
Exercise 10: More NP-Completeness and Beyond

1. The Knapsack problem is defined as follows. We have n items, each with positive integral weight
wj (j = 1, · · · , n) and positive integral value cj (j = 1, · · · , n) and an integer b. The question is
to find a subset of the items with total weight at most b and maximal value.
Answer the following questions:

(a) Give the decision version of the knapsack problem, Knapsack.
(b) Prove that Knapsack problem is NP-complete.

2. Given a graph G = (V, E), a vertex cover is a subset C of vertices in V such that for any edge
(u, v) ∈ E, {u, v} ∩ C ≥ 1. In the Minimum Vertex Cover problem, we aim at finding the
minimum vertex cover in the given graph.

(a) Give the decision version of the Minimum Vertex Cover, VC

(b) Show that the decision version of the Minimum Vertex Cover, VC, is NP-complete.

3. Consider the maximum weighted vertex cover problem: given a graph G = (V, E) and each
vertex v ∈ V has weight w(v), find a vertex cover with minimum weight.
Answer the following questions:

(a) Give the decision version of the minimum vertex cover problem, WeightedVC.
(b) Prove that WeightedVC is NP-hard.

4. Recall that in the load balancing problem, there are m machines and n jobs, where job i has
processing time pi. The load of a machine is the total processing time of the jobs assigned to it.
The goal is to assign the jobs on the machines such that the highest load among the machines is
minimized.
Show that the load balancing problem is NP-complete.

5. Consider the machine minimization problem as follows. There are n jobs J1, J2, · · · , Jn. Each
job Ji has processing time pi and feasible interval Ii = [ri, di] where Ji should be assigned.
There are unlimited number of machines. Each machine can execute at most one job at a time.
A feasible schedule is an assignment of every job Ji to a machine Mj at certain time ti such
that [ti, ti + pi] ⊆ [ri, di], and there is no other jobs Jk assigned to the same machine such that
[tk, tk + pk] ∩ [ti, ti + pi] ̸= ϕ.
The decision version of the machine minimization problem is

MachineMinimization = {⟨S, P, L, k⟩ | S = {J1, J2, · · · , Jn}, P = {p1, p2, · · · , pn}, and

L = {I1, I2, · · · , In}. S is a set of jobs where each job Ji has processing time pi

and feasible interval Ii. The jobs in S can be feasibly scheduled on at most k machines.}

Show that MachineMinimization is NP-hard.

1



6. Given a graph G = (V, E), a dominating set is a set of vertices D ⊆ V such that for any vertices
v ∈ V , v ∈ D or at least one of the neighbors of v is in D. The goal of the Minimum Dominating
Set problem is to find a dominating set of the given graph with the minimum cardinality.
Show that the Minimum Dominating Set problem is NP-complete.

7. The EmptyTM language is defined as {⟨M⟩ | M is a Turing machine and M accepts nothing}.
Show that EmptyTM is undecidable.

2


