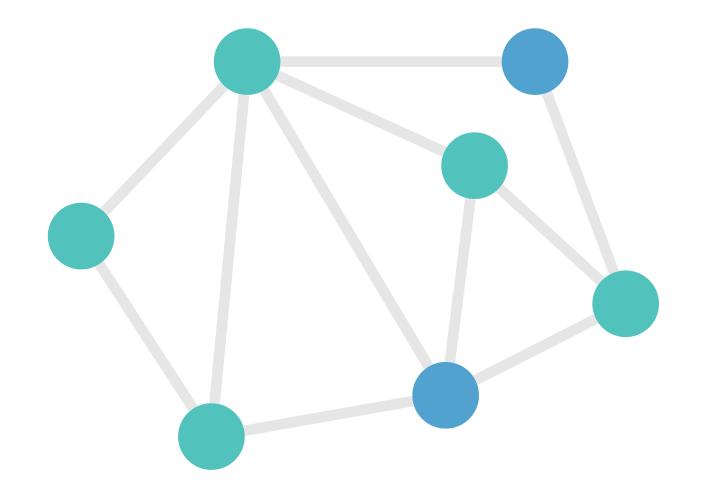


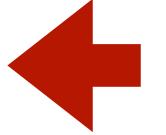


The size-k FVS of G'



F' is a vertex cover of G





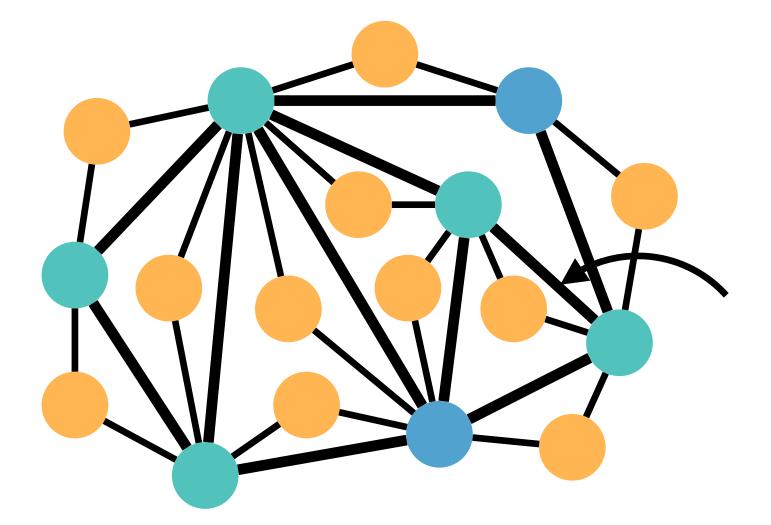
The size-k FVS of G'

Construct a set F': Keep all u_i in the FVS

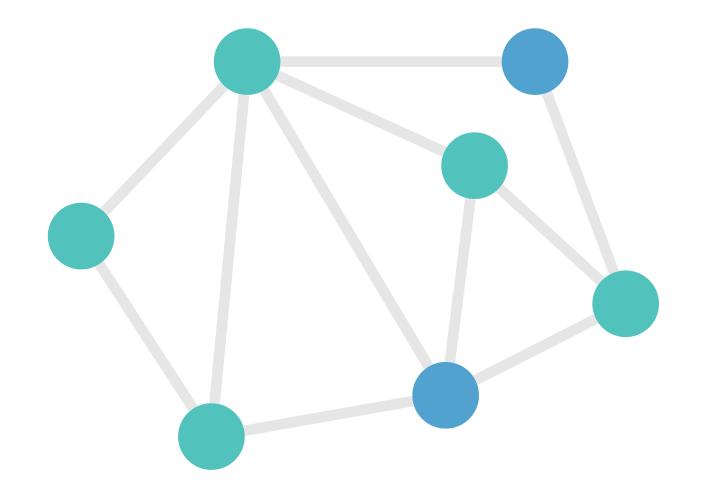
If some $u_{i,j}$ is in the FVS, replace it by u_i or u_j

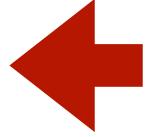
If both u_i are in u_j the FVS, remove $u_{i,j}$

 \Rightarrow F' is a FVS with size at most k'

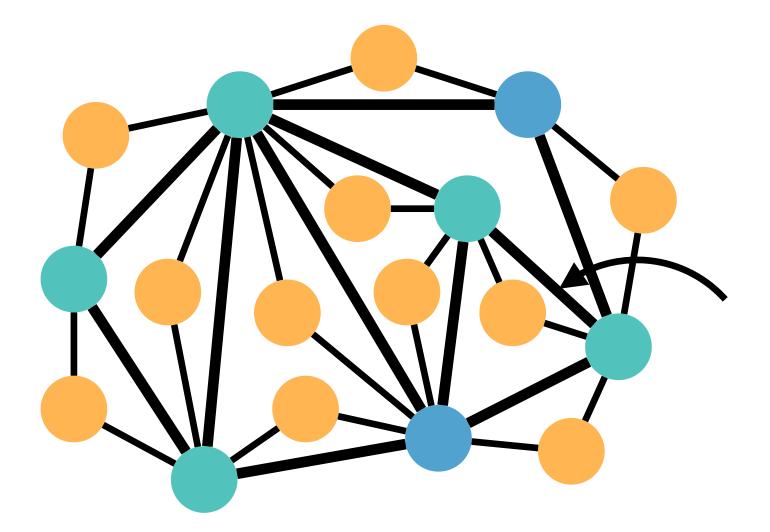


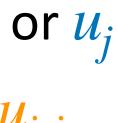
F' is a vertex cover of G



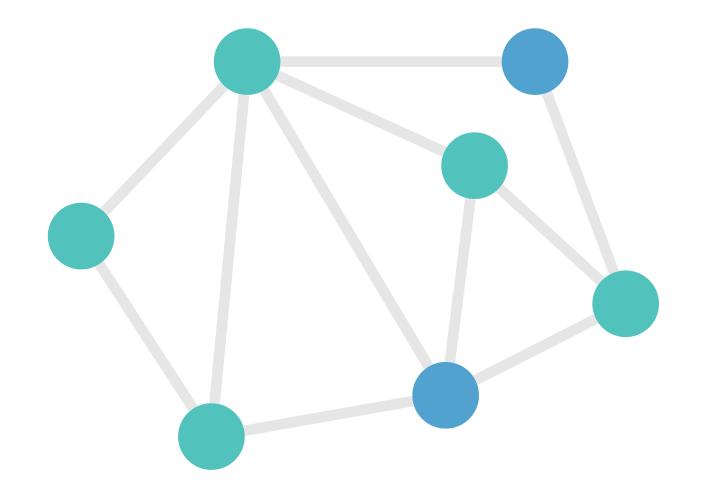


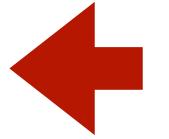
The size-k FVS of G'



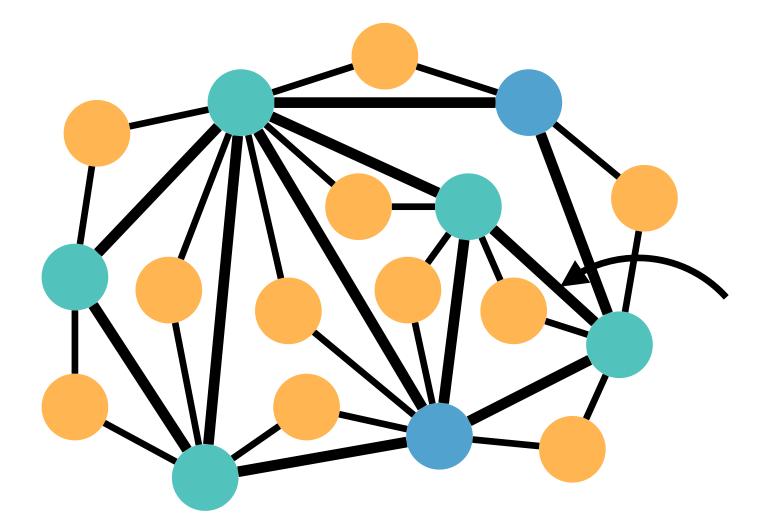


F' is a vertex cover of G

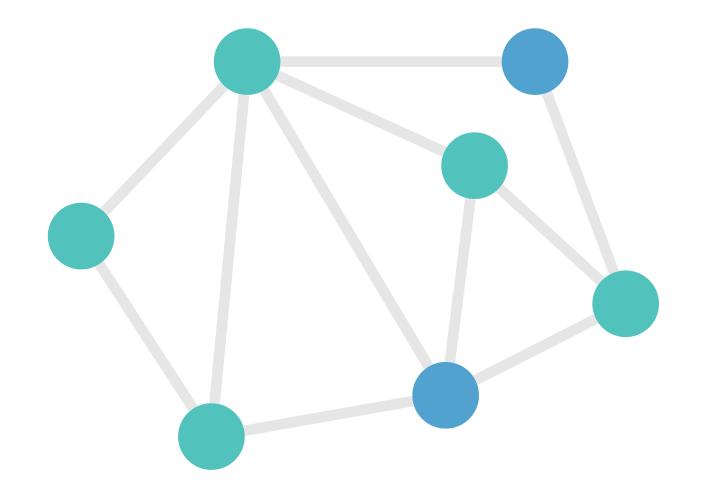


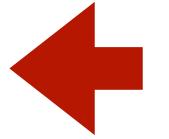


The size-k FVS of G'

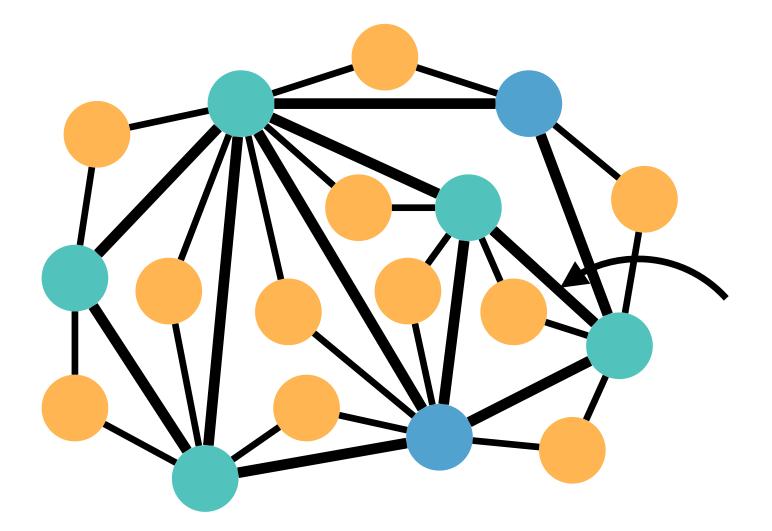


F' is a vertex cover of G



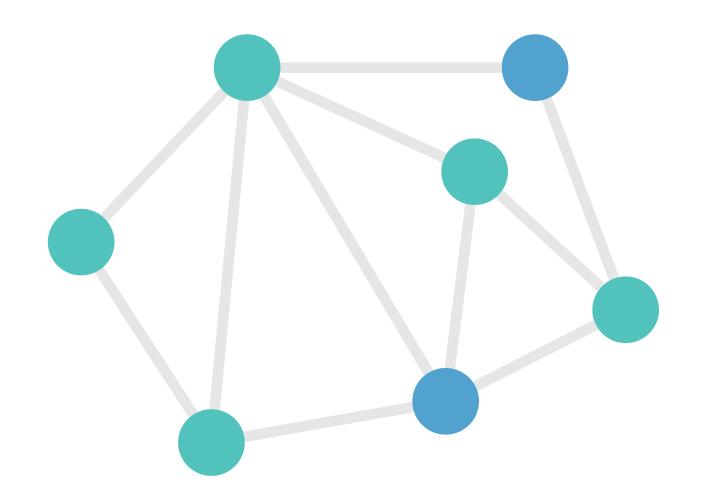


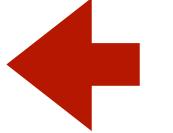
The size-k FVS of G'



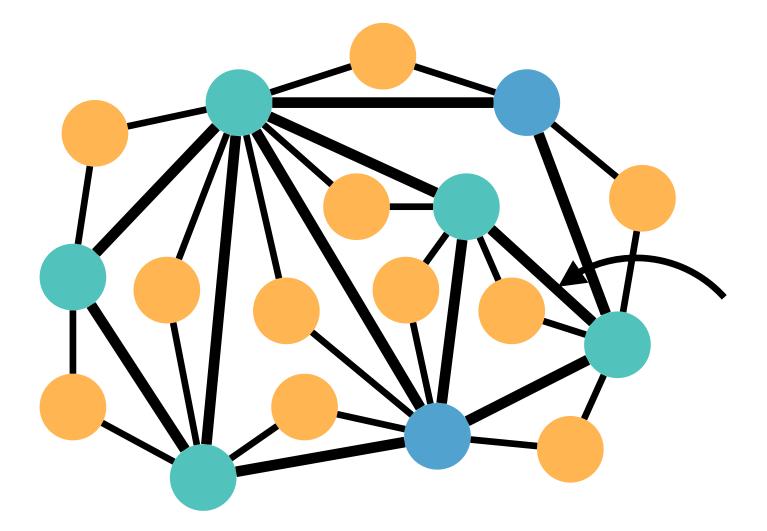
F' is a vertex cover of G

After removing F' from G', G' has no cycle \Rightarrow After removing F' from G, G has no edge



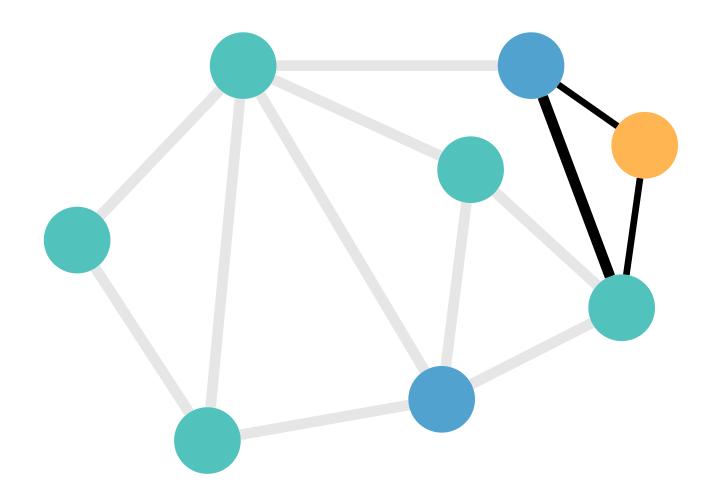


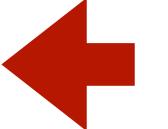
The size-k FVS of G'



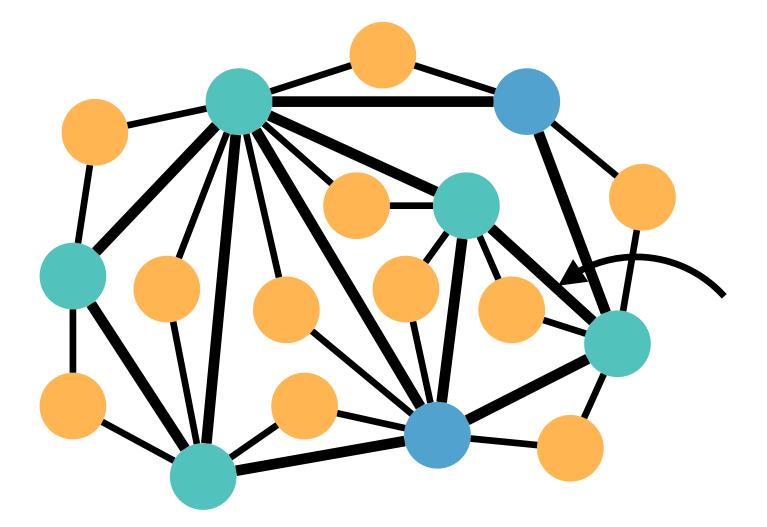
F' is a vertex cover of G

After removing F' from G', G' has no cycle \Rightarrow After removing F' from G, G has no edge Otherwise, there is a cycle in G' since no $\mathcal{U}_{i,i}$ is in F')



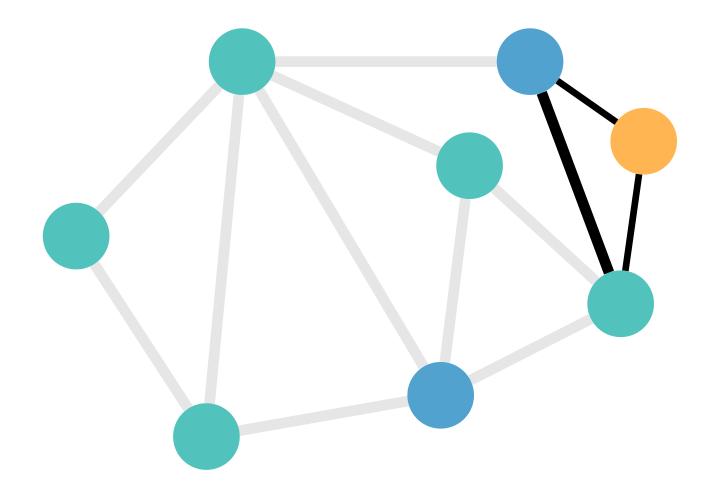


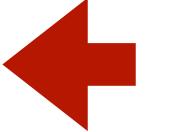
The size-k FVS of G'



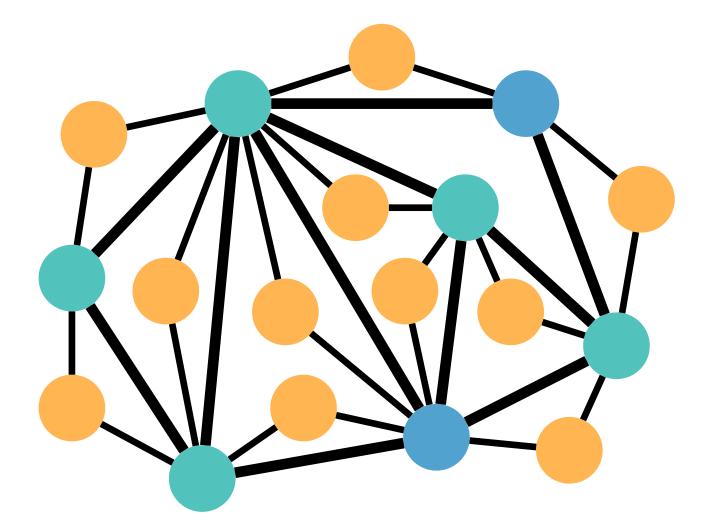
F' is a vertex cover of G

After removing F' from G', G' has no cycle \Rightarrow After removing F' from G, G has no edge Otherwise, there is a cycle in G' since no $u_{i,i}$ is in **F'**) \Rightarrow F' is a vertex cover with size at most k in G





The size-k FVS of G'



• **FVS** = { $\langle G, k \rangle$ | There is a set of at I leaves no cycles }

• Theorem: FVS is NP-complete

<proof> To prove that FVS is in NP, we use a size-k feedback vertex set U as the certificate. The verifier should check U it is a proper subset of the vertices in G, and if G is cycle-free after removing all edges incident to the vertices in U. The later can be done by running a breadth-first-search on the resulting graph. The checking time is in polynomial of the size of G.

• FVS = { $\langle G, k \rangle$ | There is a set of at most k vertices in G such that removing them

To prove the NP-hardness, we show that VERTEX-COVER \leq_p FVS. For any instance of VERTEX-COVER, G = (V, E) and k, we construct an instance of FVS, G' = (V', E') and k' as follows. For each vertex $v_i \in V$, there is a corresponding vertex $u_i \in V'$. More over, for each edge $(v_i, v_j) \in E$, there is a corresponding vertex $u_{i,j} \in V'$.

For each edge $(v_i, v_j) \in E$, we construct three edges in $E': (u_i, u_j), (u_i, u_{i,j})$, and $(u_j, u_{i,j})$.

We set k' = k.

The construction takes constant time to each element in V or E and can be done in polynomial-time.

Now we prove that the reduction works. Suppose that there is a size-k vertex cover C of G. First observe that there are two types of cycles in G': 1) cycles containing no $u_{i,i}$ vertices, and 2) cycles containing at least one $u_{i,i}$ vertex.

Consider removing all vertices in C from V', there is no edge between any two

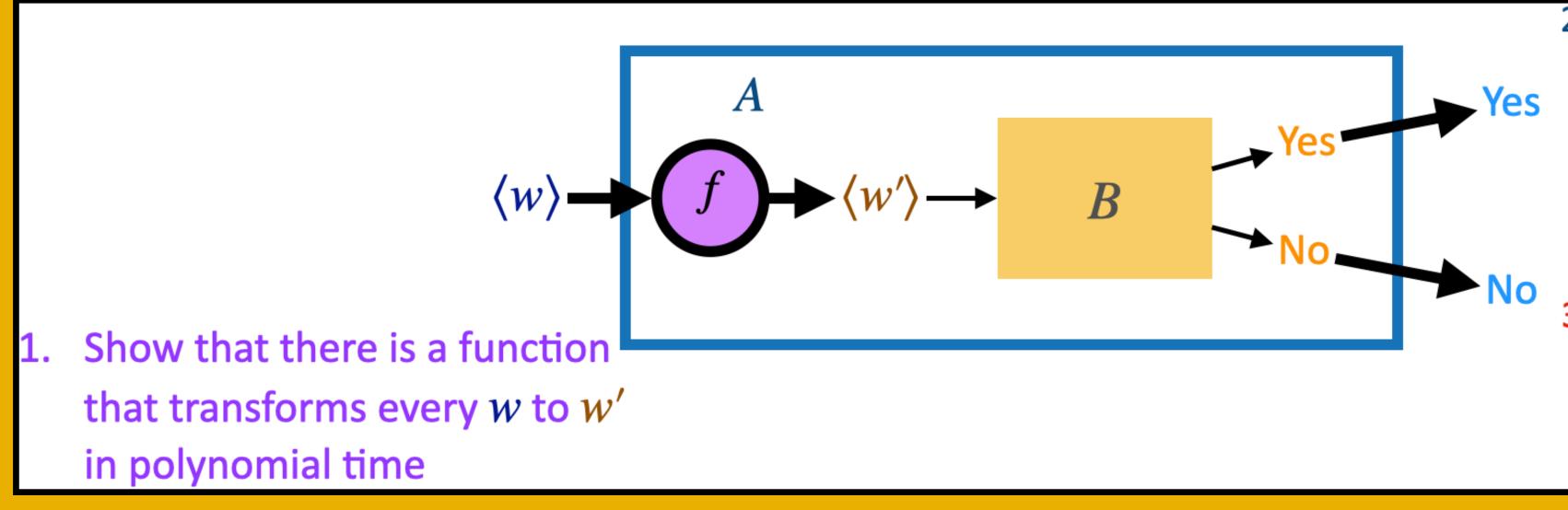
Furthermore, because every vertex u_{i,j} only adjacent to u'_i and u'_i , the degree of $u_{i,j}$ is at most 1 after removing vertices in C. Thus, there are no type-2 cycles left. Hence, C is a size-k feedback vertex set of G', and $\langle G', k' \rangle$ is a yes-instance of FVS.

vertices in V', u_i and u_j . Therefore, there are no type-1 cycles in the remaining graph.

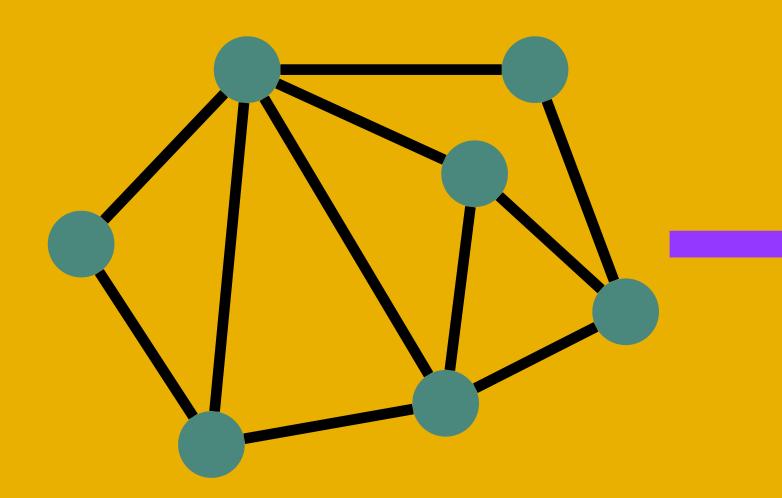
For the other direction, suppose that there is a size-k' feedback vertex set F of G'. We make a feedback vertex set F' of G' with size at most k' as follows. For all vertices u_i in F, we add them into F'. If there is a vertex $u_{i,j}$ in F, we replace it by u_i or u_j , which was not in F, in F'. If both u_i and u_j are already in F, we simply remove $u_{i,j}$. Any cycle C that only contains vertices u_i 's is broken by $C \cup F'$ since $C \cup F \subseteq C \cup F'$. Any cycle that contains an u_{ij} vertex is broken by u_i or u_j . Therefore, F' is a feasible feedback vertex set with size at most k'.

87

Now, we argue that the vertices in F' form a vertex cover in G. Since there is no vertex $u_{i,i}$ in F', removing all vertices in F' leaves no edge between any pair of u_i and u_j . Otherwise, there is a cycle $(u_i, u_j, u_{i,j})$, and it contradicts to the fact that F' is a feedback vertex set. Thus, F' is a vertex cover in G. That is, G is a yes-instance of the VERTEX-COVER problem

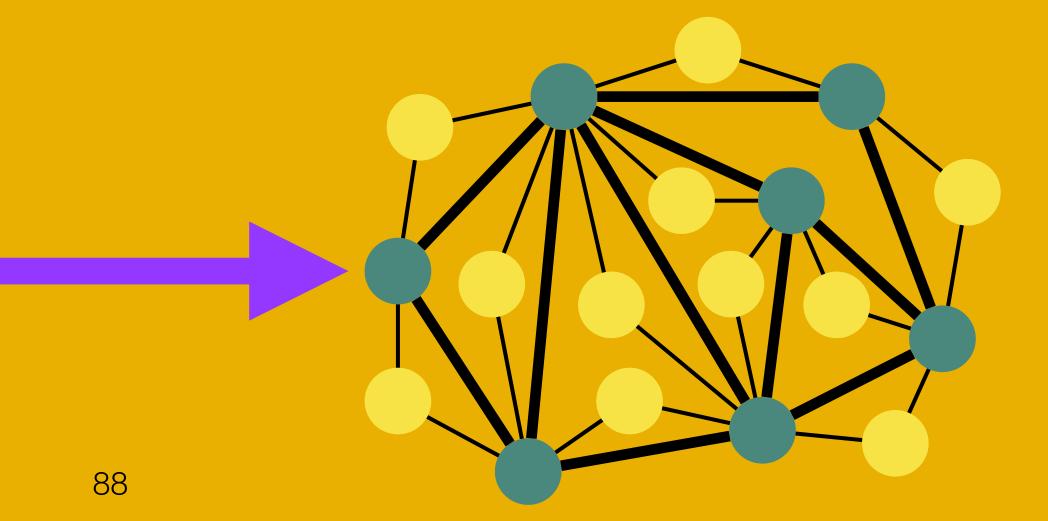


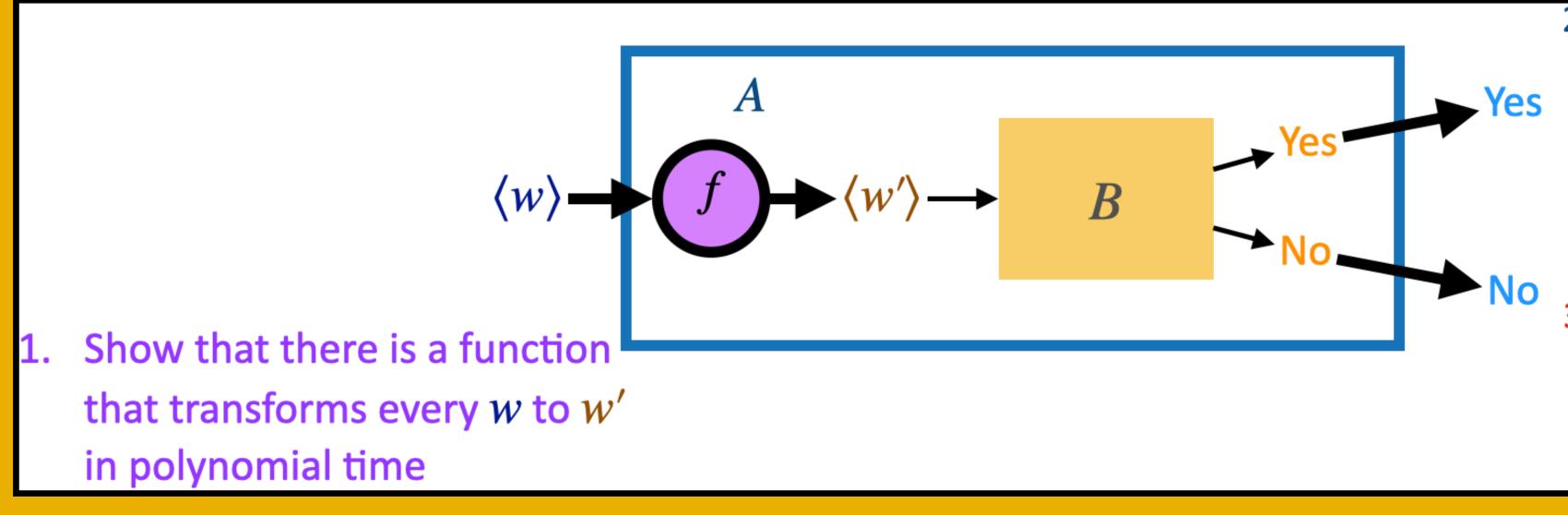
$$\langle G, k \rangle$$



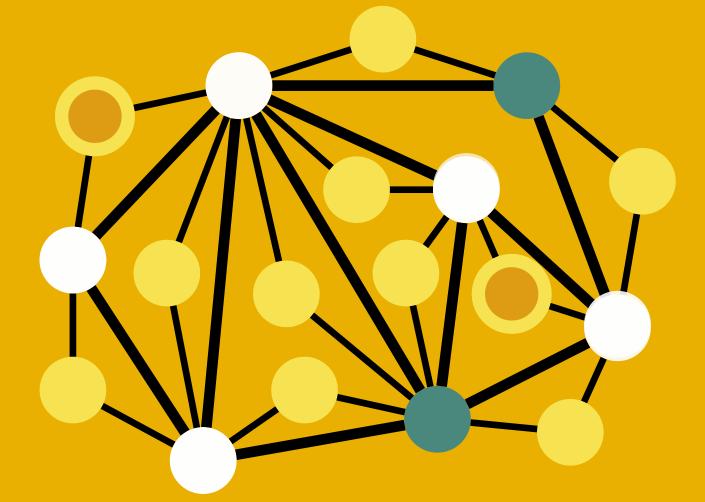
- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any
 no-instance w' ∉ B,
 the corresponding instance
 w is also a no-instance of A

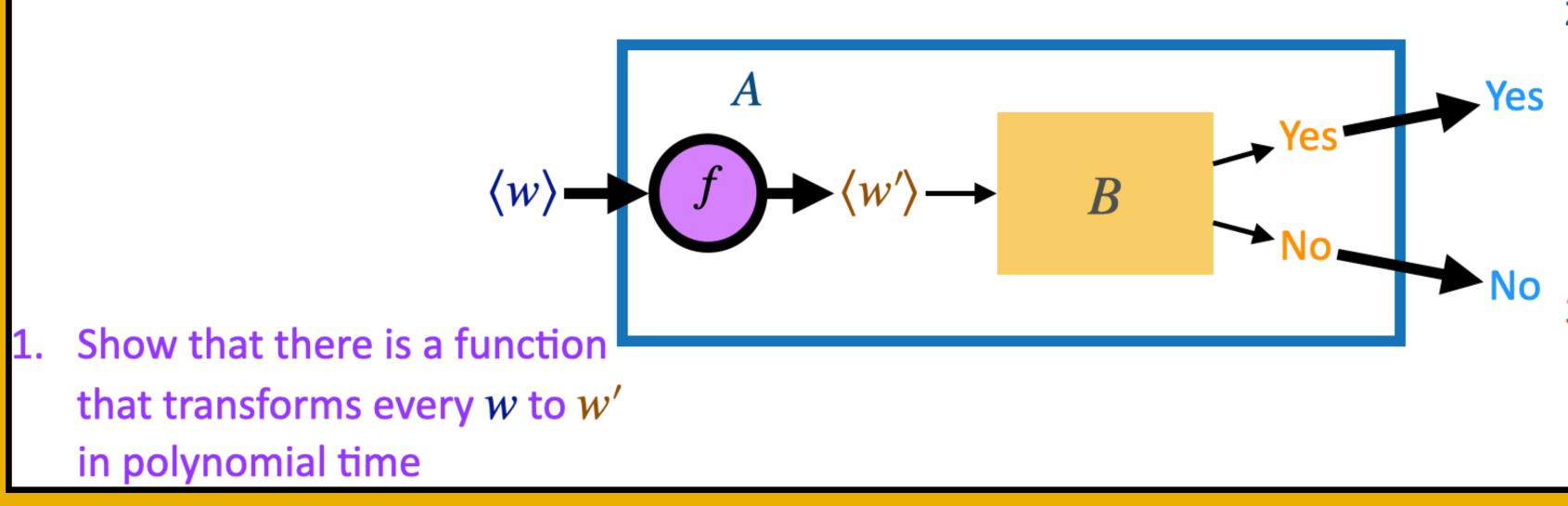
 $\langle G',k
angle$



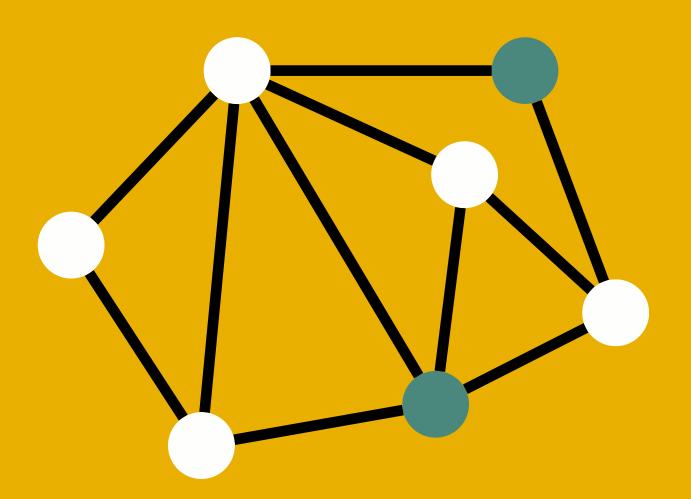


- Show that for any 2. yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

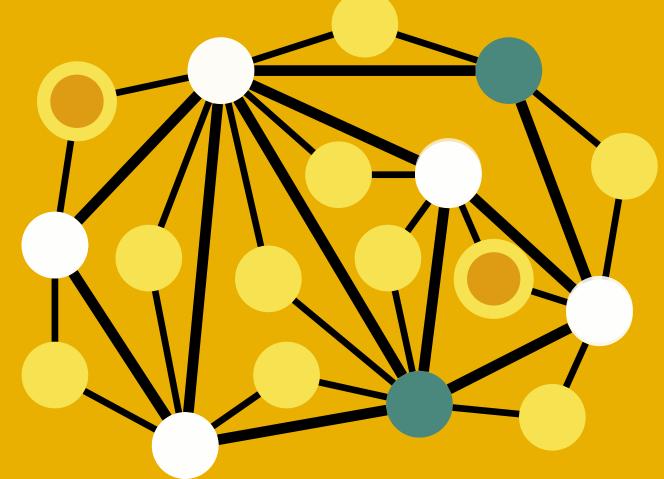


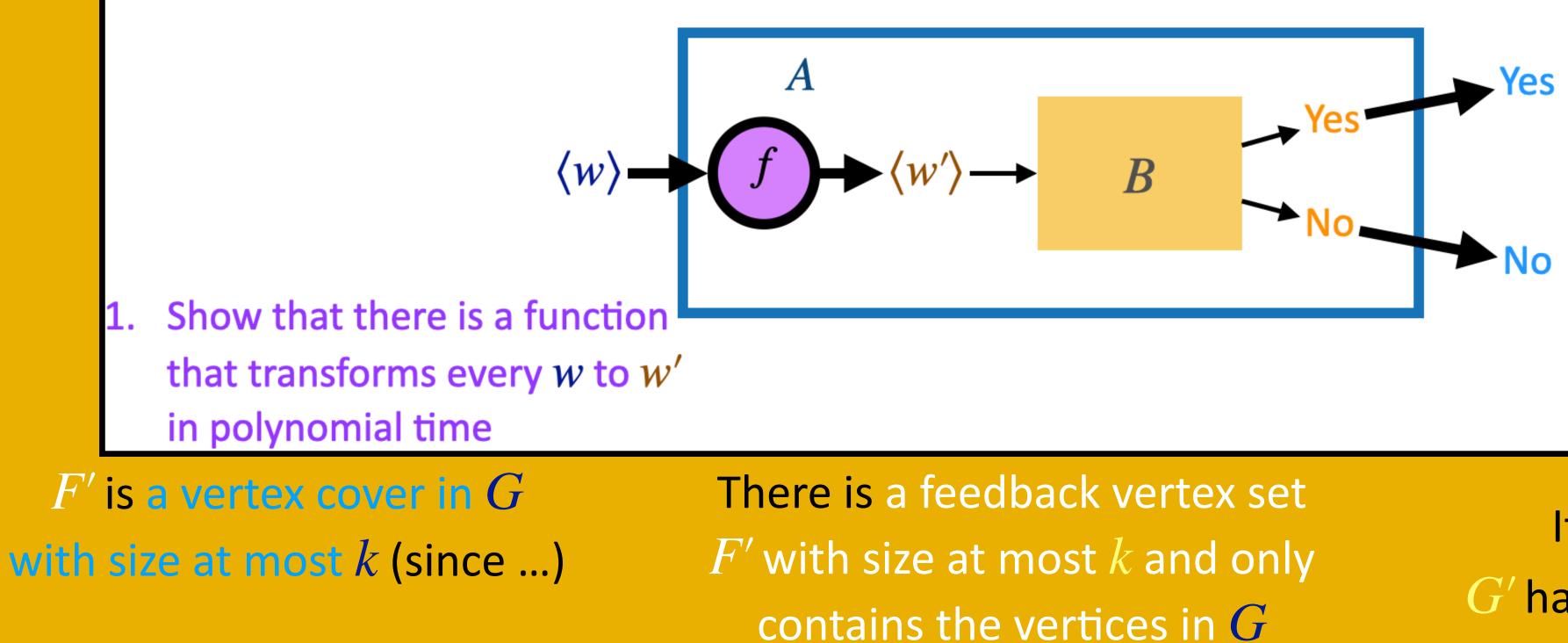


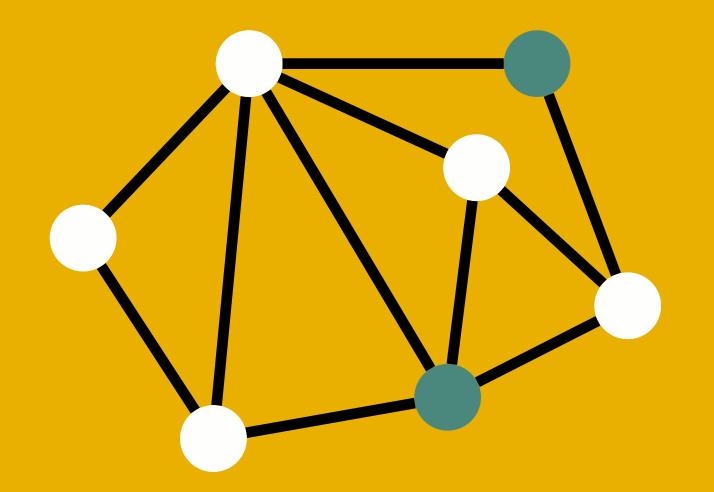
There is a feedback vertex set F' with size at most k and only contains the vertices in G



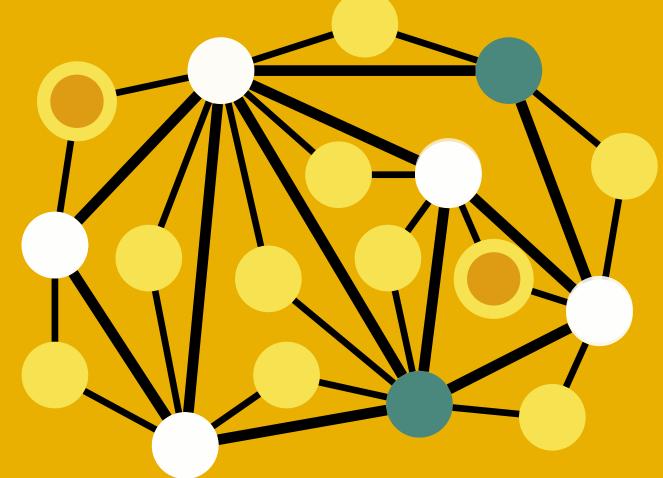
- Show that for any 2. yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

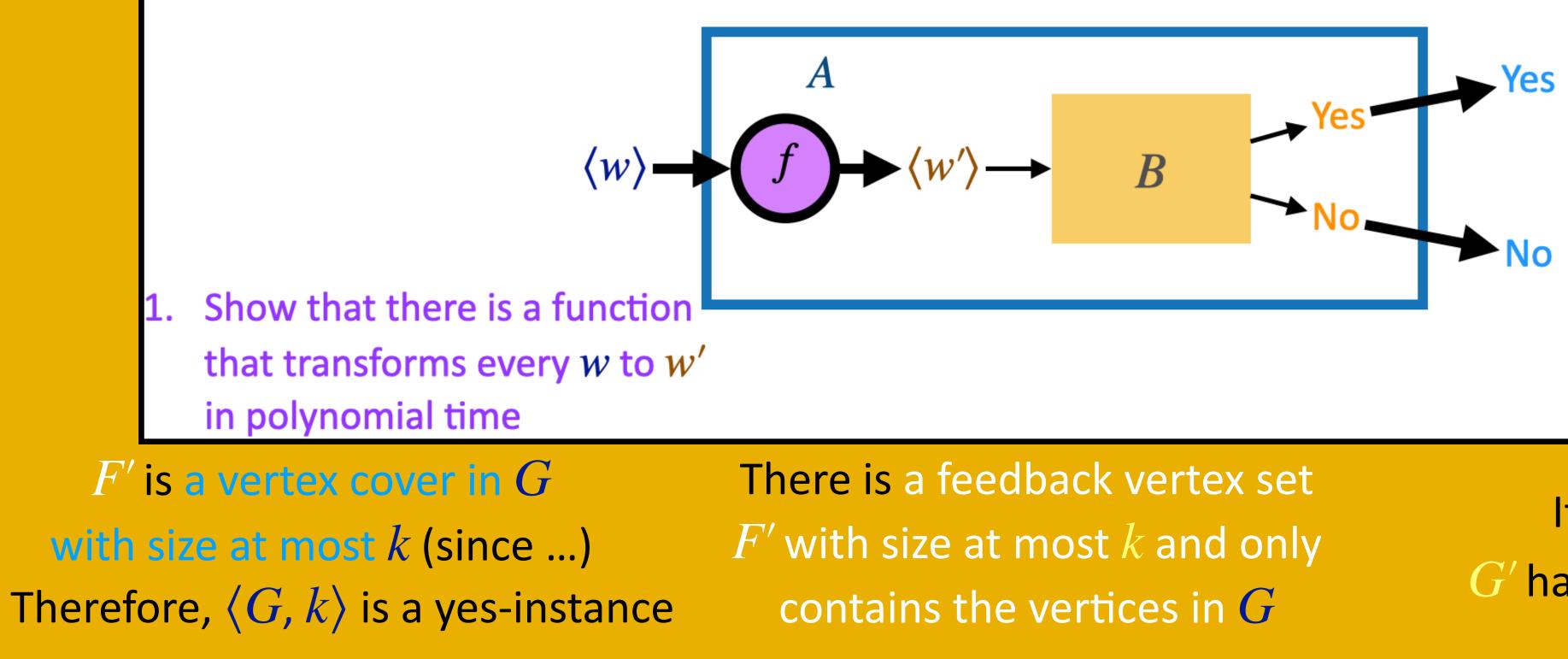


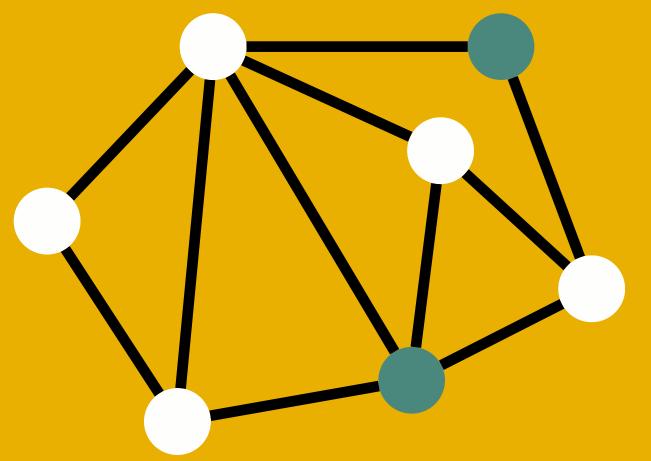




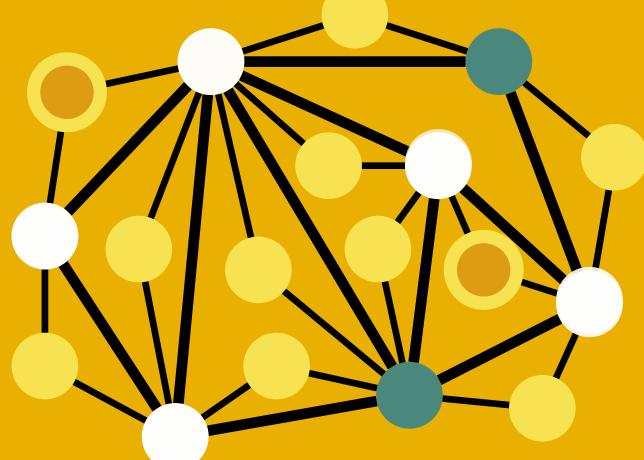
- Show that for any 2. yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

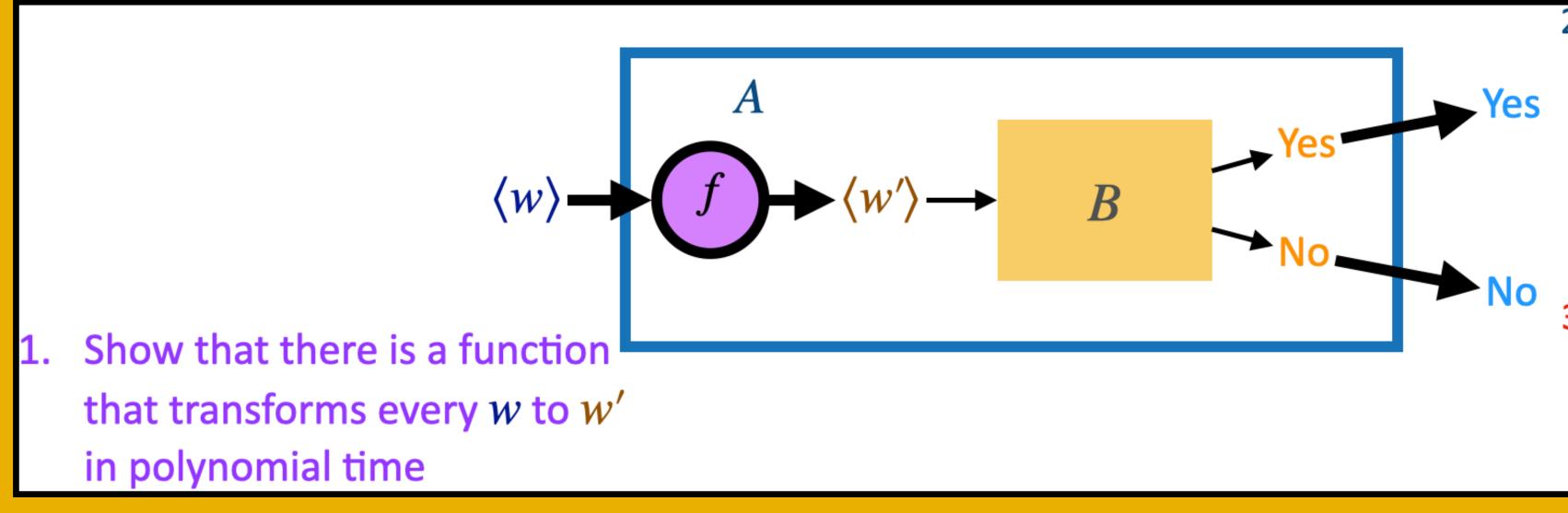


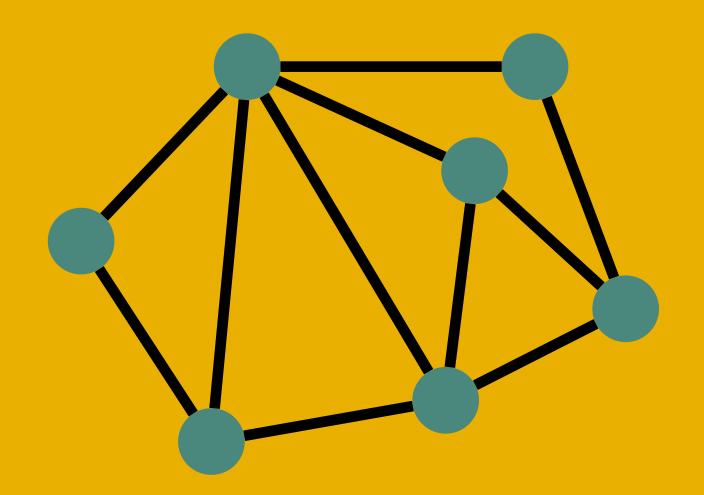




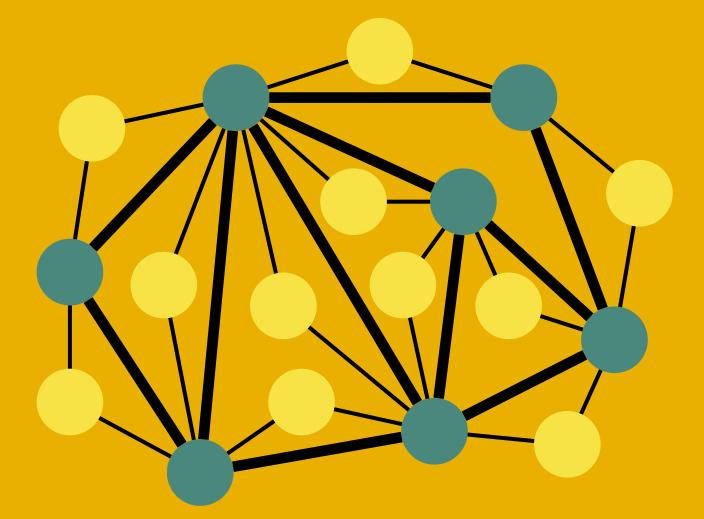
- Show that for any 2. yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

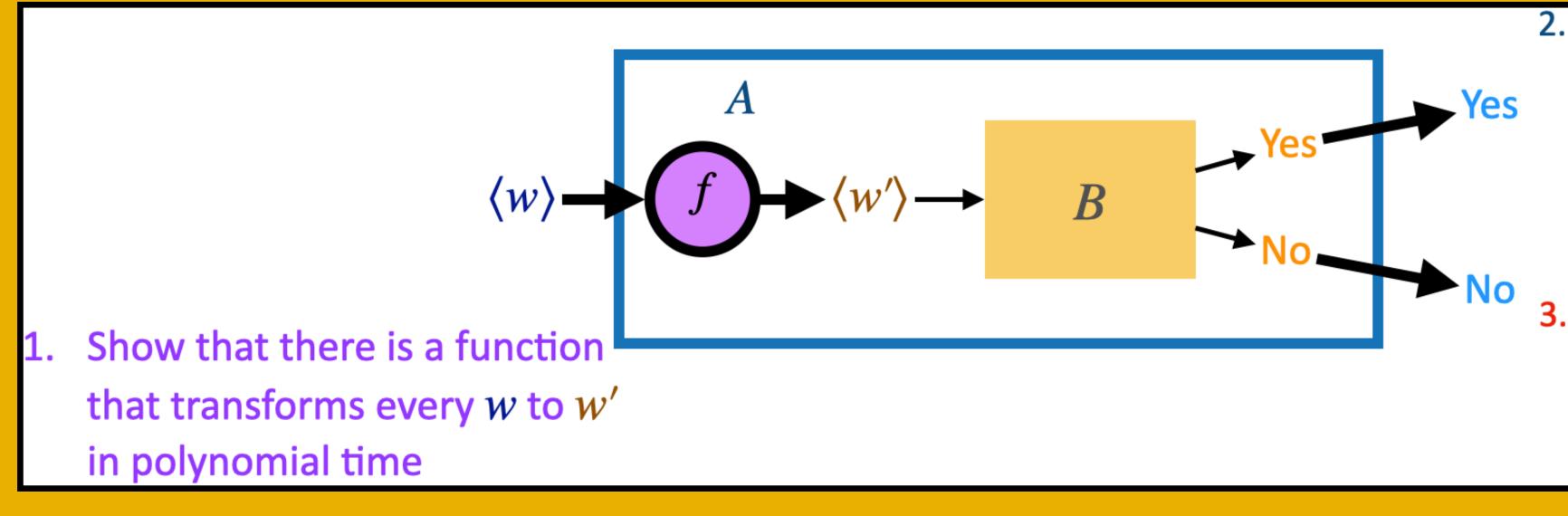




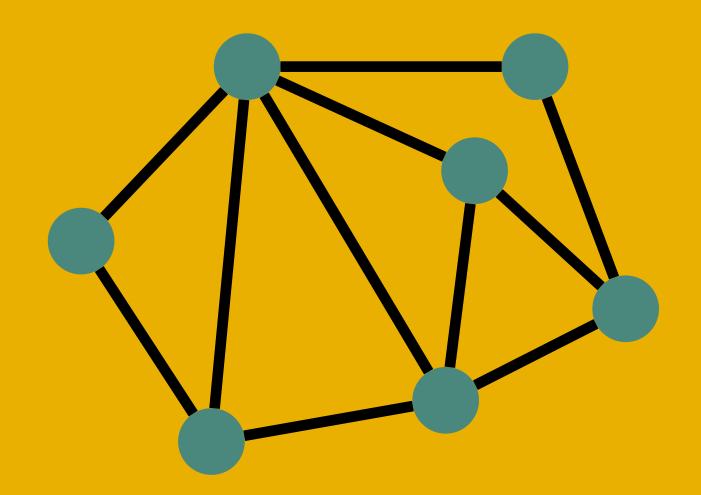


- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any
 no-instance w' ∉ B,
 the corresponding instance
 w is also a no-instance of A

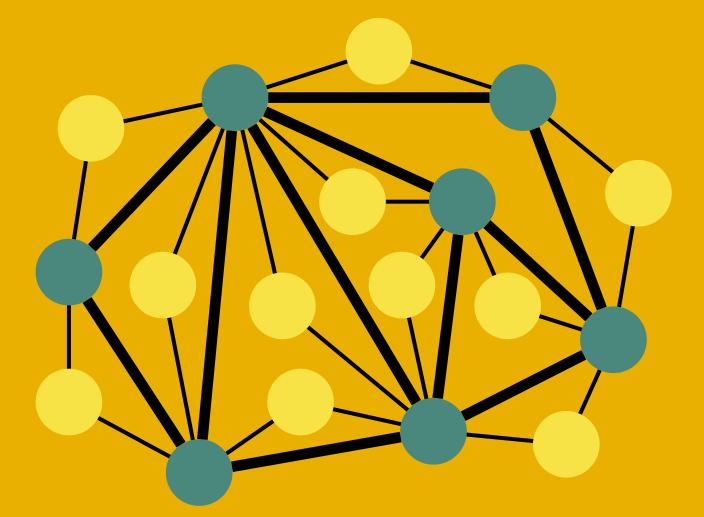


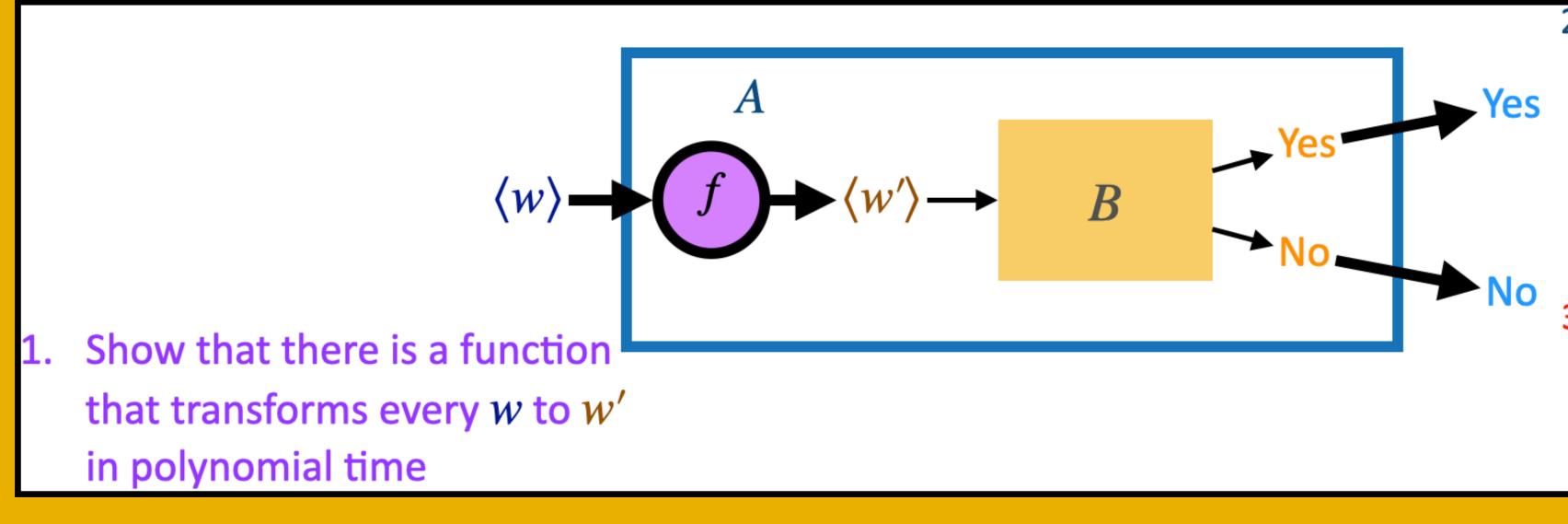


If $\langle G, k \rangle$ is a yes-instance

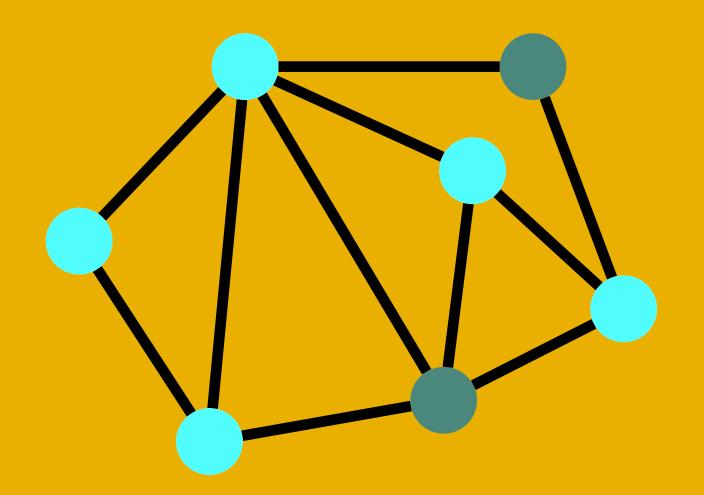


- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- Show that for any
 no-instance w' ∉ B,
 the corresponding instance
 w is also a no-instance of A

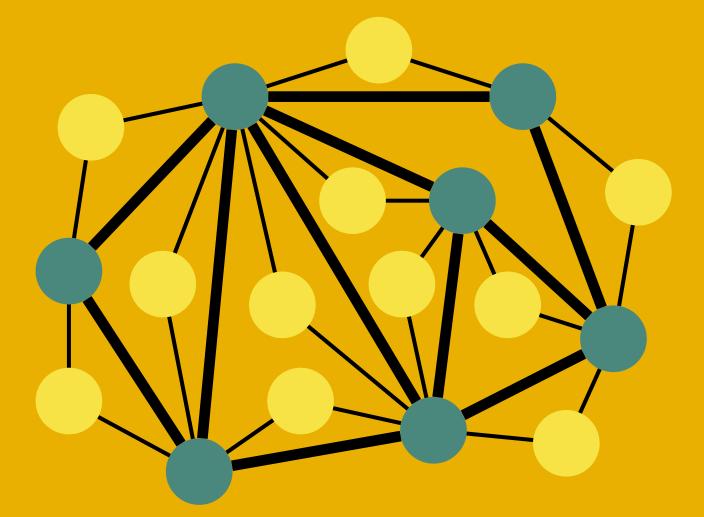


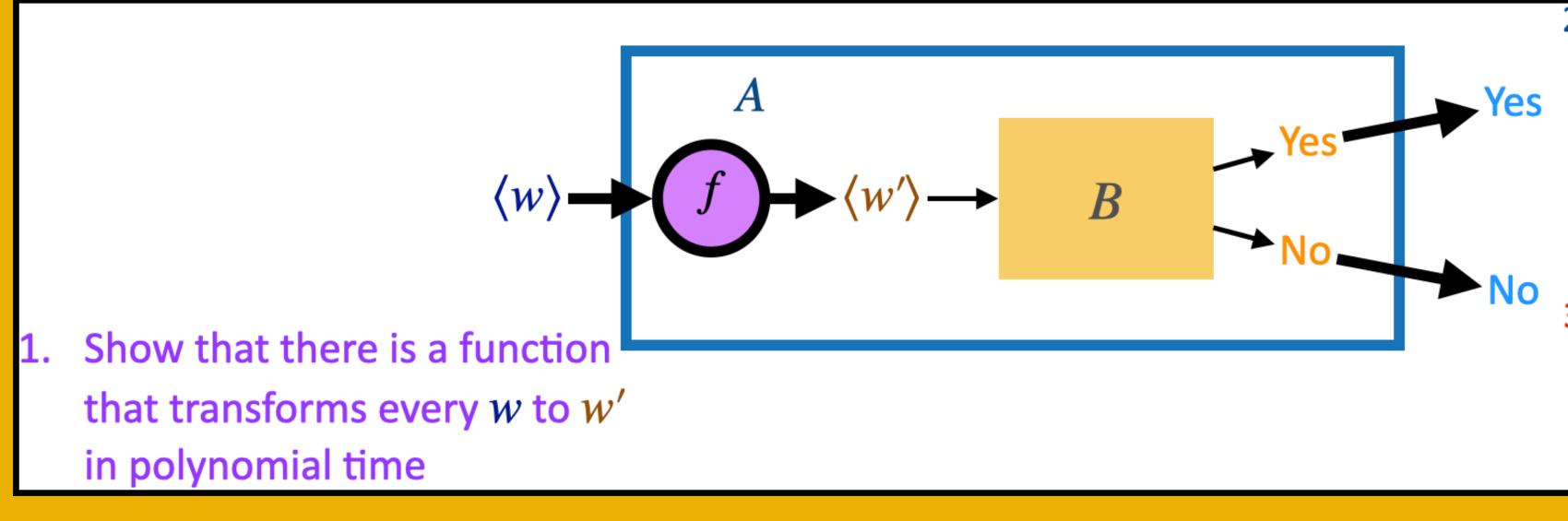


If $\langle G, k \rangle$ is a yes-instance *G* has a size-*k* vertex cover *C*

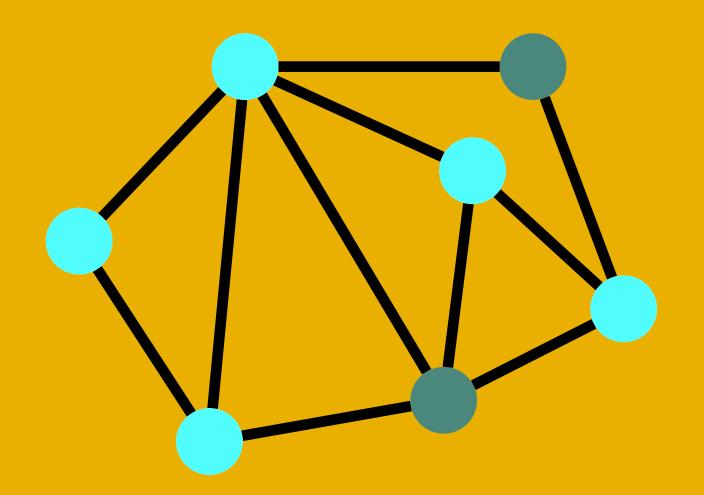


- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any
 no-instance w' ∉ B,
 the corresponding instance
 w is also a no-instance of A



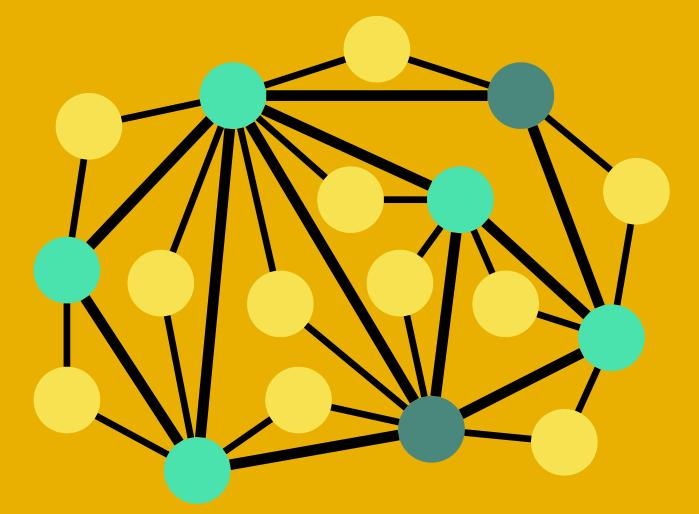


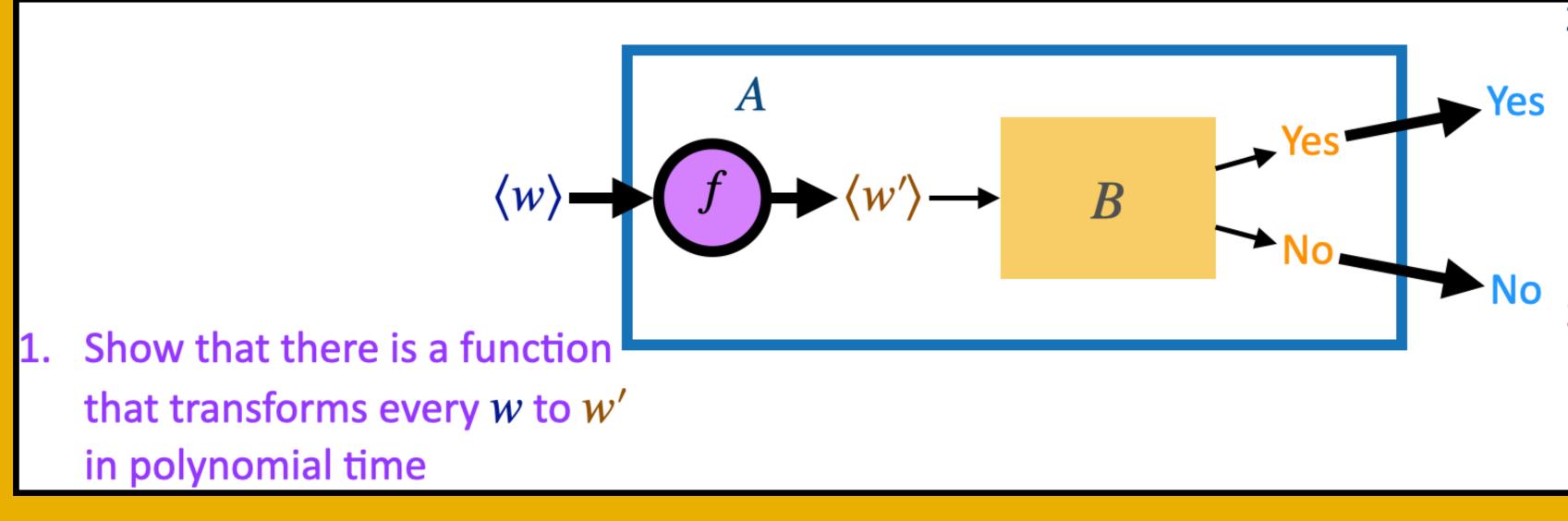
If $\langle G, k \rangle$ is a yes-instance *G* has a size-*k* vertex cover *C*



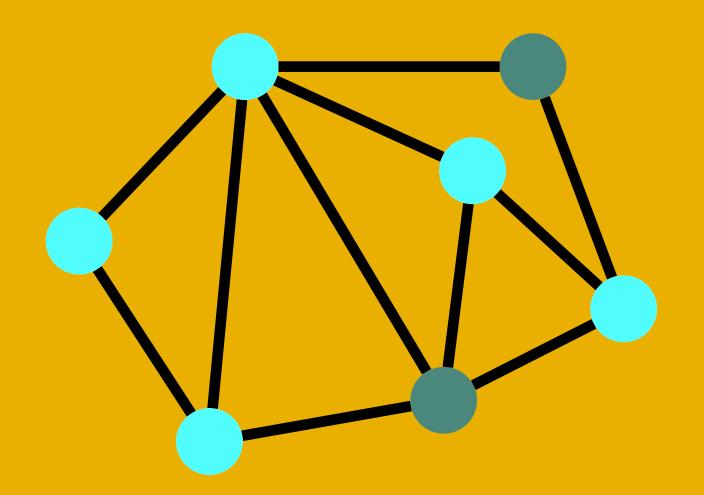
- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any
 no-instance w' ∉ B,
 the corresponding instance
 w is also a no-instance of A

C is a feedback vertex set in G' (since...)



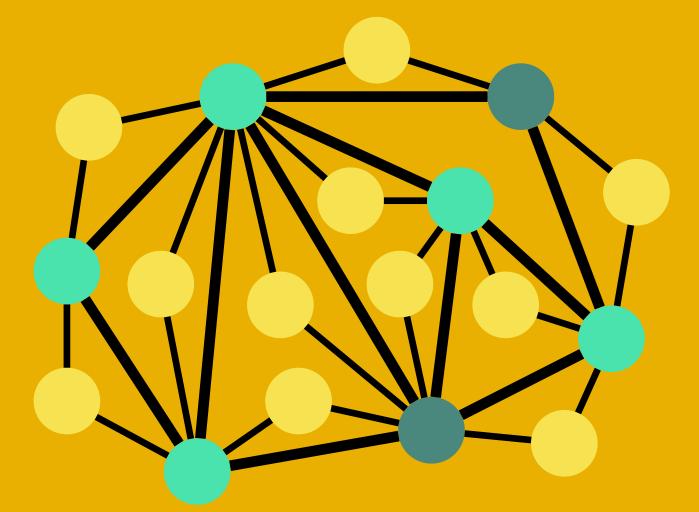


If $\langle G, k \rangle$ is a yes-instance *G* has a size-*k* vertex cover *C*



- 2. Show that for any yes-instance $w' \in B$, the corresponding instance w is also a yes-instance of A
- 3. Show that for any no-instance $w' \notin B$, the corresponding instance w is also a no-instance of A

C is a feedback vertex set in G' (since...) Therefore, $\langle G', k \rangle$ is a yes-instance



Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

Minimum Vertex Cover problem (decision version)

- Input: a graph G = (V, E) and a integer k
- Output:
 - yes if there is a subset of vertices with cardinality at most k that all edges are covered by this subset of vertices
 - no otherwise

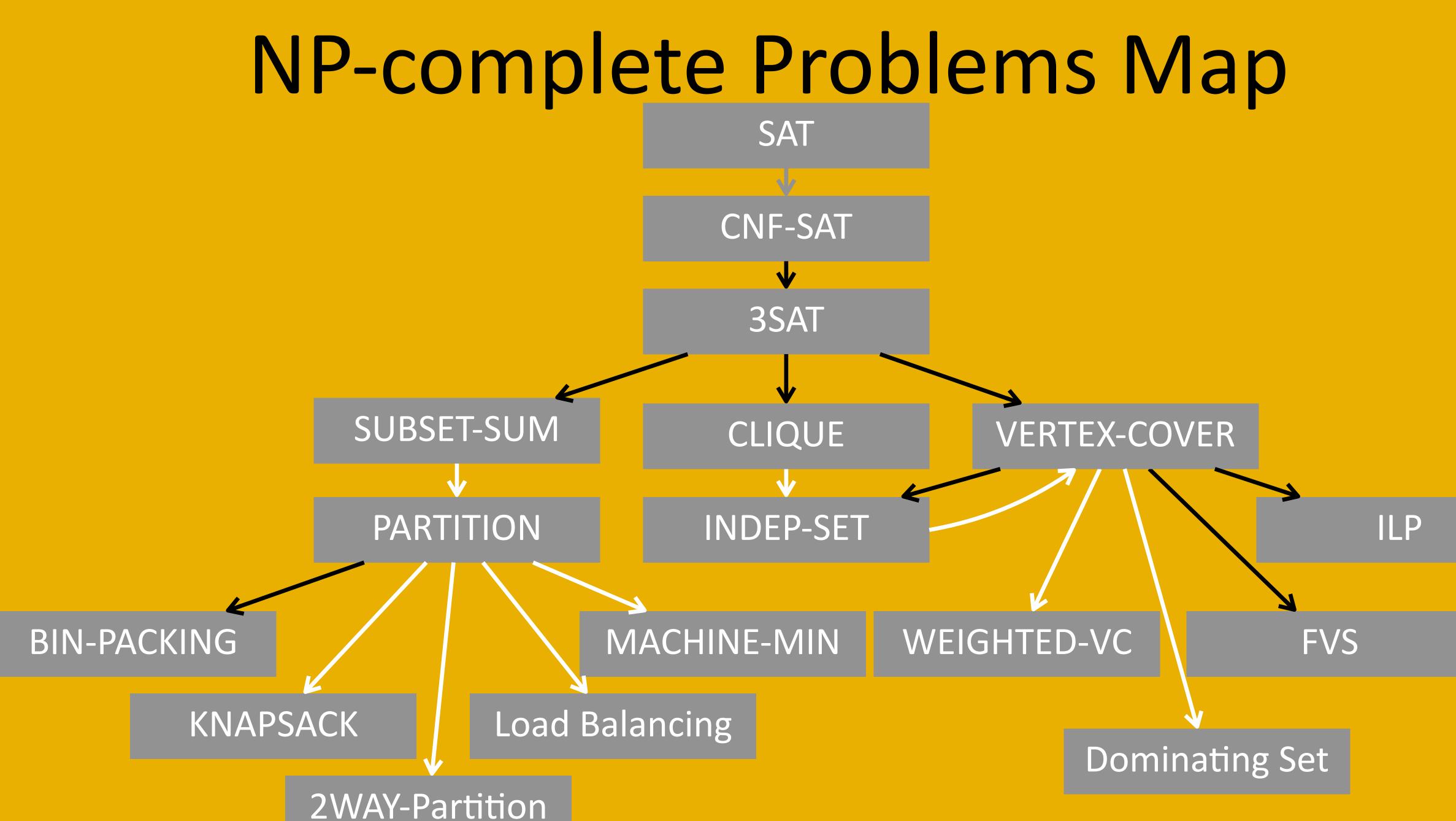
ILP

Integer linear programming

- Input:
 - $\Sigma_i c_i x_i \le k$, with $A \overrightarrow{x} \ge \overrightarrow{b}$ and $x_i \in \{0, 1\}$
- Output:
 - yes if there is an assignment of x_is such that the objective value is at most k and constraints are satisfied
 - no otherwise

 $\Sigma_i x_i \leq k$

for all edge (u, v) in $E, x_u + x_v \ge 1$



Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

• KANPSACK problem: Give a set S of items, each with an integer value v_i and more than B with total value at least V?

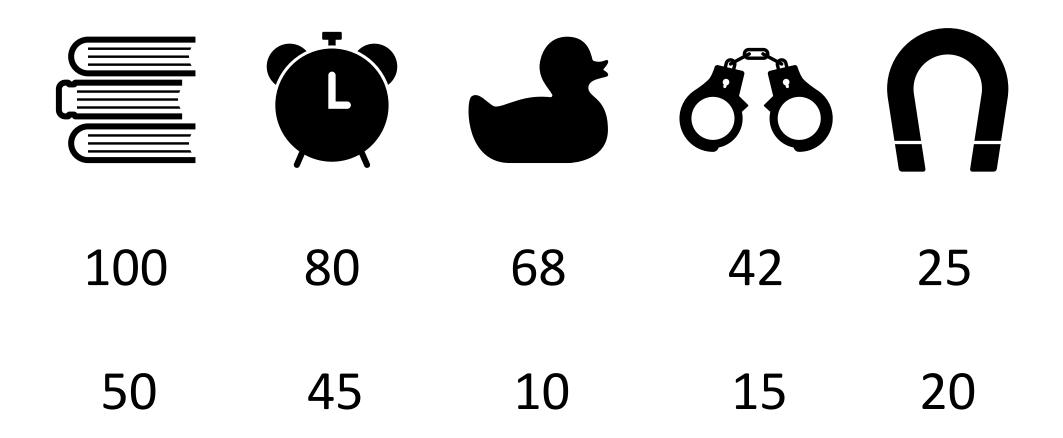
• KANPSACK problem: Give a set S of items, each with an integer value v_i and more than B with total value at least V?



value

weight

Weight capacity: 100



- KANPSACK problem: Give a set S of items, each with an integer value v_i and more than B with total value at least V?
- KNAPSACK is NP-complete

- KANPSACK problem: Give a set S of items, each with an integer value v_i and more than B with total value at least V?
- KNAPSACK is NP-complete
- Using dynamic programming, it can be solved in O(nB) time.
 - $W(j, w) := \max\{\sum_{i \in S} v_i | S \subseteq \{1, 2, \dots, j\}, \sum_{i \in S} w_i \le w\}$
 - $W(j+1,w) = \max\{W(j,w), W(j,w-w_{i+1}) + v_{i+1}\}$

- KANPSACK problem: Give a set S of items, each with an integer value v_i and more than B with total value at least V?
- KNAPSACK is NP-complete
- Using dynamic programming, it can be solved in O(nB) time.
 - $W(j, w) := \max\{\sum_{i \in S} v_i | S \subseteq \{1, 2, \dots, j\}, \sum_{i \in S} w_i \le w\}$
 - $W(j+1,w) = \max\{W(j,w), W(j,w-w_{i+1}) + v_{i+1}\}$
- Have we just shown that P = NP?

• Weak NP-complete (NP-complete in the ordinary sense):

- Weak NP-complete (NP-complete in the ordinary sense):
 - Problem is NP-complete if numbers are given in binary, but polynomial time solvable when numbers are given in unary encoding.

- Weak NP-complete (NP-complete in the ordinary sense):
 - Problem is NP-complete if numbers are given in binary, but polynomial time solvable when numbers are given in unary encoding.
 - Algorithms are known which solve them in time bounded by a polynomial in the numeric value of the input instead of in the length of the input length.

- Weak NP-complete (NP-complete in the ordinary sense):
 - Problem is NP-complete if numbers are given in binary, but polynomial time solvable when numbers are given in unary encoding.
 - Algorithms are known which solve them in time bounded by a polynomial in the numeric value of the input instead of in the length of the input length.
 - The problem is solvable in **pseudo-polynomial** time

- Weak NP-complete (NP-complete in the ordinary sense):
 - Problem is NP-complete if numbers are given in binary, but polynomial time solvable when numbers are given in unary encoding.
 - Algorithms are known which solve them in time bounded by a polynomial in the numeric value of the input instead of in the length of the input length.
 - The problem is solvable in **pseudo-polynomial** time
- Strong NP-complete (NP-complete in the strong sense):
 - Problem is NP-complete if numbers are given in unary encoding
 - Problem is NP-complete even when the numerical parameters are bounded by a polynomial in the input size

- Weak NP-complete (NP-complete in the ordinary sense):
 - Problem is NP-complete if numbers are given in binary, but polynomial time solvable when numbers are given in unary encoding.
 - Algorithms are known which solve them in time bounded by a polynomial in the numeric value of the input instead of in the length of the input length.
 - The problem is solvable in **pseudo-polynomial** time
- Strong NP-complete (NP-complete in the strong sense):
 - Problem is NP-complete if numbers are given in unary encoding
 - Problem is NP-complete even when the numerical parameters are bounded by a polynomial in the input size
 - Ex: SAT, 3SAT, VertexCover, FVS, IS, CLIQUE, ILP, BinPacking...

Showing that a problem is strongly NP-hard

- You need to:
 - 1. Reduce it from a strongly NP-complete problem, and
 - the reduction are bounded by a polynomial of input size

2. Ensure that the **magnitudes** of the numerical parameters generated during

Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

The Class NP

- nondeterministic Turing machine.
- Definition: **NP** is the class of languages that are polynomial time verifiable.

• Definition: NP is the class of languages that are decidable in polynomial time on a

 Definition: co-NP is the class of langua verifiable.

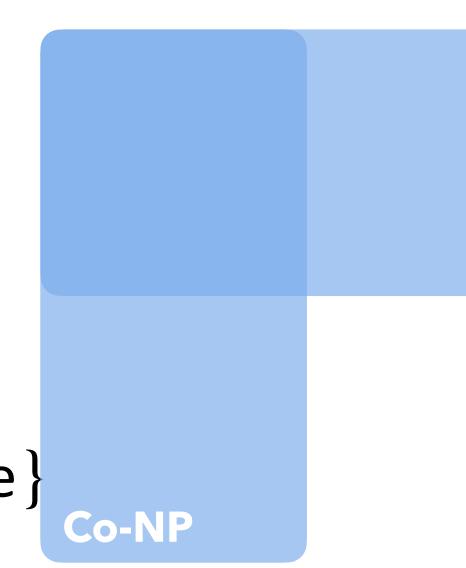
• Definition: **co-NP** is the class of languages that any no-instance are polynomial time

- Definition: co-NP is the class of languing time verifiable.
- Definition: A language L is in **co-NP** if $\overline{L} \in NP$.
 - \overline{L} : complement language of L
 - NOT-HAMILTONIAN = $\{\langle G \rangle | G \text{ has no Hamiltonian cycle} \}$
 - UNSATISFIABLE = { $\langle \phi \rangle$ | All truth assignments make ϕ false }
- $P \subseteq \mathsf{NP} \cap \mathsf{co-NP}$

• Definition: co-NP is the class of languages that any no-instance are polynomial

- Definition: co-NP is the class of languing time verifiable.
- Definition: A language L is in **co-NP** if $\overline{L} \in NP$.
 - \overline{L} : complement language of L
 - NOT-HAMILTONIAN = $\{\langle G \rangle | G \text{ has no Hamiltonian cycle} \}$
 - UNSATISFIABLE = $\{\langle \phi \rangle | \text{All truth assignments make } \phi \text{ false} \}$
- $P \subseteq \mathsf{NP} \cap \mathsf{co-NP}$

• Definition: co-NP is the class of languages that any no-instance are polynomial



- Definition: co-NP is the class of languing time verifiable.
- Definition: A language L is in **co-NP** if $\overline{L} \in NP$.
 - \overline{L} : complement language of L
 - NOT-HAMILTONIAN = $\{\langle G \rangle | G \text{ has no Hamiltonian cycle} \}$
 - UNSATISFIABLE = $\{\langle \phi \rangle | \text{All truth assignments make } \phi \text{ false} \}$
- $P \subseteq \mathsf{NP} \cap \mathsf{co-NP}$

• Definition: co-NP is the class of languages that any no-instance are polynomial

A more natural example for NP and coNP

- INTEGER_FACTORISATION = { $\langle n, k \rangle$ | n has a prime factor less than k} is in NP and co-NP:
 - In NP: A certificate is two numbers c and p < k where p is a prime* such that cp = n
 - In co-NP: A certificate is the prime factorization of *n*
 - Is INTETER_FACTORISATION in P? For cryptography sake we hope not!
- * Prime-testing is in P [M Agrawal, N Kayal, N Saxena, 2004]

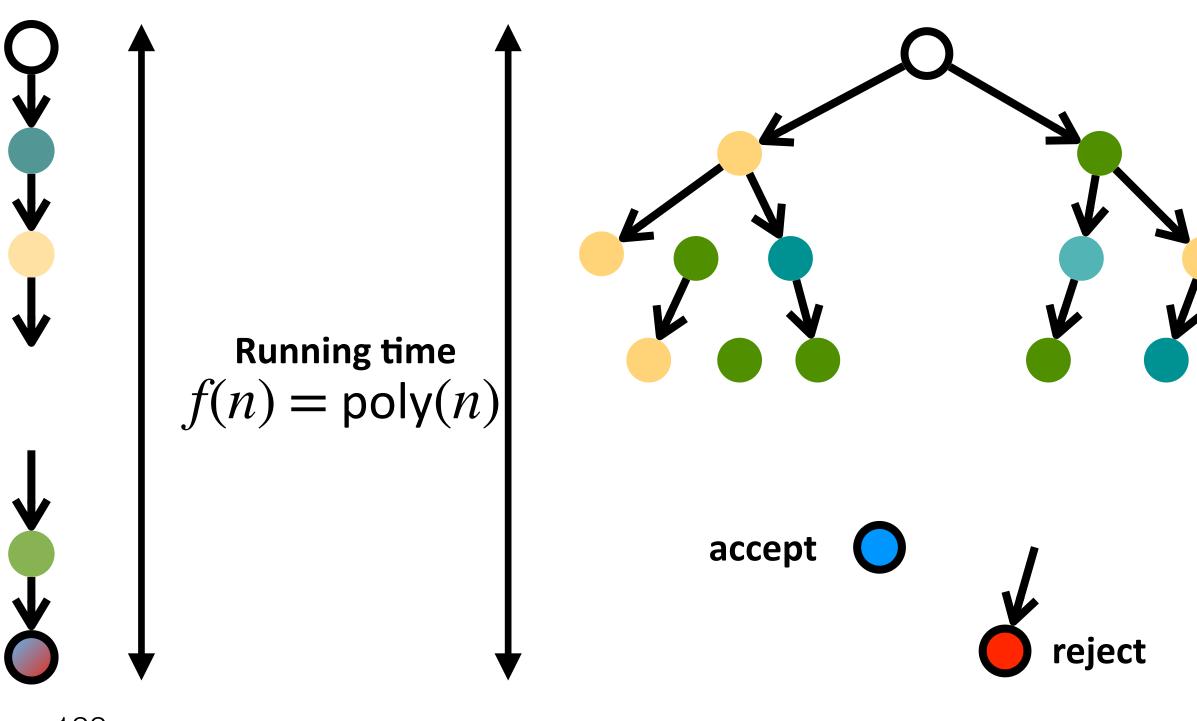
Outline

- More NP-Hardness proofs
 - $3SAT \leq_p VERTEX-COVER$
 - VERTEX-COVER \leq_p INDEPENDENT SET
 - VERTEX-COVER \leq_p FEEDBACK-VERTEX-SET
 - VERTEX-COVER \leq_p Integer Linear Program
- Pseudo-polynomial time algorithms
- NP and Co-NP
- Turing undecidable languages

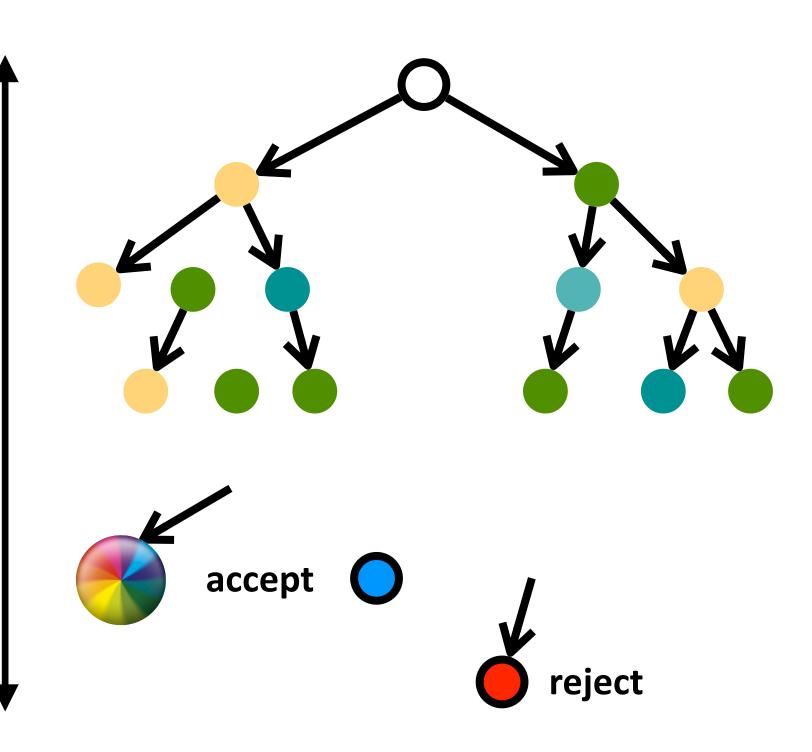
Turing machine and Decidability

- The class **P** is the class of languages that are *accepted* or *rejected* in polynomial time by a deterministic Turing machine
- The class **NP** is the class of languages that can be *verified* in polynomial time by a deterministic Turing machine.

accept/reject

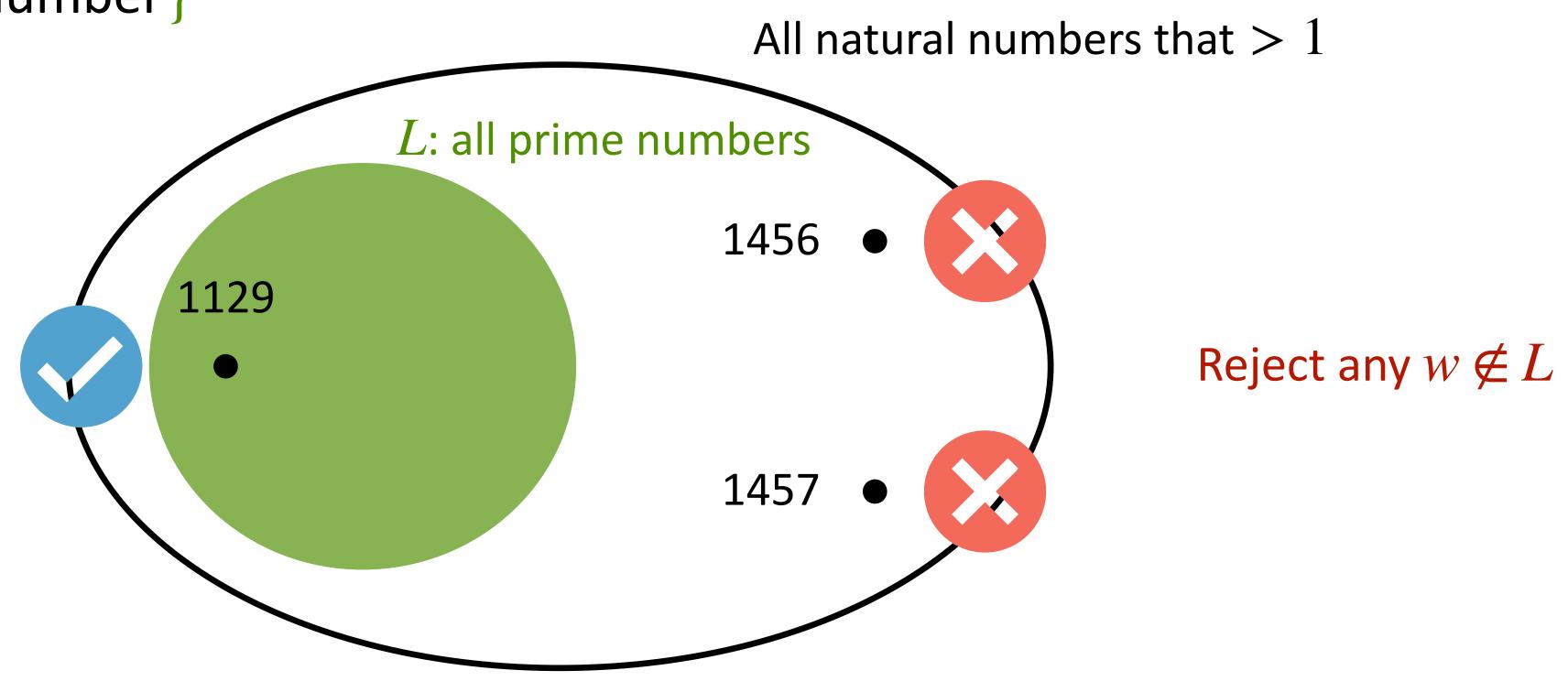


Turing machine may not halt and enter a loop



- A language *L* is (Turing-)decidable if some Turing machine decides it
 - $\bullet~$ The Turing machine accepts all strings in L and rejects all strings not in L

- A language *L* is (Turing-)decidable if some Turing machine decides it
 - $\bullet~$ The Turing machine accepts all strings in L and rejects all strings not in L
- Ex: *L* = { prime number }



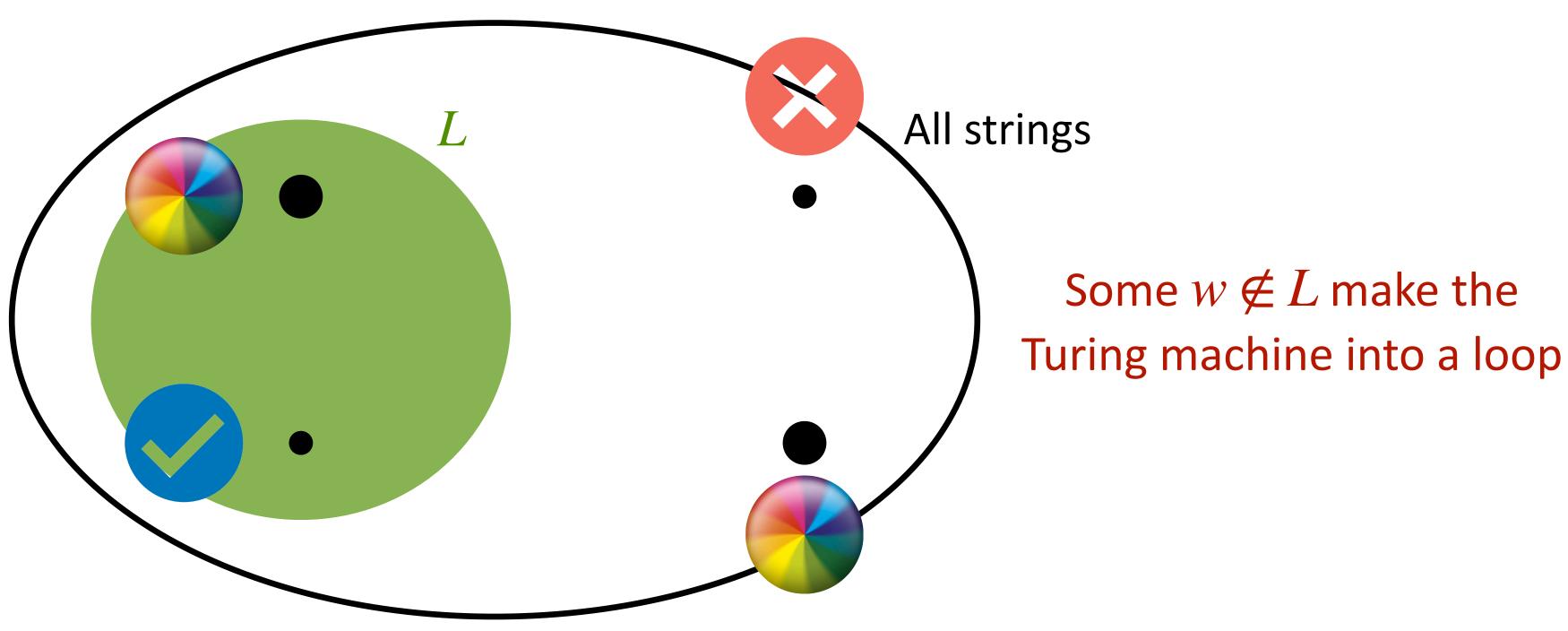
- A language *L* is (Turing-)decidable if some Turing machine decides it
 - $\bullet~$ The Turing machine accepts all strings in L and rejects all strings not in L
- All the problems in NP are decidable



Undecidable Language

• A language L is **undecidable** if for all Turing machine M, M does not reject w

Some $w \in L$ make the Turing machine into a loop



there exists $w \in L$ such that M does not accept w or there exists $w \notin L$ such that

Undecidable Languages

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- Halting problem: W

HALT_{TM} = { $\langle M, w \rangle \mid M$ is a Turing machine and M accepts or rejects input string

Undecidable Languages

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- Halting problem: W

HALT_{TM} = { $\langle M, w \rangle$ | M is a Turing machine and M accepts or rejects input string

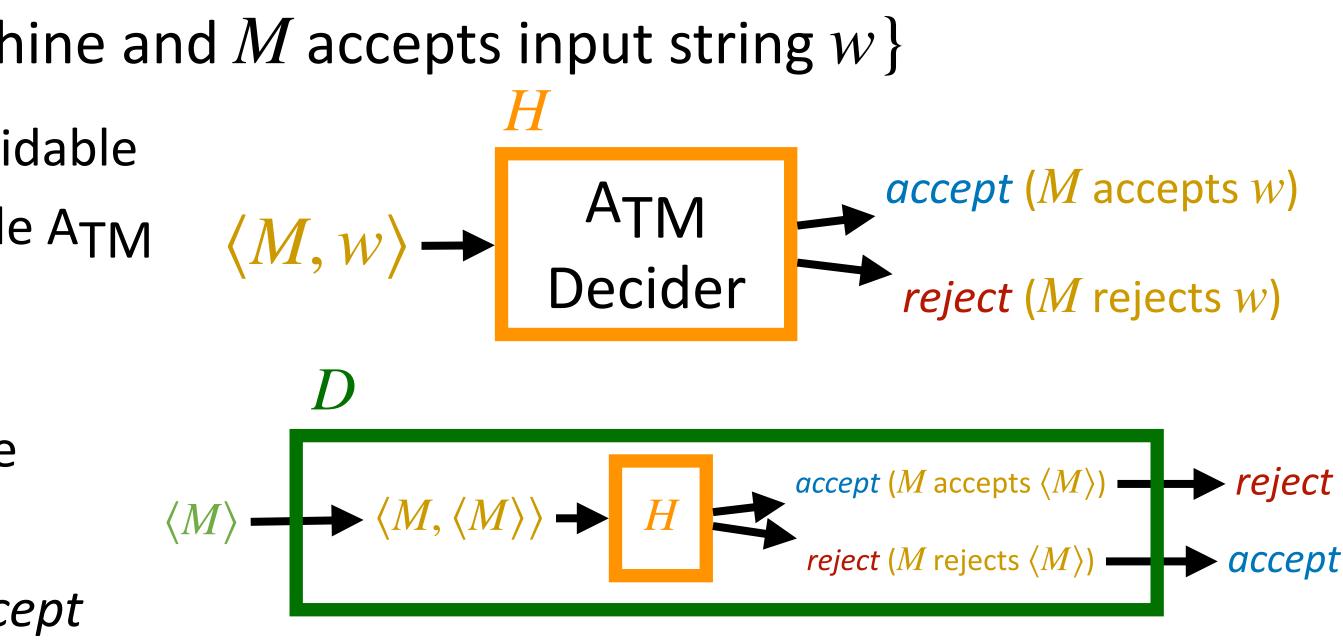
• $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- <Pf> Assume on the contrary that A_{TM} is deci \Rightarrow there is a Turing machine H that can decide

idable
le A_{TM}
$$(M, w) \rightarrow H$$

Decider $A_{TM} \rightarrow C_{reject} (M \operatorname{accept})$

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- <Pf> Assume on the contrary that A_{TM} is decidable \Rightarrow there is a Turing machine *H* that can decide A_{TM}
- Design a Turing machine D: On input $\langle M \rangle$, where M is a Turing machine 1. Run H on input $\langle M, \langle M \rangle \rangle$ 2. If H accepts, *reject* and if H rejects, *accept*

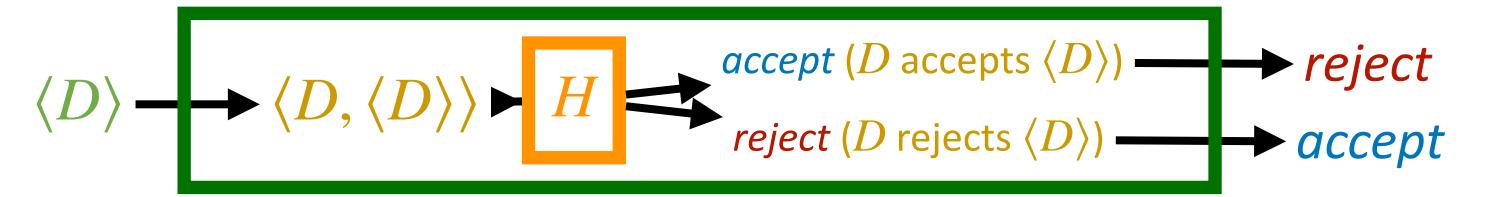


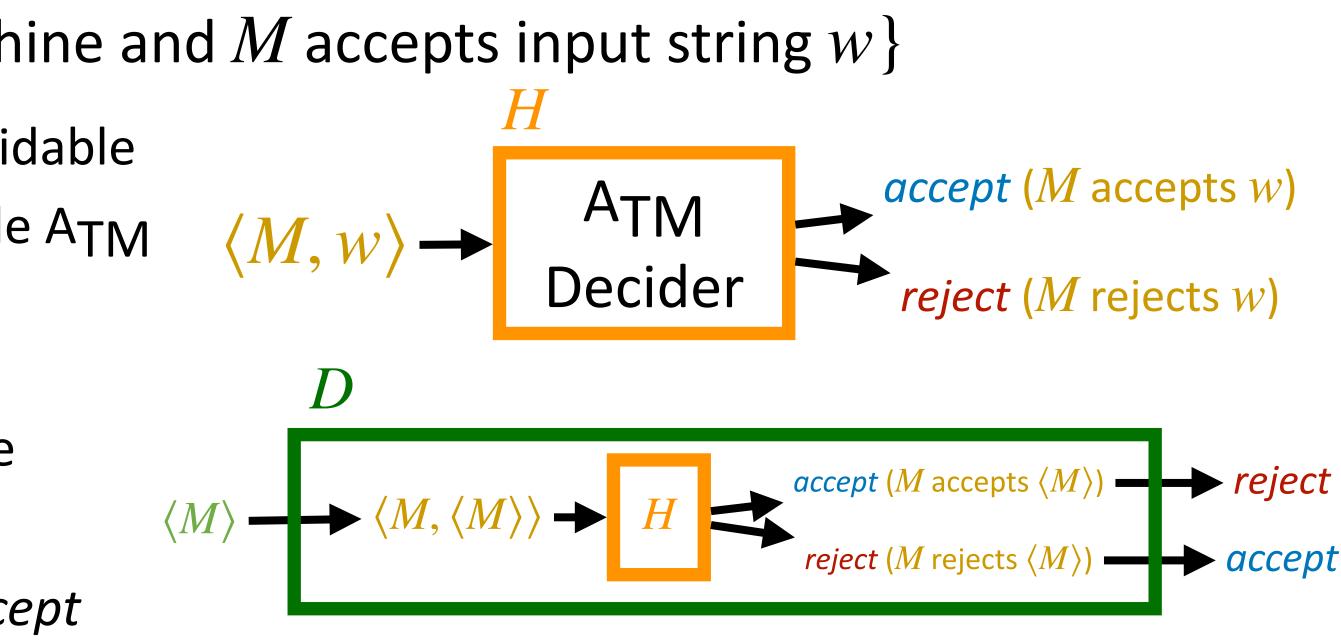
• $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$

<Pf> Assume on the contrary that A_{TM} is decidable \Rightarrow there is a Turing machine H that can decide A_{TM}

Design a Turing machine D: On input $\langle M \rangle$, where M is a Turing machine 1. Run H on input $\langle M, \langle M \rangle \rangle$ 2. If H accepts, *reject* and if H rejects, *accept*

Run *D* on $\langle D \rangle$:



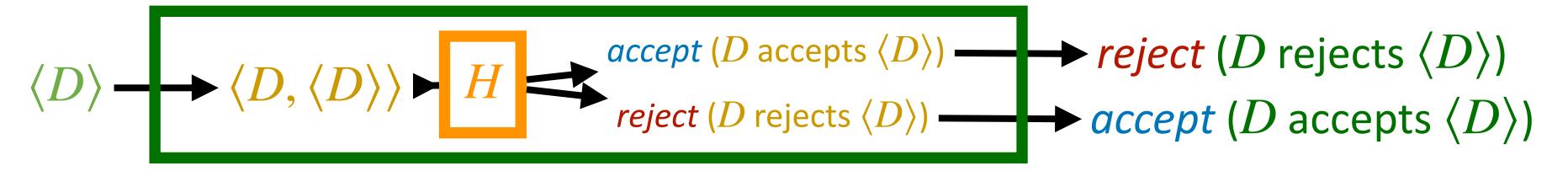


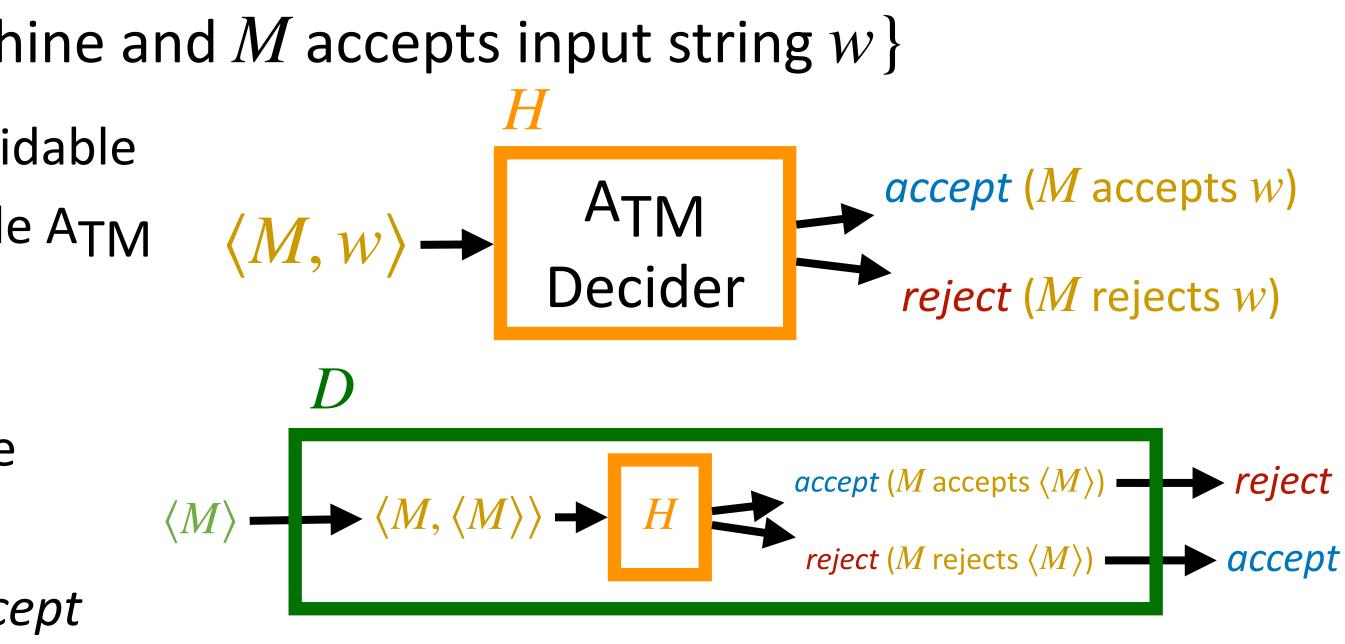
• $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$

<Pf> Assume on the contrary that A_{TM} is decidable \Rightarrow there is a Turing machine H that can decide A_{TM}

Design a Turing machine D: On input $\langle M \rangle$, where M is a Turing machine 1. Run H on input $\langle M, \langle M \rangle \rangle$ 2. If H accepts, *reject* and if H rejects, *accept*

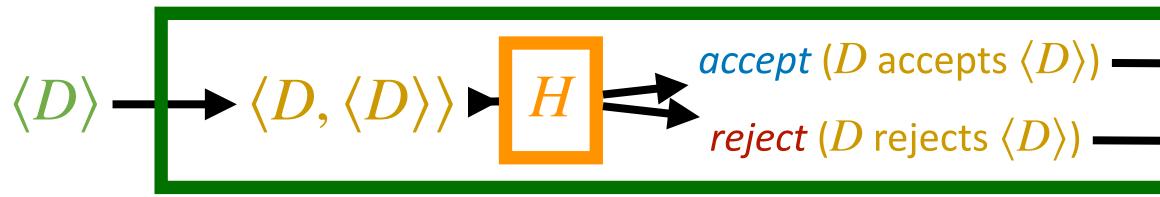
Run *D* on $\langle D \rangle$:





• $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$ <Pf> Assume on the contrary that A_{TM} is decidable accept (M accepts w) ATM Decider \Rightarrow there is a Turing machine H that can decide ATM $\langle M, w \rangle$ – *reject* (*M* rejects *w*) Design a Turing machine *D*: On input $\langle M \rangle$, where M is a Turing machine accept (M accepts $\langle M \rangle$) $\langle M \rangle \longrightarrow \langle M, \langle M \rangle \rangle \rightarrow$ 1. Run *H* on input $\langle M, \langle M \rangle \rangle$ 2. If *H* accepts, *reject* and if *H* rejects, *accept*

Run *D* on $\langle D \rangle$:



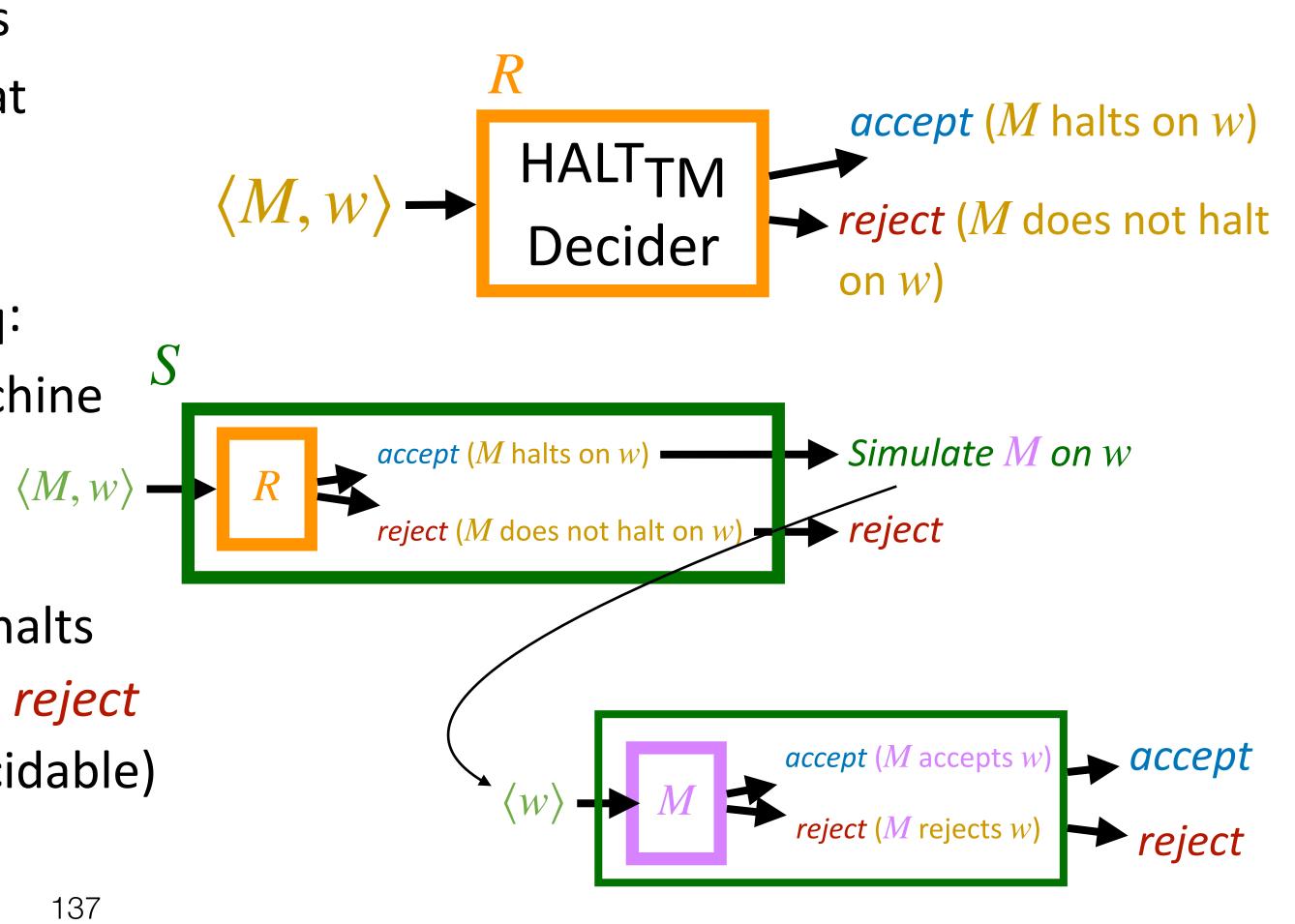
accept (D accepts $\langle D \rangle$) \longrightarrow reject (D rejects $\langle D \rangle$) *reject* (*D* rejects $\langle D \rangle$) \longrightarrow *accept* (*D* accepts $\langle D \rangle$)

Undecidable Languages

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- Halting problem: W

HALT_{TM} = { $\langle M, w \rangle \mid M$ is a Turing machine and M accepts or rejects input string

- HALT_{TM} = { $\langle M, w \rangle$ | M is a Turing machine and M halts on input string w} <Pf> Assume on the contrary that HALT_{TM} is decidable \Rightarrow there is a Turing machine R that decides HALT_{TM} HALT_{TM}
- Design a Turing machine S that decides A_{TM}:
 - On input $\langle M, w \rangle$, where M is a Turing machine
 - 1. Run *R* on input $\langle M, w \rangle$
 - 2. If *R* rejects, *reject*
 - 3. If R accepts, simulate M on w until it halts
 - 4. If M accepts w, *accept*. If M rejects w, *reject* $\rightarrow \leftarrow (A_{TM} \text{ is undecidable})$



Halting problem is undecidable

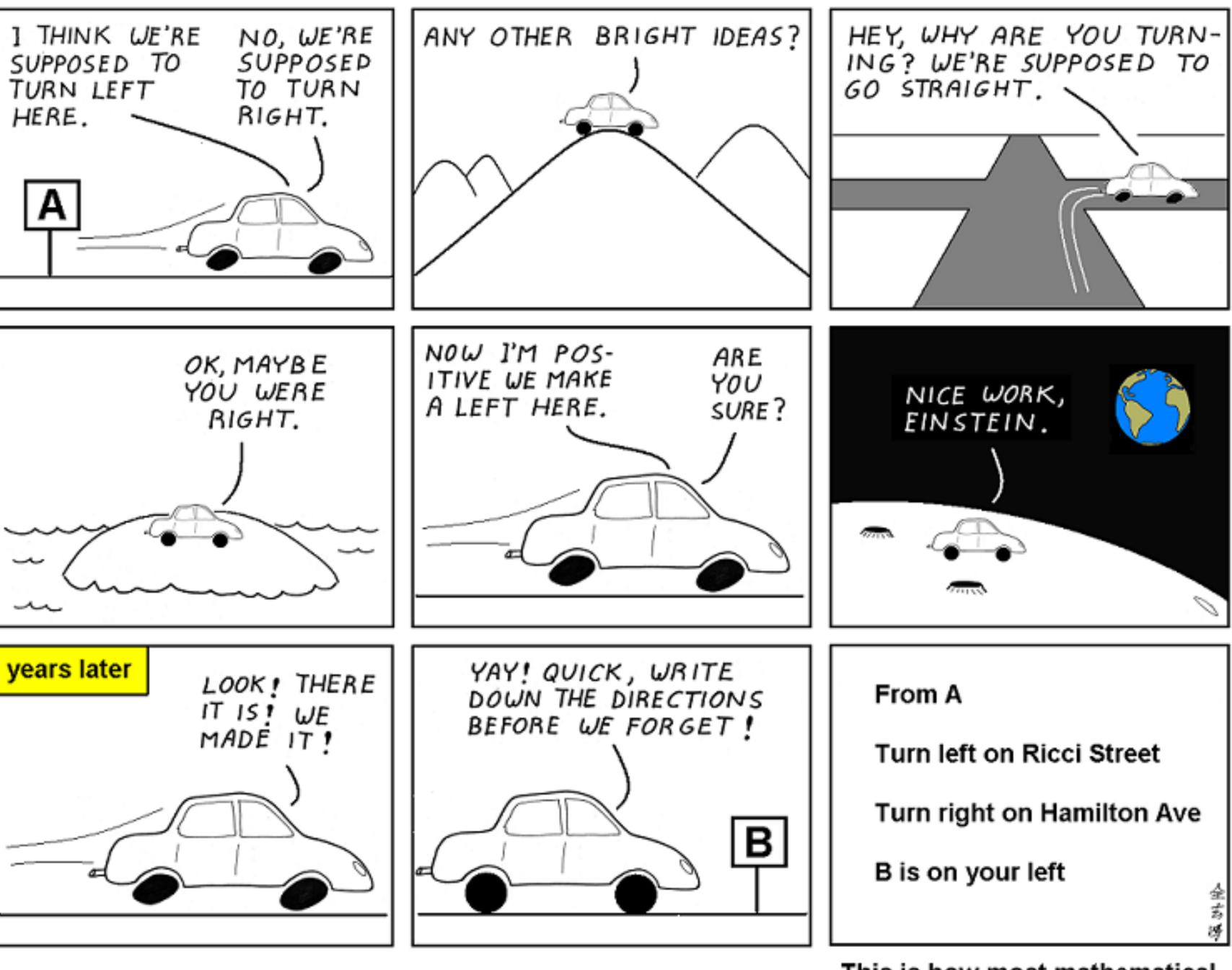
- Proof by reduction!
 - If $A \leq B$ and B is decidable, then A is decidable
 - The reduction \leq doesn't need to be polynomial time

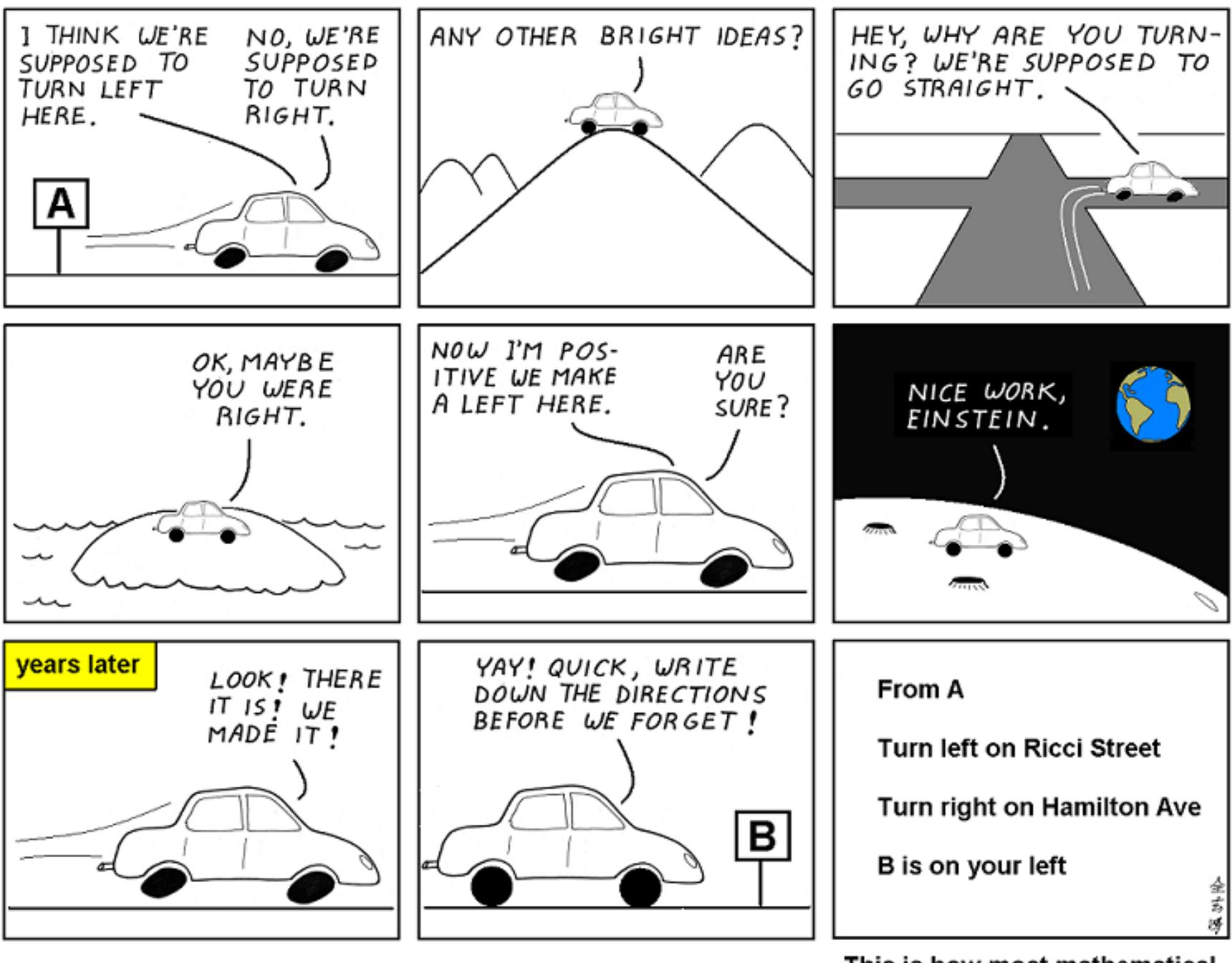
Undecidable Languages

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts input string } w \}$
- Halting problem: W
- Hilbert's 10th problem: $H = \{\langle p \rangle \mid p \text{ is a polynomial with an integral root} \}$
- Post correspondence problem (PCP): top is the same as the string on the bottom.

HALT_{TM} = { $\langle M, w \rangle$ | M is a Turing machine and M accepts or rejects input string

Given a collection D of dominos, each containing two strings, one on each side. A match is a list of these dominos (repetition permitted) such that the string on the





lt's obvious

— by Abstruse Goose

This is how most mathematical proofs are written.